#include "synth_engine.h"
#include "lowpass.h"
#include "filter.h"
float
adsr_amplitude(void *synthData, unsigned long long elapsed)
{
synth_t *synth = (synth_t*)synthData;
float dAmplitude = 0.0;
float dReleaseAmplitude = 0.0;
float dStartAmplitude = 1.0;
float dLifeTime = (elapsed * (1.0 / (float)SAMPLE_RATE));
if (synth->n.noteOn != 0 && synth->n.noteOff == 0) {
if (dLifeTime <= synth->adsr.a)
dAmplitude = (dLifeTime / synth->adsr.a)*(dLifeTime / synth->adsr.a) * dStartAmplitude;
if (dLifeTime > synth->adsr.a && dLifeTime <= ( synth->adsr.a + synth->adsr.d))
dAmplitude = ((dLifeTime - synth->adsr.a) / synth->adsr.d) * (synth->adsr.s - dStartAmplitude) + dStartAmplitude;
if (dLifeTime > (synth->adsr.a + synth->adsr.d))
dAmplitude = synth->adsr.s;
}
else { // Note is off
if (dLifeTime <= synth->adsr.a)
dReleaseAmplitude = (dLifeTime / synth->adsr.a)*(dLifeTime / synth->adsr.a) * dStartAmplitude;
if (dLifeTime > synth->adsr.a && dLifeTime <= (synth->adsr.a + synth->adsr.d))
dReleaseAmplitude = ((dLifeTime - synth->adsr.a) / synth->adsr.d) * (synth->adsr.s - dStartAmplitude) + dStartAmplitude;
if (dLifeTime > (synth->adsr.a + synth->adsr.d))
dReleaseAmplitude = synth->adsr.s;
dAmplitude = (((synth->n.noteOn + dLifeTime) - synth->n.noteOff) / synth->adsr.r) * (0.0 - dReleaseAmplitude) + dReleaseAmplitude;
if (synth->adsr.r < 0) {
dAmplitude = synth->adsr.s;
}
}
// Amplitude should not be negative
if (dAmplitude <= 0.000)
dAmplitude = 0.0;
return dAmplitude;
}
float
sin_sample(float amp, float freq, unsigned long long phase, unsigned int sample_rate)
{
return amp * sinf(2.0 * M_PI * freq * ((float)phase / (float)sample_rate));
}
float
saw_sample(float amp, float freq, unsigned long long phase, unsigned int sample_rate)
{
return amp * (0.17 * (1.0 - (2.0 * M_PI * freq * fmod((float)phase, (float)(sample_rate / (freq)))) / (float)sample_rate));
}
float
sawX_sample(float amp, float freq, float sm, unsigned long long phase, unsigned int sample_rate)
{
float dOutput = 0.0;
for (float n = 1.0; n < sm; n++)
dOutput += (sinf(n * 2.0 * M_PI * freq * ((float)phase / (float)sample_rate))) / n;
return 0.5 * amp * dOutput;
}
float
sqr_sample(float amp, float freq, float duty_cycle, unsigned long long phase, unsigned int sample_rate)
{
if (duty_cycle < 0.0001 || duty_cycle > 0.9999) {
duty_cycle = 0.5;
}
return (fmod((float)phase / (float)sample_rate, 1.0 / freq) < duty_cycle * (1.0 / freq)) ? amp : -amp;
}
float
gen0(float f, unsigned long long phase, float x, unsigned int sample_rate)
{
return sqr_sample(0.1, f, 0.3, phase, sample_rate)
+ sqr_sample(0.1, f * 3.0 / 2.0 , 0.5, phase, sample_rate)
+ saw_sample(0.3, f, phase, sample_rate)
+ sin_sample(0.1, f, phase, sample_rate)
+ sin_sample(0.1, f * 5, phase, sample_rate)
/* + sin_sample(0.1, freq * 50 * 1021, phase, sample_rate) */
/* + sin_sample(0.1, freq * 50 * 3531021, phase, sample_rate) */
+ sin_sample(0.1, f * 7, phase, sample_rate);
}
float
gen1(float f, unsigned long long phase, float x, unsigned int sample_rate)
{
return sawX_sample(0.5, f, 5, phase, sample_rate)
+ saw_sample(0.3, 2 * f / 5, phase, sample_rate)
+ sin_sample(0.2, f * 5.0 / 7.0 , phase, sample_rate);
}
float
gen2(float f, unsigned long long phase, float x, unsigned int sample_rate)
{
return sin_sample(0.5, f * sqrt(2) , phase, sample_rate)
+ sin_sample(0.5, f, phase, sample_rate);
/* sawX_sample(1, synth->freq, 5, phase, sample_rate); */
}
float
gen3(float f, unsigned long long phase, float x, unsigned int sample_rate)
{
return sawX_sample(0.7, f, 5, phase, sample_rate)
+ sin_sample(0.3, 4.0/17.0*f, phase, sample_rate);
/* return sawX_sample(0.5, f * (1 + sqrt(5)) / 2, 5, phase, sample_rate) */
/* + sin_sample(0.3, f * x, phase, sample_rate) */
/* + sqr_sample(0.2, f * x, 0.2 * x * x, phase, sample_rate); */
}
/* 1d convolution */
void
convole(float *signal, float *filter, size_t signal_size, size_t filter_size, float *out) {
for (size_t i = 0; i < filter_size + signal_size; i++) {
size_t kmin, kmax, k;
out[i] = 0;
/* find overlap */
kmin = (i >= filter_size - 1) ? i - (filter_size - 1) : 0;
kmax = (i < signal_size - 1) ? i : signal_size - 1;
/* Add the overlaping values */
for (k = kmin; k <= kmax; k++) {
out[i] += signal[k] * filter[i - k];
}
}
}
void
low_pass_filter(float* signal, int length, float cutoff, float resonance, float* out) {
float c = 1.0f / tanf(M_PI * cutoff); // calculate filter constant
float a1 = 1.0f / (1.0f + resonance * c + c * c); // calculate filter coefficients
float a2 = 2.0f * a1;
float a3 = a1;
float b1 = 2.0f * (1.0f - c * c) * a1;
float b2 = (1.0f - resonance * c + c * c) * a1;
float prev_input = 0.0f, prev_output = 0.0f; // initialize previous input and output to zero
for (int i = 0; i < length; i++) {
float input = signal[i];
float output = a1 * input + a2 * prev_input + a3 * prev_output - (i >= 1 ? b1 * out[i-1] : 0.0f) - (i >= 2 ? b2 * out[i-2] : 0.0f);
out[i] = output;
prev_input = input;
prev_output = output;
}
}
float
make_sample(unsigned long long phase, void *synthData, unsigned int sample_rate, int viz)
{
synth_t *synth = (synth_t*)synthData;
float sample = 0;
int n = 1;
if (1 /* !synth->filter */) {
for (int i = 0; i < n; i++) {
sample += (1.0 / n) * synth->gen[synth->geni](synth->n.freq + synth->freq_offset, phase, synth->x, sample_rate);
}
if (!viz && synth->filter) {
// ALLL THE FILTERS
LowPass_Update(synth->resonance, (adsr_amplitude(synth, synth->adsr.elapsed) + 0.1) * synth->cutoff + 1, sample_rate);
sample = LowPass_Filter(sample);
update_bw_low_pass_filter(synth->fff, SAMPLE_RATE, (adsr_amplitude(synth, synth->adsr.elapsed) + 0.1) * synth->cutoff, synth->resonance);
sample = bw_low_pass(synth->fff, sample);
}
sample = synth->gain * adsr_amplitude(synth, synth->adsr.elapsed) *
sample; //synth->gen[synth->geni](synth->n.freq + synth->freq_offset, phase, synth->x);
if (synth->clamp && sample >= 1) sample = 0.99;
if (synth->clamp && sample <= -1) sample = -0.99;
} else {
// get sample array s[]
int samples = 30;
float s[samples];
if (synth->adsr.elapsed < samples) {
for (int i = 0; i < samples; i++) {
s[i] = synth->gain * adsr_amplitude(synth, i) * synth->gen[synth->geni](synth->n.freq + synth->freq_offset, i, synth->x, sample_rate);
}
} else {
for (int i = 0; i < samples; i++) {
s[i] = synth->gain * adsr_amplitude(synth, synth->adsr.elapsed - 50 + i) * synth->gen[synth->geni](synth->n.freq + synth->freq_offset, phase - 50 + i, synth->x, sample_rate);
}
}
// process s[]
// return s[50]
}
return sample;
}
int
sound_gen(const void *inputBuffer, void *outputBuffer,
unsigned long framesPerBuffer,
const PaStreamCallbackTimeInfo* timeInfo,
PaStreamCallbackFlags statusFlags,
void *synthData)
{
synth_t *synth = (synth_t*)synthData;
float *out = (float*)outputBuffer;
(void) timeInfo; /* Prevent unused variable warnings. */
(void) statusFlags;
(void) inputBuffer;
if (1) {
float s;
for( unsigned long i=0; i<framesPerBuffer; i++ ) {
//get_portaudio_frame(outputBuffer, synth);
s = make_sample(synth->n.elapsed, synth, SAMPLE_RATE, 0);
*out++ = s;
*out++ = s;
synth->adsr.elapsed++;
synth->n.elapsed++;
if (!synth->multi) {
if (synth->n.elapsed >= (1.0 / synth->n.freq) * SAMPLE_RATE) synth->n.elapsed = 0;
} else {
}
}
} else {
float s[FRAMES_PER_BUFFER * 5];
if (synth->adsr.elapsed < framesPerBuffer * 5) {
for (unsigned long long i = 0; i < framesPerBuffer * 5; i++) {
s[i] = make_sample(i, synth, SAMPLE_RATE, 0);
synth->adsr.elapsed++;
synth->n.elapsed++;
if (!synth->multi) {
if (synth->n.elapsed >= (1.0 / synth->n.freq) * SAMPLE_RATE) synth->n.elapsed = 0;
} else {
}
}
} else {
for (unsigned long long i = 0; i < framesPerBuffer * 5; i++) {
s[i] = make_sample(synth->n.elapsed - framesPerBuffer * 2 + i, synth, SAMPLE_RATE, 0);
synth->adsr.elapsed++;
synth->n.elapsed++;
if (!synth->multi) {
if (synth->n.elapsed >= (1.0 / synth->n.freq) * SAMPLE_RATE) synth->n.elapsed = 0;
} else {
}
}
}
// filter
// output
if (synth->adsr.elapsed < framesPerBuffer * 5) {
for( unsigned long i=0; i<framesPerBuffer; i++ ) {
*out++ = s[i];
*out++ = s[i];
}
} else {
for( unsigned long i=0; i<framesPerBuffer; i++ ) {
*out++ = s[i + (2 * framesPerBuffer)];
*out++ = s[i + (2 * framesPerBuffer)];
}
}
synth->adsr.elapsed-= 4*framesPerBuffer;
if (!synth->multi) {
for (int i = 0; i < framesPerBuffer * 4; i++) {
synth->n.elapsed--;
if (synth->n.elapsed == 0) synth->n.elapsed = (int)(SAMPLE_RATE / synth->n.freq);
}
} else {
synth->n.elapsed-= 4*framesPerBuffer;
}
}
return paContinue;
}
void
init_synth(synth_t * synth)
{
synth->freq_offset = 0;
synth->gain = 1;
synth->x = 1;
synth->n.freq = 0;
synth->n.noteOn = 0;
synth->n.noteOff = 1;
synth->n.key = 0;
synth->n.elapsed = 0;
synth->adsr.a = 0.001;
synth->adsr.d = 0.3;
synth->adsr.s = 0.7;
synth->adsr.r = 0.4;
synth->adsr.elapsed = 0;
synth->octave = 3;
synth->multi = 0;
synth->filter = 0;
synth->cutoff = 22000.0f;
synth->resonance = 1.0f;
synth->clamp = 0;
synth->gen[0] = gen0;
synth->gen[1] = gen1;
synth->gen[2] = gen2;
synth->gen[3] = gen3;
synth->geni = 0;
synth->viz.sample_rate_divider = 1;
LowPass_Init();
synth->fff = create_bw_low_pass_filter(2, SAMPLE_RATE, 400);
}