summaryrefslogtreecommitdiffstats
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/Makefile.am19
-rw-r--r--src/cplusplus.cpp5
-rw-r--r--src/cplusplus.h14
-rw-r--r--src/game.c1601
-rw-r--r--src/shader.frag9
-rw-r--r--src/shader.vert17
-rw-r--r--src/state.h112
-rw-r--r--src/vk_mem_alloc.h18676
-rw-r--r--src/vkutil.h58
9 files changed, 20511 insertions, 0 deletions
diff --git a/src/Makefile.am b/src/Makefile.am
new file mode 100644
index 0000000..44c7cc1
--- /dev/null
+++ b/src/Makefile.am
@@ -0,0 +1,19 @@
+bin_PROGRAMS = game
+
+common_sources = state.h
+
+# -fwhole-program allows cross-file inlining, but only works when you put all
+# the source files on one gcc command-line. -flto is another way to get the
+# same effect. (Link-Time Optimization). clang supports -flto but not
+# -fwhole-program.
+
+# If your program doesn't depend on strict FP rounding
+# behaviour, use -ffast-math. If it does, you can usually still use
+# -fno-math-errno and stuff like that, without enabling
+# -funsafe-math-optimizations. Some FP code can get big speedups from
+# fast-math, like auto-vectorization.
+AM_CFLAGS = -march=native -fno-math-errno -funroll-loops -flto -pthread -ggdb -DVKDEBUG
+# AM_CFLAGS = -O0 -march=native -fno-math-errno -funroll-loops -flto -pthread -ggdb -fsanitize=address
+
+game_SOURCES = game.c cplusplus.cpp $(common_sources)
+game_LDADD = -lSDL2 -lm -lSDL2_image -lvulkan -lshaderc_shared -lstdc++
diff --git a/src/cplusplus.cpp b/src/cplusplus.cpp
new file mode 100644
index 0000000..4441cc2
--- /dev/null
+++ b/src/cplusplus.cpp
@@ -0,0 +1,5 @@
+// not needed yet -- add custom cpp functions first
+// #include "cplusplus.h"
+
+#define VMA_IMPLEMENTATION
+#include "vk_mem_alloc.h"
diff --git a/src/cplusplus.h b/src/cplusplus.h
new file mode 100644
index 0000000..1e5f962
--- /dev/null
+++ b/src/cplusplus.h
@@ -0,0 +1,14 @@
+#ifndef CPLUSPLUS_H
+#define CPLUSPLUS_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+// cpp funcs
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif // CPLUSPLUS_H
diff --git a/src/game.c b/src/game.c
new file mode 100644
index 0000000..d6ec303
--- /dev/null
+++ b/src/game.c
@@ -0,0 +1,1601 @@
+#include <limits.h>
+#include <stdbool.h>
+#include <stdlib.h>
+#include <time.h>
+
+#include <shaderc/shaderc.h>
+
+#define SDL_MAIN_HANDLED
+#define VK_USE_PLATFORM_XCB_KHR
+#include <SDL2/SDL.h>
+#include <SDL2/SDL_image.h>
+#include <SDL2/SDL_vulkan.h>
+
+#include <vulkan/vulkan.h>
+#include <vulkan/vk_enum_string_helper.h> // for string_VkResult
+
+#define VMA_STATIC_VULKAN_FUNCTIONS 0
+#define VMA_DYNAMIC_VULKAN_FUNCTIONS 1
+#include "vk_mem_alloc.h"
+
+//#include "cplusplus.h"
+#include "vkutil.h"
+#include "state.h"
+
+// embedded clgm library
+#define CGLM_FORCE_DEPTH_ZERO_TO_ONE
+#include "../lib/cglm/include/cglm/cglm.h"
+
+uint32_t currentFrame = 0;
+state_t s;
+
+const uint32_t validationLayerCount = 1;
+const char *const validationLayers[] = {
+ "VK_LAYER_KHRONOS_validation"
+};
+
+const uint32_t deviceExtensionCount = 1;
+const char *const deviceExtensions[] = {
+ VK_KHR_SWAPCHAIN_EXTENSION_NAME,
+};
+
+#ifdef VKDEBUG
+ const bool enableValidationLayers = true;
+#else
+ const bool enableValidationLayers = false;
+#endif
+
+typedef struct {
+ float x;
+ float y;
+} V2;
+
+typedef struct {
+ float x;
+ float y;
+ float z;
+} V3;
+
+typedef struct {
+ V2 pos;
+ V3 color;
+} Vertex;
+
+/* Vertex vertices[] = { */
+/* (Vertex) { (V2) {-0.2f, -0.5f}, (V3) {0.0f, 1.0f, 0.0f}}, */
+/* (Vertex) { (V2) {0.5f, 0.3f}, (V3) {0.0f, 0.0f, 1.0f}}, */
+/* (Vertex) { (V2) {-0.5f, 0.7f}, (V3) {1.0f, 0.0f, 0.0f}}, */
+
+/* (Vertex) { (V2) {0.2f, -0.5f}, (V3) {0.0f, 0.0f, 1.0f}}, */
+/* (Vertex) { (V2) {0.5f, 0.7f}, (V3) {1.0f, 0.0f, 0.0f}}, */
+/* (Vertex) { (V2) {-0.5f, 0.3f}, (V3) {0.0f, 1.0f, 0.0f}}, */
+
+/* (Vertex) { (V2) {0.0f, -0.5f}, (V3) {1.0f, 0.0f, 0.0f}}, */
+/* (Vertex) { (V2) {0.5f, 0.5f}, (V3) {0.0f, 1.0f, 0.0f}}, */
+/* (Vertex) { (V2) {-0.5f, 0.5f}, (V3) {0.0f, 0.0f, 1.0f}}, */
+/* }; */
+/* const int VERTICES_SIZE = VK_ARRAY_LEN(vertices); */
+
+/* const uint16_t indices[] = { */
+/* 0, 1, 2, 3, 4, 5, 6, 7, 8, */
+/* }; */
+/* const int INDICES_SIZE = VK_ARRAY_LEN(indices); */
+
+Vertex vertices[] = {
+ (Vertex) { (V2) {-0.5f, -0.5f}, (V3) {1.0f, 0.0f, 0.0f}},
+ (Vertex) { (V2) {0.5f, -0.5f}, (V3) {0.0f, 1.0f, 0.0f}},
+ (Vertex) { (V2) {0.5f, 0.5f}, (V3) {0.0f, 0.0f, 1.0f}},
+ (Vertex) { (V2) {-0.5f, 0.5f}, (V3) {1.0f, 1.0f, 1.0f}},
+};
+const int VERTICES_SIZE = VK_ARRAY_LEN(vertices);
+
+const uint16_t indices[] = {
+ 0, 1, 2, 2, 3, 0
+};
+const int INDICES_SIZE = VK_ARRAY_LEN(indices);
+
+bool
+init()
+{
+ if (SDL_Init(SDL_INIT_VIDEO) < 0) {
+ vk_log(VK_INFO, "SDL could not initialize! SDL_Error: %s\n", SDL_GetError());
+ return false;
+ }
+
+ s.sdl_window = SDL_CreateWindow("Vulkanizater",
+ SDL_WINDOWPOS_UNDEFINED,
+ SDL_WINDOWPOS_UNDEFINED,
+ s.window_w,
+ s.window_h,
+ SDL_WINDOW_SHOWN | SDL_WINDOW_RESIZABLE | SDL_WINDOW_VULKAN);
+ if (s.sdl_window == NULL) {
+ vk_log(VK_INFO, "Window could not be created! SDL_Error: %s\n", SDL_GetError());
+ return false;
+ }
+
+ return true;
+}
+
+void
+closeSDL()
+{
+ SDL_DestroyWindow(s.sdl_window);
+ s.sdl_window = NULL;
+ SDL_Quit();
+}
+
+bool
+checkValidationLayerSupport()
+{
+ uint32_t layerCount;
+ vkEnumerateInstanceLayerProperties(&layerCount, NULL);
+
+ VkLayerProperties availableLayers[layerCount];
+ vkEnumerateInstanceLayerProperties(&layerCount, availableLayers);
+
+ for (uint32_t i = 0; i < validationLayerCount; i++) {
+ bool layerFound = false;
+
+ for (uint32_t j = 0; j < layerCount; j++) {
+ if (strcmp(validationLayers[i], availableLayers[j].layerName) == 0) {
+ layerFound = true;
+ break;
+ }
+ }
+
+ if (!layerFound) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+static VKAPI_ATTR VkBool32 VKAPI_CALL
+debugCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
+ VkDebugUtilsMessageTypeFlagsEXT messageType,
+ const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData,
+ void* pUserData)
+{
+ vk_log(VK_ERROR, "validation layer: %s\n", pCallbackData->pMessage);
+ return VK_FALSE;
+}
+
+void
+vulkan_setup_debug_messenger()
+{
+ if (!enableValidationLayers) return;
+ VkDebugUtilsMessengerCreateInfoEXT createInfo = {0};
+ createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
+ createInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
+ createInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
+ createInfo.pfnUserCallback = debugCallback;
+ createInfo.pUserData = NULL; // Optional
+
+
+ // TODO: func pointers returned are NULL
+ s.pfnCreateDebugUtilsMessengerEXT = (PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(s.vk_instance, "vkCreateDebugUtilsMessengerEXT");
+ s.pfnDestroyDebugUtilsMessengerEXT = (PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(s.vk_instance, "vkDestroyDebugUtilsMessengerEXT");
+
+ VkResult result = s.pfnCreateDebugUtilsMessengerEXT(s.vk_instance, &createInfo, NULL, &s.vk_debug_messenger);
+ if (result != VK_SUCCESS) {
+ vk_log(VK_WARN, "failed to set up debug messenger! %s\n", string_VkResult(result));
+ } else {
+ vk_log(VK_INFO, "Debug messanger created!\n");
+ }
+}
+
+void
+vulkan_create_instance()
+{
+ if (enableValidationLayers && !checkValidationLayerSupport()) {
+ vk_log(VK_ERROR, "validation layers requested, but not available!\n");
+ }
+
+ uint32_t instanceVersion;
+ VkResult result = vkEnumerateInstanceVersion(&instanceVersion);
+ if (result == VK_SUCCESS) {
+ if (instanceVersion < VK_MAKE_API_VERSION(0, 1, 3, 0)) {
+ vk_log(VK_ERROR, "Vulkan version 1.3 or greater required!\n");
+ exit(1);
+ }
+ vk_log(VK_INFO, "Vulkan version found (%d) %d.%d.%d\n",
+ VK_API_VERSION_VARIANT(instanceVersion),
+ VK_API_VERSION_MAJOR(instanceVersion),
+ VK_API_VERSION_MINOR(instanceVersion),
+ VK_API_VERSION_PATCH(instanceVersion));
+ } else {
+ vk_log(VK_ERROR, "Failed to retrieve vulkan version, is vulkan supported in this system? %s\n", string_VkResult(result));
+ exit(1);
+ }
+
+ // Load Vulkan and create instance
+ VkApplicationInfo appInfo = {
+ .sType = VK_STRUCTURE_TYPE_APPLICATION_INFO,
+ .pApplicationName = "Vulkan Application",
+ .applicationVersion = VK_MAKE_API_VERSION(0, 1, 3, 0),
+ .pEngineName = NULL,
+ .engineVersion = VK_MAKE_API_VERSION(0, 1, 3, 0),
+ .apiVersion = VK_MAKE_API_VERSION(0, 1, 3, 0),
+ };
+
+ uint32_t sdlExtensionCount = 0;
+
+ if (SDL_Vulkan_GetInstanceExtensions(s.sdl_window, &sdlExtensionCount, NULL) == SDL_FALSE) {
+ vk_log(VK_ERROR, "SDL_Vulkan_GetInstanceExtensions failed: %s\n", SDL_GetError());
+ }
+
+ // make space for debug extenetion
+ if (enableValidationLayers) {
+ sdlExtensionCount++;
+ }
+
+ const char* sdlExtensions[sdlExtensionCount];
+
+ if (SDL_Vulkan_GetInstanceExtensions(s.sdl_window, &sdlExtensionCount, sdlExtensions) == SDL_FALSE) {
+ vk_log(VK_ERROR, "SDL_Vulkan_GetInstanceExtensions failed: %s\n", SDL_GetError());
+ }
+
+ // add debug extenetion
+ if (enableValidationLayers) {
+ sdlExtensions[sdlExtensionCount] = VK_EXT_DEBUG_UTILS_EXTENSION_NAME;
+ }
+
+ vk_log(VK_INFO, "The sdl extensions:\n");
+ for (uint32_t i = 0; i < sdlExtensionCount; i++) {
+ vk_log(VK_INFO, "\t%s\n", sdlExtensions[i]);
+ }
+
+ VkInstanceCreateInfo createInfo = {
+ .sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
+ .pApplicationInfo = &appInfo,
+ .enabledExtensionCount = sdlExtensionCount,
+ .ppEnabledExtensionNames = sdlExtensions,
+ .enabledLayerCount = 0,
+ };
+
+ if (enableValidationLayers) {
+ createInfo.enabledLayerCount = validationLayerCount;
+ createInfo.ppEnabledLayerNames = validationLayers;
+ }
+
+ if (vkCreateInstance(&createInfo, NULL, &s.vk_instance) != VK_SUCCESS) {
+ vk_log(VK_ERROR, "Can't start vulkan instance\n");
+ }
+ vk_log(VK_INFO, "Vulkan instance created\n");
+}
+
+VkExtent2D
+chooseSwapExtent(const VkSurfaceCapabilitiesKHR * capabilities)
+{
+ if (capabilities->currentExtent.width != UINT32_MAX) {
+ return capabilities->currentExtent;
+ } else {
+ int width, height;
+ SDL_GetWindowSize(s.sdl_window, &width, &height);
+
+ VkExtent2D actualExtent;
+ actualExtent.width = (uint32_t) width;
+ actualExtent.height = (uint32_t) height;
+
+ // Manual implementation of std::clamp since it is not available in C
+ actualExtent.width = (actualExtent.width < capabilities->minImageExtent.width) ? capabilities->minImageExtent.width :
+ (actualExtent.width > capabilities->maxImageExtent.width) ? capabilities->maxImageExtent.width :
+ actualExtent.width;
+
+ actualExtent.height = (actualExtent.height < capabilities->minImageExtent.height) ? capabilities->minImageExtent.height :
+ (actualExtent.height > capabilities->maxImageExtent.height) ? capabilities->maxImageExtent.height :
+ actualExtent.height;
+
+ return actualExtent;
+ }
+}
+
+VkSurfaceFormatKHR
+chooseSwapSurfaceFormat(const VkSurfaceFormatKHR * availableFormats, uint32_t formatCount)
+{
+ for (uint32_t i = 0 ; i < formatCount; i ++) {
+ if (availableFormats[i].format == VK_FORMAT_B8G8R8A8_SRGB &&
+ availableFormats[i].colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
+ return availableFormats[i];
+ }
+ }
+
+ // if it fails pick the first one
+ return availableFormats[0];
+}
+
+VkPresentModeKHR
+chooseSwapPresentMode(const VkPresentModeKHR * presentModes, uint32_t presentModeCount)
+{
+ for (uint32_t i = 0 ; i < presentModeCount; i ++) {
+ if (presentModes[i] == VK_PRESENT_MODE_MAILBOX_KHR) {
+ return presentModes[i];
+ }
+ }
+
+ // if it fails pick the the FIFO one
+ return VK_PRESENT_MODE_FIFO_KHR;
+}
+
+typedef struct SwapChainSupportDetails {
+ VkSurfaceCapabilitiesKHR capabilities;
+ VkSurfaceFormatKHR formats[100];
+ uint32_t formatCount;
+ VkPresentModeKHR presentModes[100];
+ uint32_t presentModeCount;
+} SwapChainSupportDetails;
+
+SwapChainSupportDetails
+querySwapChainSupport(VkPhysicalDevice device)
+{
+ SwapChainSupportDetails details;
+
+ vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, s.vk_surface, &details.capabilities);
+
+ vkGetPhysicalDeviceSurfaceFormatsKHR(device, s.vk_surface, &details.formatCount, NULL);
+
+ if (details.formatCount != 0) {
+ // todo alloc format arrray
+ vkGetPhysicalDeviceSurfaceFormatsKHR(device, s.vk_surface, &details.formatCount, details.formats);
+ }
+
+ vkGetPhysicalDeviceSurfacePresentModesKHR(device, s.vk_surface, &details.presentModeCount, NULL);
+
+ if (details.presentModeCount != 0) {
+ // todo alloc presentModes array
+ vkGetPhysicalDeviceSurfacePresentModesKHR(device, s.vk_surface, &details.presentModeCount, details.presentModes);
+ }
+
+ return details;
+}
+
+typedef struct QueueFamilyIndices {
+ uint32_t graphicsFamily;
+ bool graphicsFlag;
+ uint32_t presentFamily;
+ bool presentFlag;
+} QueueFamilyIndices;
+
+bool
+vulkan_queue_family_check_flags(QueueFamilyIndices x)
+{
+ return x.graphicsFlag && x.presentFlag;
+}
+
+QueueFamilyIndices vulkan_find_queue_families(VkPhysicalDevice device) {
+ QueueFamilyIndices indices;
+ indices.graphicsFlag = false;
+ indices.presentFlag = false;
+
+ uint32_t queueFamilyCount = 0;
+ vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, NULL);
+
+ VkQueueFamilyProperties queueFamilies[queueFamilyCount];
+ vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies);
+
+ for (uint32_t i = 0; i < queueFamilyCount; i++) {
+ if (queueFamilies[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
+ indices.graphicsFamily = i;
+ indices.graphicsFlag = true;
+ }
+
+ VkBool32 presentSupport = false;
+ vkGetPhysicalDeviceSurfaceSupportKHR(device, i, s.vk_surface, &presentSupport);
+ if (presentSupport) {
+ indices.presentFamily = i;
+ indices.presentFlag = true;
+ }
+
+ if (vulkan_queue_family_check_flags(indices)) break;
+ }
+
+ return indices;
+}
+
+bool
+vulkan_check_device_extension_support(VkPhysicalDevice device)
+{
+ uint32_t extensionCount;
+ vkEnumerateDeviceExtensionProperties(device, NULL, &extensionCount, NULL);
+
+ VkExtensionProperties availableExtensions[extensionCount];
+ vkEnumerateDeviceExtensionProperties(device, NULL, &extensionCount, availableExtensions);
+
+ uint32_t flag = 0;
+
+ for (uint32_t i = 0; i < deviceExtensionCount; i++) {
+ for (uint32_t j = 0; j < extensionCount; j++) {
+ if (strcmp(deviceExtensions[i], availableExtensions[j].extensionName) == 0) {
+ flag++;
+ break;
+ }
+ }
+ }
+
+ return flag == deviceExtensionCount;
+}
+
+bool
+vulkan_is_device_suitable(VkPhysicalDevice device)
+{
+ QueueFamilyIndices indices = vulkan_find_queue_families(device);
+ bool extensionsSupported = vulkan_check_device_extension_support(device);
+
+ bool swapChainAdequate = false;
+ if (extensionsSupported) {
+ SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device);
+ swapChainAdequate = !(swapChainSupport.formatCount == 0) && !(swapChainSupport.presentModeCount == 0);
+ }
+
+ return vulkan_queue_family_check_flags(indices) && extensionsSupported && swapChainAdequate;
+}
+
+void
+vulkan_pick_physical_device()
+{
+ uint32_t deviceCount = 0;
+ vkEnumeratePhysicalDevices(s.vk_instance, &deviceCount, NULL);
+ if (deviceCount == 0) {
+ vk_log(VK_INFO, "failed to find GPUs with Vulkan support!\n");
+ }
+
+ VkPhysicalDevice devices[deviceCount];
+ vkEnumeratePhysicalDevices(s.vk_instance, &deviceCount, devices);
+
+ for (uint32_t i = 0; i < deviceCount; i++) {
+ if (vulkan_is_device_suitable(devices[i])) {
+ s.vk_physical_device = devices[i];
+ break;
+ }
+ }
+
+ if (s.vk_physical_device == VK_NULL_HANDLE) {
+ vk_log(VK_ERROR, "failed to find a suitable GPU!\n");
+ }
+
+ VkPhysicalDeviceProperties deviceProperties;
+ vkGetPhysicalDeviceProperties(s.vk_physical_device, &deviceProperties);
+ vk_log(VK_INFO, "Picked [%s] physical device.\n", deviceProperties.deviceName);
+
+ uint32_t extensionCount = 0;
+ vkEnumerateInstanceExtensionProperties(NULL, &extensionCount, NULL);
+ VkExtensionProperties extensions[extensionCount];
+ VkResult result = vkEnumerateInstanceExtensionProperties(NULL, &extensionCount, extensions);
+
+ vk_log(VK_INFO, "Vulkan enabled extensions: %s\n", string_VkResult(result));
+ for (uint32_t i = 0; i < extensionCount; i++) {
+ vk_log(VK_INFO, "\t%s\n", extensions[i].extensionName);
+ }
+
+}
+
+void
+vulkan_create_logical_device()
+{
+ QueueFamilyIndices indices = vulkan_find_queue_families(s.vk_physical_device);
+
+ // TODO CREATE MULPILE QUEUES
+ // https://vulkan-tutorial.com/en/Drawing_a_triangle/Presentation/Window_surface#page_Creating-the-presentation-queue
+
+ VkDeviceQueueCreateInfo queueCreateInfo = {
+ .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
+ .queueFamilyIndex = indices.graphicsFamily,
+ .queueCount = 1,
+ };
+
+ float queuePriority = 1.0f;
+ queueCreateInfo.pQueuePriorities = &queuePriority;
+
+ VkPhysicalDeviceFeatures deviceFeatures = {0};
+ vkGetPhysicalDeviceFeatures(s.vk_physical_device, &deviceFeatures);
+#ifndef NDEBUG
+ /* Disable robust buffer access when building without debug */
+ deviceFeatures.robustBufferAccess = VK_FALSE;
+#endif
+
+ VkPhysicalDeviceDynamicRenderingFeaturesKHR dynamic_rendering_feature = {
+ .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES_KHR,
+ .dynamicRendering = VK_TRUE,
+ };
+
+ VkDeviceCreateInfo createInfo = {
+ .sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
+ .pQueueCreateInfos = &queueCreateInfo,
+ .queueCreateInfoCount = 1,
+ .pNext = &dynamic_rendering_feature,
+ .pEnabledFeatures = &deviceFeatures,
+ .enabledExtensionCount = deviceExtensionCount,
+ .ppEnabledExtensionNames = deviceExtensions,
+ .enabledLayerCount = 0,
+ };
+
+ if (vkCreateDevice(s.vk_physical_device, &createInfo, NULL, &s.vk_device) != VK_SUCCESS) {
+ vk_log(VK_ERROR, "failed to create logical device!\n");
+ }
+ vk_log(VK_INFO, "Vulkan logical device created\n");
+
+ vkGetDeviceQueue(s.vk_device, indices.graphicsFamily, 0, &s.vk_graphics_queue);
+ vkGetDeviceQueue(s.vk_device, indices.presentFamily, 0, &s.vk_present_queue);
+}
+
+void
+handle_input(bool * quit)
+{
+ SDL_Event e;
+
+ while (SDL_PollEvent(&e) != 0) {
+ // User requests quit
+ if (e.type == SDL_QUIT) {
+ *quit = true;
+ }
+ // User presses a key
+ else if (e.type == SDL_KEYDOWN) {
+ switch (e.key.keysym.sym) {
+ case SDLK_UP:
+ s.x += .1f;
+ break;
+ case SDLK_DOWN:
+ s.x -= .1f;
+ break;
+ case SDLK_LEFT:
+ break;
+ case SDLK_RIGHT:
+ break;
+ }
+ }
+ else if (e.type == SDL_MOUSEWHEEL) {
+ if(e.wheel.y > 0) // scroll up
+ {
+ s.zoom += 1;
+ }
+ else if(e.wheel.y < 0) // scroll down
+ {
+ s.zoom -= 1;
+ if (s.zoom == -100) s.zoom = 1;
+ }
+ }
+ }
+}
+
+void
+vulkan_create_surface()
+{
+ if (SDL_Vulkan_CreateSurface(s.sdl_window, s.vk_instance, &s.vk_surface) == SDL_FALSE) {
+ vk_log(VK_INFO, "Failed to create surface\n");
+ } else {
+ vk_log(VK_INFO, "Vulkan surface created\n");
+ }
+}
+
+void
+vulkan_create_swap_chain()
+{
+ SwapChainSupportDetails swapChainSupport = querySwapChainSupport(s.vk_physical_device);
+
+ VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats, swapChainSupport.formatCount);
+ VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes, swapChainSupport.presentModeCount);
+ VkExtent2D extent = chooseSwapExtent(&swapChainSupport.capabilities);
+
+ uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1;
+
+ if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) {
+ imageCount = swapChainSupport.capabilities.maxImageCount;
+ }
+
+ VkSwapchainCreateInfoKHR createInfo = {
+ .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
+ .surface = s.vk_surface,
+ .minImageCount = imageCount,
+ .imageFormat = surfaceFormat.format,
+ .imageColorSpace = surfaceFormat.colorSpace,
+ .imageExtent = extent,
+ .imageArrayLayers = 1,
+ .imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
+ };
+
+ QueueFamilyIndices indices = vulkan_find_queue_families(s.vk_physical_device);
+
+ uint32_t queueFamilyIndices[] = {indices.graphicsFamily, indices.presentFamily};
+
+ if (indices.graphicsFamily != indices.presentFamily) {
+ createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
+ createInfo.queueFamilyIndexCount = 2;
+ createInfo.pQueueFamilyIndices = queueFamilyIndices;
+ } else {
+ createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
+ createInfo.queueFamilyIndexCount = 0; // Optional
+ createInfo.pQueueFamilyIndices = NULL; // Optional
+ }
+
+ createInfo.preTransform = swapChainSupport.capabilities.currentTransform;
+ createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
+ createInfo.presentMode = presentMode;
+ createInfo.clipped = VK_TRUE;
+ createInfo.oldSwapchain = VK_NULL_HANDLE;
+
+ VK_CHECK(vkCreateSwapchainKHR(s.vk_device, &createInfo, NULL, &s.vk_swap_chain));
+ /* if (result != VK_SUCCESS) { */
+ /* vk_log(VK_ERROR, "ERROR: failed to create swap chain! %s\n", string_VkResult(result)); */
+ /* } */
+
+ vkGetSwapchainImagesKHR(s.vk_device, s.vk_swap_chain, &s.vk_swap_chain_image_count, NULL);
+ //vk_log(VK_INFO, "vk_swap_chain_images count: %d\n", s.vk_swap_chain_image_count);
+ // todo alloc space for images
+ vkGetSwapchainImagesKHR(s.vk_device, s.vk_swap_chain, &s.vk_swap_chain_image_count, s.vk_swap_chain_images);
+
+ s.vk_swap_chain_image_format = surfaceFormat.format;
+ s.vk_swap_chain_extent = extent;
+
+ vk_log(VK_INFO, "Vulkan swapchain created!\n");
+}
+
+void
+vulkan_create_image_views()
+{
+ for (size_t i = 0; i < s.vk_swap_chain_image_count; i++) {
+ VkImageViewCreateInfo createInfo = {
+ .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
+ .image = s.vk_swap_chain_images[i],
+ .viewType = VK_IMAGE_VIEW_TYPE_2D,
+ .format = s.vk_swap_chain_image_format,
+ .components.r = VK_COMPONENT_SWIZZLE_IDENTITY,
+ .components.g = VK_COMPONENT_SWIZZLE_IDENTITY,
+ .components.b = VK_COMPONENT_SWIZZLE_IDENTITY,
+ .components.a = VK_COMPONENT_SWIZZLE_IDENTITY,
+ .subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
+ .subresourceRange.baseMipLevel = 0,
+ .subresourceRange.levelCount = 1,
+ .subresourceRange.baseArrayLayer = 0,
+ .subresourceRange.layerCount = 1,
+ };
+
+ if (vkCreateImageView(s.vk_device, &createInfo, NULL, &s.vk_swap_chain_image_views[i]) != VK_SUCCESS) {
+ vk_log(VK_ERROR, "failed to create image views!\n");
+ }
+ }
+ vk_log(VK_INFO, "Vulkan image views created!\n");
+}
+
+VkShaderModule
+createShaderModule(const char * code, long size)
+{
+ VkShaderModuleCreateInfo createInfo = {0};
+ createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
+ createInfo.codeSize = size;
+ createInfo.pCode = (const uint32_t *)code;
+
+ VkShaderModule shaderModule;
+ if (vkCreateShaderModule(s.vk_device, &createInfo, NULL, &shaderModule) != VK_SUCCESS) {
+ vk_log(VK_ERROR, "failed to create shader module!\n");
+ }
+
+ return shaderModule;
+}
+
+shaderc_compilation_result_t
+load_compile_shader_data(const char * path, shaderc_shader_kind shader_kind)
+{
+ FILE* file = fopen(path, "r");
+ if (!file) {
+ vk_log(VK_ERROR, "SHADER COMPILATION: Failed to open file: %s\n", path);
+ return NULL;
+ }
+
+ fseek(file, 0, SEEK_END);
+ long glsl_length = ftell(file);
+ fseek(file, 0, SEEK_SET);
+
+ char* glsl_src = (char*)malloc(glsl_length + 1);
+ if (!glsl_src) {
+ vk_log(VK_ERROR, "SHADER COMPILATION: Failed to allocate memory\n");
+ fclose(file);
+ return NULL;
+ }
+
+ fread(glsl_src, 1, glsl_length, file);
+ glsl_src[glsl_length] = '\0';
+ fclose(file);
+
+ shaderc_compiler_t compiler = shaderc_compiler_initialize();
+ if (!compiler) {
+ vk_log(VK_ERROR, "SHADER COMPILATION: Failed to initialize shader compiler\n");
+ free(glsl_src);
+ return NULL;
+ }
+
+ shaderc_compile_options_t options = shaderc_compile_options_initialize();
+ shaderc_compilation_result_t result = shaderc_compile_into_spv(compiler,
+ glsl_src,
+ glsl_length,
+ shader_kind,
+ path, "main", options);
+
+ if (shaderc_result_get_compilation_status(result) != shaderc_compilation_status_success) {
+ vk_log(VK_ERROR, "SHADER COMPILATION: error: %s\n", shaderc_result_get_error_message(result));
+ shaderc_result_release(result);
+ shaderc_compiler_release(compiler);
+ free(glsl_src);
+ return NULL;
+ }
+
+ shaderc_compiler_release(compiler);
+ free(glsl_src);
+
+ return result;
+}
+
+void
+vulkan_create_graphics_pipeline()
+{
+ shaderc_compilation_result_t vert_result = load_compile_shader_data("shader.vert", shaderc_vertex_shader);
+ if (!vert_result) {
+ vk_log(VK_ERROR, "Can't load vertex shader");
+ }
+ shaderc_compilation_result_t frag_result = load_compile_shader_data("shader.frag", shaderc_fragment_shader);
+ if (!frag_result) {
+ vk_log(VK_ERROR, "Can't load fragment shader");
+ }
+
+ const char * vert_data = shaderc_result_get_bytes(vert_result);
+ long vert_size = shaderc_result_get_length(vert_result);
+ const char * frag_data = shaderc_result_get_bytes(frag_result);
+ long frag_size = shaderc_result_get_length(frag_result);
+
+ vk_log(VK_INFO, "Shaders loaded\n");
+
+ VkShaderModule vertShaderModule = createShaderModule(vert_data, vert_size);
+ VkShaderModule fragShaderModule = createShaderModule(frag_data, frag_size);
+
+ VkPipelineShaderStageCreateInfo vertShaderStageInfo = {0};
+ vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
+ vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
+ vertShaderStageInfo.module = vertShaderModule;
+ vertShaderStageInfo.pName = "main";
+
+ VkPipelineShaderStageCreateInfo fragShaderStageInfo = {0};
+ fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
+ fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
+ fragShaderStageInfo.module = fragShaderModule;
+ fragShaderStageInfo.pName = "main";
+
+ VkPipelineShaderStageCreateInfo shaderStages[] = {vertShaderStageInfo, fragShaderStageInfo};
+
+ VkDynamicState dynamicStates[] = {
+ VK_DYNAMIC_STATE_VIEWPORT,
+ VK_DYNAMIC_STATE_SCISSOR
+ };
+
+ VkPipelineDynamicStateCreateInfo dynamicState = {0};
+ dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
+ dynamicState.dynamicStateCount = 2;
+ dynamicState.pDynamicStates = dynamicStates;
+
+ VkVertexInputBindingDescription bindingDescription = {0};
+ bindingDescription.binding = 0;
+ bindingDescription.stride = sizeof(Vertex);
+ bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
+
+ VkVertexInputAttributeDescription attributeDescriptions[2] = {0};
+ attributeDescriptions[0].binding = 0;
+ attributeDescriptions[0].location = 0;
+ attributeDescriptions[0].format = VK_FORMAT_R32G32_SFLOAT;
+ attributeDescriptions[0].offset = offsetof(Vertex, pos);
+
+ attributeDescriptions[1].binding = 0;
+ attributeDescriptions[1].location = 1;
+ attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT;
+ attributeDescriptions[1].offset = offsetof(Vertex, color);
+
+ VkPipelineVertexInputStateCreateInfo vertexInputInfo = {0};
+ vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
+ vertexInputInfo.vertexBindingDescriptionCount = 1;
+ vertexInputInfo.pVertexBindingDescriptions = &bindingDescription;
+ vertexInputInfo.vertexAttributeDescriptionCount = 2;
+ vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions;
+
+ VkPipelineInputAssemblyStateCreateInfo inputAssembly = {};
+ inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
+ inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
+ inputAssembly.primitiveRestartEnable = VK_FALSE;
+
+ VkViewport viewport = {0};
+ viewport.x = 0.0f;
+ viewport.y = 0.0f;
+ viewport.width = (float) s.vk_swap_chain_extent.width;
+ viewport.height = (float) s.vk_swap_chain_extent.height;
+ viewport.minDepth = 0.0f;
+ viewport.maxDepth = 1.0f;
+
+ VkRect2D scissor = {0};
+ scissor.offset = (VkOffset2D){0, 0};
+ scissor.extent = s.vk_swap_chain_extent;
+
+ VkPipelineViewportStateCreateInfo viewportState = {
+ .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
+ .viewportCount = 1,
+ .pViewports = &viewport,
+ .scissorCount = 1,
+ .pScissors = &scissor,
+ };
+
+ VkPipelineRasterizationStateCreateInfo rasterizer = {0};
+ rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
+ rasterizer.depthClampEnable = VK_FALSE;
+ rasterizer.rasterizerDiscardEnable = VK_FALSE;
+ rasterizer.polygonMode = VK_POLYGON_MODE_FILL;
+ rasterizer.lineWidth = 1.0f;
+ rasterizer.cullMode = VK_CULL_MODE_NONE;
+// rasterizer.cullMode = VK_CULL_MODE_BACK_BIT;
+ rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
+ rasterizer.depthBiasEnable = VK_FALSE;
+ rasterizer.depthBiasConstantFactor = 0.0f; // Optional
+ rasterizer.depthBiasClamp = 0.0f; // Optional
+ rasterizer.depthBiasSlopeFactor = 0.0f; // Optional
+
+ VkPipelineMultisampleStateCreateInfo multisampling = {0};
+ multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
+ multisampling.sampleShadingEnable = VK_FALSE;
+ multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
+ multisampling.minSampleShading = 1.0f; // Optional
+ multisampling.pSampleMask = NULL; // Optional
+ multisampling.alphaToCoverageEnable = VK_FALSE; // Optional
+ multisampling.alphaToOneEnable = VK_FALSE; // Optional
+
+ VkPipelineColorBlendAttachmentState colorBlendAttachment = {0};
+ colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
+ colorBlendAttachment.blendEnable = VK_TRUE;
+ colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
+ colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
+ colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD;
+ colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
+ colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
+ colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD;
+ /* colorBlendAttachment.blendEnable = VK_FALSE; */
+ /* colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; // Optional */
+ /* colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional */
+ /* colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD; // Optional */
+ /* colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; // Optional */
+ /* colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional */
+ /* colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD; // Optional */
+
+ VkPipelineColorBlendStateCreateInfo colorBlending = {0};
+ colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
+ colorBlending.logicOpEnable = VK_FALSE;
+ colorBlending.logicOp = VK_LOGIC_OP_COPY; // Optional
+ colorBlending.attachmentCount = 1;
+ colorBlending.pAttachments = &colorBlendAttachment;
+ colorBlending.blendConstants[0] = 0.0f; // Optional
+ colorBlending.blendConstants[1] = 0.0f; // Optional
+ colorBlending.blendConstants[2] = 0.0f; // Optional
+ colorBlending.blendConstants[3] = 0.0f; // Optional
+
+ VkPipelineLayoutCreateInfo pipelineLayoutInfo = {0};
+ pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
+ pipelineLayoutInfo.setLayoutCount = 1;
+ pipelineLayoutInfo.pSetLayouts = &s.vk_descriptor_set_layout;
+ pipelineLayoutInfo.pushConstantRangeCount = 0; // Optional
+ pipelineLayoutInfo.pPushConstantRanges = NULL; // Optional
+
+ if (vkCreatePipelineLayout(s.vk_device, &pipelineLayoutInfo, NULL, &s.vk_pipeline_layout) != VK_SUCCESS) {
+ vk_log(VK_ERROR, "failed to create pipeline layout!\n");
+ }
+
+ VkGraphicsPipelineCreateInfo pipelineInfo = {0};
+ pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
+ pipelineInfo.stageCount = 2;
+ pipelineInfo.pStages = shaderStages;
+
+ pipelineInfo.pVertexInputState = &vertexInputInfo;
+ pipelineInfo.pInputAssemblyState = &inputAssembly;
+ pipelineInfo.pViewportState = &viewportState;
+ pipelineInfo.pRasterizationState = &rasterizer;
+ pipelineInfo.pMultisampleState = &multisampling;
+ pipelineInfo.pDepthStencilState = NULL; // Optional
+ pipelineInfo.pColorBlendState = &colorBlending;
+ pipelineInfo.pDynamicState = &dynamicState;
+ pipelineInfo.layout = s.vk_pipeline_layout;
+ pipelineInfo.renderPass = s.vk_render_pass;
+ pipelineInfo.subpass = 0;
+ pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; // Optional
+ pipelineInfo.basePipelineIndex = -1; // Optional
+
+ if (vkCreateGraphicsPipelines(s.vk_device, VK_NULL_HANDLE, 1, &pipelineInfo, NULL, &s.vk_graphics_pipeline) != VK_SUCCESS) {
+ vk_log(VK_ERROR, "failed to create graphics pipeline!\n");
+ }
+
+ shaderc_result_release(vert_result);
+ shaderc_result_release(frag_result);
+
+ vkDestroyShaderModule(s.vk_device, fragShaderModule, NULL);
+ vkDestroyShaderModule(s.vk_device, vertShaderModule, NULL);
+}
+
+void
+vulkan_create_render_pass()
+{
+ VkAttachmentDescription colorAttachment = {0};
+ colorAttachment.format = s.vk_swap_chain_image_format;
+ colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
+ colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
+ colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
+ colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
+ colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
+ colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
+ colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
+
+ VkAttachmentReference colorAttachmentRef = {0};
+ colorAttachmentRef.attachment = 0;
+ colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
+
+ VkSubpassDescription subpass = {0};
+ subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
+ subpass.colorAttachmentCount = 1;
+ subpass.pColorAttachments = &colorAttachmentRef;
+
+ VkSubpassDependency dependency = {0};
+ dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
+ dependency.dstSubpass = 0;
+ dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
+ dependency.srcAccessMask = 0;
+ dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
+ dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
+
+ VkRenderPassCreateInfo renderPassInfo = {0};
+ renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
+ renderPassInfo.attachmentCount = 1;
+ renderPassInfo.pAttachments = &colorAttachment;
+ renderPassInfo.subpassCount = 1;
+ renderPassInfo.pSubpasses = &subpass;
+ renderPassInfo.dependencyCount = 1;
+ renderPassInfo.pDependencies = &dependency;
+
+ if (vkCreateRenderPass(s.vk_device, &renderPassInfo, NULL, &s.vk_render_pass) != VK_SUCCESS) {
+ vk_log(VK_ERROR, "failed to create render pass!\n");
+ }
+}
+
+void
+vulkan_create_framebuffers()
+{
+ s.vk_swap_chain_framebuffers_count = s.vk_swap_chain_image_count;
+ for (size_t i = 0; i < s.vk_swap_chain_image_count; i++) {
+ VkImageView attachments[] = {
+ s.vk_swap_chain_image_views[i]
+ };
+
+ VkFramebufferCreateInfo framebufferInfo = {0};
+ framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
+ framebufferInfo.renderPass = s.vk_render_pass;
+ framebufferInfo.attachmentCount = 1;
+ framebufferInfo.pAttachments = attachments;
+ framebufferInfo.width = s.vk_swap_chain_extent.width;
+ framebufferInfo.height = s.vk_swap_chain_extent.height;
+ framebufferInfo.layers = 1;
+
+ if (vkCreateFramebuffer(s.vk_device, &framebufferInfo, NULL, &s.vk_swap_chain_framebuffers[i]) != VK_SUCCESS) {
+ vk_log(VK_ERROR, "failed to create framebuffer!\n");
+ }
+ }
+
+}
+
+void
+vulkan_create_command_pool()
+{
+ QueueFamilyIndices queueFamilyIndices = vulkan_find_queue_families(s.vk_physical_device);
+
+ VkCommandPoolCreateInfo poolInfo = {0};
+ poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
+ poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
+ poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily;
+
+ if (vkCreateCommandPool(s.vk_device, &poolInfo, NULL, &s.vk_command_pool) != VK_SUCCESS) {
+ vk_log(VK_ERROR, "failed to create command pool!\n");
+ }
+
+}
+
+void
+vulkan_create_command_buffer()
+{
+ VkCommandBufferAllocateInfo allocInfo = {0};
+ allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
+ allocInfo.commandPool = s.vk_command_pool;
+ allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
+ allocInfo.commandBufferCount = MAX_FRAMES_IN_FLIGHT;
+
+ if (vkAllocateCommandBuffers(s.vk_device, &allocInfo, s.vk_command_buffers) != VK_SUCCESS) {
+ vk_log(VK_ERROR, "failed to allocate command buffers!\n");
+ }
+}
+
+void
+recordCommandBuffer(VkCommandBuffer commandBuffer, uint32_t imageIndex)
+{
+ VkCommandBufferBeginInfo beginInfo = {0};
+ beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
+ beginInfo.flags = 0; // Optional
+ beginInfo.pInheritanceInfo = NULL; // Optional
+
+ if (vkBeginCommandBuffer(commandBuffer, &beginInfo) != VK_SUCCESS) {
+ vk_log(VK_ERROR, "failed to begin recording command buffer!\n");
+ }
+
+ VkRenderPassBeginInfo renderPassInfo = {0};
+ renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
+ renderPassInfo.renderPass = s.vk_render_pass;
+ renderPassInfo.framebuffer = s.vk_swap_chain_framebuffers[imageIndex];
+ renderPassInfo.renderArea.offset = (VkOffset2D){0, 0};
+ renderPassInfo.renderArea.extent = s.vk_swap_chain_extent;
+
+ VkClearValue clearColor = {{{0.0f, 0.0f, 0.0f, 1.0f}}};
+ renderPassInfo.clearValueCount = 1;
+ renderPassInfo.pClearValues = &clearColor;
+
+ // TODO DYNAMIC RENDERING
+ /* VkRenderingAttachmentInfo colorAttachment = {}; */
+ /* colorAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO; */
+ /* colorAttachment.imageView = s.vk_swap_chain_image_views[imageIndex]; */
+ /* colorAttachment.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; */
+ /* colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; */
+ /* colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; */
+ /* //colorAttachment.clearValue.color = clearColor; */
+
+ /* VkRenderingInfo renderingInfo = {}; */
+ /* renderingInfo.sType = VK_STRUCTURE_TYPE_RENDERING_INFO; */
+ /* renderingInfo.renderArea = (VkRect2D){ {0, 0}, {(float)(s.vk_swap_chain_extent.width), (float)(s.vk_swap_chain_extent.height)} }; */
+ /* renderingInfo.layerCount = 1; */
+ /* renderingInfo.colorAttachmentCount = 1; */
+ /* renderingInfo.pColorAttachments = &colorAttachment; */
+
+ /* vkCmdBeginRendering(commandBuffer, &renderingInfo); */
+ /* .... */
+ /* vkCmdEndRendering(commandBuffer); */
+
+ vkCmdBeginRenderPass(commandBuffer, &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);
+
+ vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, s.vk_graphics_pipeline);
+
+ VkViewport viewport = {0};
+ viewport.x = 0.0f;
+ viewport.y = 0.0f;
+ viewport.width = (float)(s.vk_swap_chain_extent.width);
+ viewport.height = (float)(s.vk_swap_chain_extent.height);
+ viewport.minDepth = 0.0f;
+ viewport.maxDepth = 1.0f;
+ vkCmdSetViewport(commandBuffer, 0, 1, &viewport);
+
+ VkRect2D scissor = {0};
+ scissor.offset = (VkOffset2D){0, 0};
+ scissor.extent = s.vk_swap_chain_extent;
+ vkCmdSetScissor(commandBuffer, 0, 1, &scissor);
+
+ VkBuffer vertexBuffers[] = {s.vk_vertex_buffer};
+ VkDeviceSize offsets[] = {0};
+ vkCmdBindVertexBuffers(commandBuffer, 0, 1, vertexBuffers, offsets);
+ vkCmdBindIndexBuffer(commandBuffer, s.vk_index_buffer, 0, VK_INDEX_TYPE_UINT16);
+ vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, s.vk_pipeline_layout, 0, 1, &s.vk_descriptor_sets[currentFrame], 0, NULL);
+
+ vkCmdDrawIndexed(commandBuffer, INDICES_SIZE, 1, 0, 0, 0);
+
+ vkCmdEndRenderPass(commandBuffer);
+
+ if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) {
+ vk_log(VK_ERROR, "failed to record command buffer!\n");
+ }
+}
+
+void
+vulkan_create_sync_objects()
+{
+ VkSemaphoreCreateInfo semaphoreInfo = {0};
+ semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
+
+ VkFenceCreateInfo fenceInfo = {0};
+ fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
+ fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;
+
+ for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
+ if (vkCreateSemaphore(s.vk_device, &semaphoreInfo, NULL, &s.imageAvailableSemaphores[i]) != VK_SUCCESS ||
+ vkCreateSemaphore(s.vk_device, &semaphoreInfo, NULL, &s.renderFinishedSemaphores[i]) != VK_SUCCESS ||
+ vkCreateFence(s.vk_device, &fenceInfo, NULL, &s.inFlightFences[i]) != VK_SUCCESS) {
+ vk_log(VK_ERROR, "failed to create semaphores!\n");
+ }
+ }
+}
+
+uint32_t
+findMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags properties)
+{
+ VkPhysicalDeviceMemoryProperties memProperties;
+ vkGetPhysicalDeviceMemoryProperties(s.vk_physical_device, &memProperties);
+
+ for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
+ if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags & properties) == properties) {
+ return i;
+ }
+ }
+
+ vk_log(VK_ERROR, "failed to find suitable memory type!\n");
+ return 9999;
+}
+
+void
+createBuffer(VkDeviceSize size,
+ VkBufferUsageFlags usage,
+ VkMemoryPropertyFlags properties,
+ VkBuffer *buffer, VkDeviceMemory *bufferMemory)
+{
+ VkBufferCreateInfo bufferInfo = {0};
+ bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
+ bufferInfo.size = size;
+ bufferInfo.usage = usage;
+ bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
+
+ if (vkCreateBuffer(s.vk_device, &bufferInfo, NULL, buffer) != VK_SUCCESS) {
+ vk_log(VK_ERROR, "failed to create buffer!\n");
+ }
+
+ VkMemoryRequirements memRequirements;
+ vkGetBufferMemoryRequirements(s.vk_device, *buffer, &memRequirements);
+
+ VkMemoryAllocateInfo allocInfo = {0};
+ allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
+ allocInfo.allocationSize = memRequirements.size;
+ allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties);
+
+ // TODO: allocations limited by hardware
+ if (vkAllocateMemory(s.vk_device, &allocInfo, NULL, bufferMemory) != VK_SUCCESS) {
+ vk_log(VK_ERROR, "failed to allocate buffer memory!\n");
+ }
+
+ vkBindBufferMemory(s.vk_device, *buffer, *bufferMemory, 0);
+}
+
+/* void */
+/* vulkan_create_vertex_buffer() */
+/* { */
+/* VkDeviceSize bufferSize = sizeof(vertices[0]) * VERTICES_SIZE; */
+/* createBuffer(bufferSize, */
+/* VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, */
+/* VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, */
+/* &s.vk_vertex_buffer, &s.vk_vertex_buffer_memory); */
+
+/* void* data; */
+/* vkMapMemory(s.vk_device, s.vk_vertex_buffer_memory, 0, bufferSize, 0, &data); */
+/* memcpy(data, vertices, (size_t) bufferSize); */
+/* vkUnmapMemory(s.vk_device, s.vk_vertex_buffer_memory); */
+/* } */
+void
+copyBuffer(VkBuffer srcBuffer, VkBuffer dstBuffer, VkDeviceSize size) {
+ VkCommandBufferAllocateInfo allocInfo = {0};
+ allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
+ allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
+ allocInfo.commandPool = s.vk_command_pool;
+ allocInfo.commandBufferCount = 1;
+
+ VkCommandBuffer commandBuffer;
+ vkAllocateCommandBuffers(s.vk_device, &allocInfo, &commandBuffer);
+
+ VkCommandBufferBeginInfo beginInfo = {0};
+ beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
+ beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
+
+ vkBeginCommandBuffer(commandBuffer, &beginInfo);
+ VkBufferCopy copyRegion = {0};
+ copyRegion.srcOffset = 0; // Optional
+ copyRegion.dstOffset = 0; // Optional
+ copyRegion.size = size;
+ vkCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, 1, &copyRegion);
+ vkEndCommandBuffer(commandBuffer);
+
+ VkSubmitInfo submitInfo = {0};
+ submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
+ submitInfo.commandBufferCount = 1;
+ submitInfo.pCommandBuffers = &commandBuffer;
+
+ vkQueueSubmit(s.vk_graphics_queue, 1, &submitInfo, VK_NULL_HANDLE);
+ vkQueueWaitIdle(s.vk_graphics_queue);
+
+ vkFreeCommandBuffers(s.vk_device, s.vk_command_pool, 1, &commandBuffer);
+}
+
+
+
+void
+vulkan_create_vertex_buffer()
+{
+ VkDeviceSize bufferSize = sizeof(vertices[0]) * VERTICES_SIZE;
+
+ VkBuffer stagingBuffer;
+ VkDeviceMemory stagingBufferMemory;
+
+ createBuffer(bufferSize,
+ VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
+ VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
+ &stagingBuffer, &stagingBufferMemory);
+
+ void* data;
+ vkMapMemory(s.vk_device, stagingBufferMemory, 0, bufferSize, 0, &data);
+ memcpy(data, vertices, (size_t) bufferSize);
+ vkUnmapMemory(s.vk_device, stagingBufferMemory);
+
+ createBuffer(bufferSize,
+ VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
+ VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
+ &s.vk_vertex_buffer, &s.vk_vertex_buffer_memory);
+
+ copyBuffer(stagingBuffer, s.vk_vertex_buffer, bufferSize);
+
+ vkDestroyBuffer(s.vk_device, stagingBuffer, NULL);
+ vkFreeMemory(s.vk_device, stagingBufferMemory, NULL);
+}
+
+void
+vulkan_create_index_buffer()
+{
+ VkDeviceSize bufferSize = sizeof(indices[0]) * INDICES_SIZE;
+
+ VkBuffer stagingBuffer;
+ VkDeviceMemory stagingBufferMemory;
+
+ createBuffer(bufferSize,
+ VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
+ VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
+ &stagingBuffer, &stagingBufferMemory);
+
+ void* data;
+ vkMapMemory(s.vk_device, stagingBufferMemory, 0, bufferSize, 0, &data);
+ memcpy(data, indices, (size_t) bufferSize);
+ vkUnmapMemory(s.vk_device, stagingBufferMemory);
+
+ createBuffer(bufferSize,
+ VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
+ VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
+ &s.vk_index_buffer, &s.vk_index_buffer_memory);
+
+ copyBuffer(stagingBuffer, s.vk_index_buffer, bufferSize);
+
+ vkDestroyBuffer(s.vk_device, stagingBuffer, NULL);
+ vkFreeMemory(s.vk_device, stagingBufferMemory, NULL);
+}
+
+void
+vulkan_create_descriptor_set_layout()
+{
+ VkDescriptorSetLayoutBinding uboLayoutBinding = {0};
+ uboLayoutBinding.binding = 0;
+ uboLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
+ uboLayoutBinding.descriptorCount = 1;
+ uboLayoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
+ uboLayoutBinding.pImmutableSamplers = NULL; // optional
+
+ VkDescriptorSetLayoutCreateInfo layoutInfo = {0};
+ layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
+ layoutInfo.bindingCount = 1;
+ layoutInfo.pBindings = &uboLayoutBinding;
+
+ if (vkCreateDescriptorSetLayout(s.vk_device, &layoutInfo, NULL, &s.vk_descriptor_set_layout) != VK_SUCCESS) {
+ vk_log(VK_ERROR, "failed to create descriptor set layout!\n");
+ }
+}
+
+void
+vulkan_create_uniform_buffers()
+{
+ VkDeviceSize bufferSize = sizeof(UniformBufferObject);
+
+ for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
+ createBuffer(bufferSize,
+ VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
+ VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
+ &s.vk_uniform_buffers[i], &s.vk_uniform_buffers_memory[i]);
+
+ vkMapMemory(s.vk_device, s.vk_uniform_buffers_memory[i], 0, bufferSize, 0, &s.vk_uniform_buffers_mapped[i]);
+ }
+}
+
+void
+vulkan_create_descriptor_pool()
+{
+ VkDescriptorPoolSize poolSize = {0};
+ poolSize.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
+ poolSize.descriptorCount = MAX_FRAMES_IN_FLIGHT;
+
+ VkDescriptorPoolCreateInfo poolInfo = {0};
+ poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
+ poolInfo.poolSizeCount = 1;
+ poolInfo.pPoolSizes = &poolSize;
+ poolInfo.maxSets = MAX_FRAMES_IN_FLIGHT;
+
+ if (vkCreateDescriptorPool(s.vk_device, &poolInfo, NULL, &s.vk_descriptor_pool) != VK_SUCCESS) {
+ vk_log(VK_ERROR, "failed to create descriptor pool!\n");
+ }
+
+}
+
+void
+vulkan_create_descriptor_sets()
+{
+ VkDescriptorSetLayout layouts[MAX_FRAMES_IN_FLIGHT] = {0};
+
+ for (int i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
+ layouts[i] = s.vk_descriptor_set_layout;
+ }
+
+ VkDescriptorSetAllocateInfo allocInfo = {0};
+ allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
+ allocInfo.descriptorPool = s.vk_descriptor_pool;
+ allocInfo.descriptorSetCount = MAX_FRAMES_IN_FLIGHT;
+ allocInfo.pSetLayouts = layouts;
+
+ if (vkAllocateDescriptorSets(s.vk_device, &allocInfo, s.vk_descriptor_sets) != VK_SUCCESS) {
+ vk_log(VK_ERROR, "failed to allocate descriptor sets!\n");
+ }
+
+ for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
+ VkDescriptorBufferInfo bufferInfo = {0};
+ bufferInfo.buffer = s.vk_uniform_buffers[i];
+ bufferInfo.offset = 0;
+ bufferInfo.range = sizeof(UniformBufferObject);
+
+ VkWriteDescriptorSet descriptorWrite = {0};
+ descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
+ descriptorWrite.dstSet = s.vk_descriptor_sets[i];
+ descriptorWrite.dstBinding = 0;
+ descriptorWrite.dstArrayElement = 0;
+ descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
+ descriptorWrite.descriptorCount = 1;
+ descriptorWrite.pBufferInfo = &bufferInfo;
+ descriptorWrite.pImageInfo = NULL; // Optional
+ descriptorWrite.pTexelBufferView = NULL; // Optional
+
+ vkUpdateDescriptorSets(s.vk_device, 1, &descriptorWrite, 0, NULL);
+ }
+}
+
+void
+init_vulkan()
+{
+ vk_log(VK_WARN, "====================================\n");
+ vk_log(VK_WARN, " DEBUG ON \n");
+ vk_log(VK_WARN, "====================================\n");
+
+ vulkan_create_instance();
+ // vulkan_setup_debug_messenger();
+ vulkan_create_surface();
+ vulkan_pick_physical_device();
+ vulkan_create_logical_device();
+ vulkan_create_swap_chain();
+ vulkan_create_image_views();
+ vulkan_create_render_pass();
+ vulkan_create_descriptor_set_layout();
+ vulkan_create_graphics_pipeline();
+ vulkan_create_framebuffers();
+ vulkan_create_command_pool();
+ vulkan_create_vertex_buffer();
+ vulkan_create_index_buffer();
+ vulkan_create_uniform_buffers();
+ vulkan_create_descriptor_pool();
+ vulkan_create_descriptor_sets();
+ vulkan_create_command_buffer();
+ vulkan_create_sync_objects();
+}
+
+void
+cleanupSwapChain()
+{
+ for (size_t i = 0; i < s.vk_swap_chain_image_count; i++) {
+ vkDestroyFramebuffer(s.vk_device, s.vk_swap_chain_framebuffers[i], NULL);
+ }
+ for (uint32_t i = 0; i < s.vk_swap_chain_image_count; i++) {
+ vkDestroyImageView(s.vk_device, s.vk_swap_chain_image_views[i], NULL);
+ }
+ vkDestroySwapchainKHR(s.vk_device, s.vk_swap_chain, NULL);
+}
+
+void
+recreateSwapChain()
+{
+ vkDeviceWaitIdle(s.vk_device);
+
+ cleanupSwapChain();
+
+ vulkan_create_swap_chain();
+ vulkan_create_image_views();
+ vulkan_create_framebuffers();
+}
+
+void
+close_vulkan()
+{
+ vkDeviceWaitIdle(s.vk_device);
+ // Cleanup
+ for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
+ vkDestroySemaphore(s.vk_device, s.imageAvailableSemaphores[i], NULL);
+ vkDestroySemaphore(s.vk_device, s.renderFinishedSemaphores[i], NULL);
+ vkDestroyFence(s.vk_device, s.inFlightFences[i], NULL);
+ }
+
+ vkDestroyCommandPool(s.vk_device, s.vk_command_pool, NULL);
+
+ cleanupSwapChain();
+
+ for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
+ vkDestroyBuffer(s.vk_device, s.vk_uniform_buffers[i], NULL);
+ vkFreeMemory(s.vk_device, s.vk_uniform_buffers_memory[i], NULL);
+ }
+ vkDestroyDescriptorPool(s.vk_device, s.vk_descriptor_pool, NULL);
+ vkDestroyDescriptorSetLayout(s.vk_device, s.vk_descriptor_set_layout, NULL);
+
+ vkDestroyBuffer(s.vk_device, s.vk_vertex_buffer, NULL);
+ vkFreeMemory(s.vk_device, s.vk_vertex_buffer_memory, NULL);
+
+ vkDestroyBuffer(s.vk_device, s.vk_index_buffer, NULL);
+ vkFreeMemory(s.vk_device, s.vk_index_buffer_memory, NULL);
+
+ vkDestroyPipeline(s.vk_device, s.vk_graphics_pipeline, NULL);
+ vkDestroyRenderPass(s.vk_device, s.vk_render_pass, NULL);
+ vkDestroyPipelineLayout(s.vk_device, s.vk_pipeline_layout, NULL);
+ vkDestroyDevice(s.vk_device, NULL);
+ vkDestroySurfaceKHR(s.vk_instance, s.vk_surface, NULL);
+ /* if (enableValidationLayers) { */
+ /* DestroyDebugUtilsMessengerEXT(s.vk_instance, s.vk_debug_messenger, NULL); */
+ /* } */
+ vkDestroyInstance(s.vk_instance, NULL);
+}
+
+float
+current_time()
+{
+ static struct timespec startTime;
+ static int isStartTimeInitialized = 0;
+
+ if (!isStartTimeInitialized) {
+ clock_gettime(CLOCK_MONOTONIC, &startTime);
+ isStartTimeInitialized = 1;
+ }
+
+ struct timespec currentTime;
+ clock_gettime(CLOCK_MONOTONIC, &currentTime);
+
+ return (currentTime.tv_sec - startTime.tv_sec) +
+ (currentTime.tv_nsec - startTime.tv_nsec) / 1e9f;
+}
+
+void
+updateUniformBuffer(uint32_t currentImage)
+{
+
+ float time = current_time();
+
+ UniformBufferObject ubo = {0};
+ glm_mat4_identity(ubo.model);
+ glm_rotate(ubo.model, glm_rad(100 * time * glm_rad(90.0f)), GLM_ZUP);
+
+ vec3 eye = {1.0f + s.x, 1.0f + s.x, 1.0f + s.x}; // GLM_VEC3_ONE_INIT;
+ vec3 center = GLM_VEC3_ZERO_INIT;
+ vec3 up = {0.0f, 0.0f, 1.0f};//GLM_ZUP;
+ glm_lookat(eye, center, up, ubo.view);
+
+ float aspect = s.vk_swap_chain_extent.width / (float)s.vk_swap_chain_extent.height;
+ glm_perspective(glm_rad(55.0f - s.zoom ), aspect, 0.1f, 100.0f, ubo.proj);
+
+ // Inverting the Y axis for Vulkan
+ ubo.proj[1][1] *= -1;
+
+ memcpy(s.vk_uniform_buffers_mapped[currentImage], &ubo, sizeof(ubo));
+}
+
+void
+draw_frame() {
+ vkWaitForFences(s.vk_device, 1, &s.inFlightFences[currentFrame], VK_TRUE, UINT64_MAX);
+
+ uint32_t imageIndex;
+ VkResult result = vkAcquireNextImageKHR(s.vk_device, s.vk_swap_chain, UINT64_MAX, s.imageAvailableSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex);
+
+ if (result == VK_ERROR_OUT_OF_DATE_KHR) {
+ recreateSwapChain();
+ return;
+ } else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
+ vk_log(VK_ERROR, "failed to acquire swap chain image!\n");
+ }
+
+ updateUniformBuffer(currentFrame);
+
+ vkResetFences(s.vk_device, 1, &s.inFlightFences[currentFrame]);
+
+ vkResetCommandBuffer(s.vk_command_buffers[currentFrame], 0);
+ recordCommandBuffer(s.vk_command_buffers[currentFrame], imageIndex);
+
+
+ VkSubmitInfo submitInfo = {0};
+ submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
+
+ VkSemaphore waitSemaphores[] = {s.imageAvailableSemaphores[currentFrame]};
+ VkPipelineStageFlags waitStages[] = {VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT};
+ submitInfo.waitSemaphoreCount = 1;
+ submitInfo.pWaitSemaphores = waitSemaphores;
+ submitInfo.pWaitDstStageMask = waitStages;
+ submitInfo.commandBufferCount = 1;
+ submitInfo.pCommandBuffers = &s.vk_command_buffers[currentFrame];
+
+ VkSemaphore signalSemaphores[] = {s.renderFinishedSemaphores[currentFrame]};
+ submitInfo.signalSemaphoreCount = 1;
+ submitInfo.pSignalSemaphores = signalSemaphores;
+
+ if (vkQueueSubmit(s.vk_graphics_queue, 1, &submitInfo, s.inFlightFences[currentFrame]) != VK_SUCCESS) {
+ vk_log(VK_ERROR, "failed to submit draw command buffer!\n");
+ }
+
+ VkSwapchainKHR swapChains[] = {s.vk_swap_chain};
+ VkPresentInfoKHR presentInfo = {0};
+ presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
+ presentInfo.waitSemaphoreCount = 1;
+ presentInfo.pWaitSemaphores = signalSemaphores;
+ presentInfo.swapchainCount = 1;
+ presentInfo.pSwapchains = swapChains;
+ presentInfo.pImageIndices = &imageIndex;
+ presentInfo.pResults = NULL;
+
+ result = vkQueuePresentKHR(s.vk_present_queue, &presentInfo);
+
+ if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR) {
+ recreateSwapChain();
+ } else if (result != VK_SUCCESS) {
+ vk_log(VK_ERROR, "failed to present swap chain image!\n");
+ }
+
+ currentFrame = (currentFrame + 1) % MAX_FRAMES_IN_FLIGHT;
+}
+
+int
+main(int argc, char* args[])
+{
+ init_state(&s);
+ if (!init()) {
+ vk_log(VK_INFO, "Failed to initialize!\n");
+ }
+ else {
+ init_vulkan();
+
+ bool quit = false;
+
+
+ /* VMA POC */
+ /* VmaVulkanFunctions vulkanFunctions = {0}; */
+ /* vulkanFunctions.vkGetInstanceProcAddr = &vkGetInstanceProcAddr; */
+ /* vulkanFunctions.vkGetDeviceProcAddr = &vkGetDeviceProcAddr; */
+
+ /* VmaAllocatorCreateInfo allocatorCreateInfo = {0}; */
+ /* allocatorCreateInfo.flags = VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT; */
+ /* allocatorCreateInfo.vulkanApiVersion = VK_API_VERSION_1_2; */
+ /* allocatorCreateInfo.physicalDevice = s.vk_physical_device; */
+ /* allocatorCreateInfo.device = s.vk_device; */
+ /* allocatorCreateInfo.instance = s.vk_instance; */
+ /* allocatorCreateInfo.pVulkanFunctions = &vulkanFunctions; */
+
+ /* VmaAllocator allocator; */
+ /* vmaCreateAllocator(&allocatorCreateInfo, &allocator); */
+
+ /* // Entire program... */
+
+ /* // At the end, don't forget to: */
+ /* vmaDestroyAllocator(allocator); */
+
+ // Game loop
+ while (!quit) {
+ handle_input(&quit);
+ draw_frame();
+ //SDL_Delay(16);
+ }
+
+ close_vulkan();
+ }
+
+ // Free resources and close SDL
+ closeSDL();
+
+ return 0;
+}
diff --git a/src/shader.frag b/src/shader.frag
new file mode 100644
index 0000000..7c5b0e7
--- /dev/null
+++ b/src/shader.frag
@@ -0,0 +1,9 @@
+#version 450
+
+layout(location = 0) in vec3 fragColor;
+
+layout(location = 0) out vec4 outColor;
+
+void main() {
+ outColor = vec4(fragColor, 1.0);
+}
diff --git a/src/shader.vert b/src/shader.vert
new file mode 100644
index 0000000..7ce15ef
--- /dev/null
+++ b/src/shader.vert
@@ -0,0 +1,17 @@
+#version 450
+
+layout(binding = 0) uniform UniformBufferObject {
+ mat4 model;
+ mat4 view;
+ mat4 proj;
+} ubo;
+
+layout(location = 0) in vec2 inPosition;
+layout(location = 1) in vec3 inColor;
+
+layout(location = 0) out vec3 fragColor;
+
+void main() {
+ gl_Position = ubo.proj * ubo.view * ubo.model * vec4(inPosition, 0.0, 1.0);
+ fragColor = inColor;
+}
diff --git a/src/state.h b/src/state.h
new file mode 100644
index 0000000..cd5f44e
--- /dev/null
+++ b/src/state.h
@@ -0,0 +1,112 @@
+#include <SDL2/SDL.h>
+
+#include "cq.h"
+#include "../lib/cglm/include/cglm/cglm.h"
+
+#pragma once
+
+#define MAX_FRAMES_IN_FLIGHT 2
+
+typedef struct {
+ mat4 model;
+ mat4 view;
+ mat4 proj;
+} UniformBufferObject;
+
+typedef struct {
+
+} frame_data;
+
+typedef struct state {
+ int window_w, window_h;
+ int cell_w, cell_h;
+ int grid_w, grid_h;
+ int char_w, char_h;
+ int char_x, char_y;
+
+ UniformBufferObject ubo;
+
+ float x;
+ int zoom;
+
+ SDL_Window* sdl_window;
+
+ VkInstance vk_instance;
+ VkDebugUtilsMessengerEXT vk_debug_messenger;
+ PFN_vkCreateDebugUtilsMessengerEXT pfnCreateDebugUtilsMessengerEXT;
+ PFN_vkDestroyDebugUtilsMessengerEXT pfnDestroyDebugUtilsMessengerEXT;
+
+ VkPhysicalDevice vk_physical_device;
+ VkDevice vk_device;
+ VkQueue vk_graphics_queue;
+ VkSurfaceKHR vk_surface;
+ VkQueue vk_present_queue;
+
+ VkSwapchainKHR vk_swap_chain;
+ uint32_t vk_swap_chain_image_count;
+ // LIST vk_swap_chain_images; // VkImage
+ VkImage vk_swap_chain_images[1024];
+ VkFormat vk_swap_chain_image_format;
+ VkExtent2D vk_swap_chain_extent;
+
+ //LIST vk_swap_chain_image_views; // VkImageView
+ VkImageView vk_swap_chain_image_views[1000];
+
+ VkRenderPass vk_render_pass;
+
+ VkDescriptorSetLayout vk_descriptor_set_layout;
+ VkPipelineLayout vk_pipeline_layout;
+ VkPipeline vk_graphics_pipeline;
+
+ VkFramebuffer vk_swap_chain_framebuffers[1000];
+ uint32_t vk_swap_chain_framebuffers_count;
+
+ VkCommandPool vk_command_pool;
+ VkCommandBuffer vk_command_buffers[MAX_FRAMES_IN_FLIGHT];
+
+ VkSemaphore imageAvailableSemaphores[MAX_FRAMES_IN_FLIGHT];
+ VkSemaphore renderFinishedSemaphores[MAX_FRAMES_IN_FLIGHT];
+ VkFence inFlightFences[MAX_FRAMES_IN_FLIGHT];
+
+ VkBuffer vk_uniform_buffers[MAX_FRAMES_IN_FLIGHT];
+ VkDeviceMemory vk_uniform_buffers_memory[MAX_FRAMES_IN_FLIGHT];
+ void * vk_uniform_buffers_mapped[MAX_FRAMES_IN_FLIGHT];
+
+ VkBuffer vk_vertex_buffer;
+ VkDeviceMemory vk_vertex_buffer_memory;
+
+ VkBuffer vk_index_buffer;
+ VkDeviceMemory vk_index_buffer_memory;
+
+ VkDescriptorPool vk_descriptor_pool;
+ VkDescriptorSet vk_descriptor_sets[MAX_FRAMES_IN_FLIGHT];
+
+ LIST test;
+} state_t ;
+
+void
+init_state(state_t * s)
+{
+ s->window_w = 800;
+ s->window_h = 600;
+ s->cell_w = 10;
+ s->cell_h = 10;
+ s->grid_w = 0;
+ s->grid_h = 0;
+ s->char_w = 0;
+ s->char_h = 0;
+ s->char_x = 0;
+ s->char_y = 0;
+
+ s->zoom = 10;
+ s->x = 0.0f;
+
+ s->sdl_window = NULL;
+
+ s->vk_swap_chain_image_count = 0;
+ s->vk_physical_device = VK_NULL_HANDLE;
+
+ s->vk_swap_chain_framebuffers_count = 0;
+
+ list_init(VkImage *, s->test, 1024);
+}
diff --git a/src/vk_mem_alloc.h b/src/vk_mem_alloc.h
new file mode 100644
index 0000000..711f486
--- /dev/null
+++ b/src/vk_mem_alloc.h
@@ -0,0 +1,18676 @@
+//
+// Copyright (c) 2017-2024 Advanced Micro Devices, Inc. All rights reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+//
+
+#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H
+#define AMD_VULKAN_MEMORY_ALLOCATOR_H
+
+/** \mainpage Vulkan Memory Allocator
+
+<b>Version 3.1.0-development</b>
+
+Copyright (c) 2017-2024 Advanced Micro Devices, Inc. All rights reserved. \n
+License: MIT \n
+See also: [product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/),
+[repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator)
+
+
+<b>API documentation divided into groups:</b> [Topics](topics.html)
+
+<b>General documentation chapters:</b>
+
+- <b>User guide</b>
+ - \subpage quick_start
+ - [Project setup](@ref quick_start_project_setup)
+ - [Initialization](@ref quick_start_initialization)
+ - [Resource allocation](@ref quick_start_resource_allocation)
+ - \subpage choosing_memory_type
+ - [Usage](@ref choosing_memory_type_usage)
+ - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags)
+ - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types)
+ - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools)
+ - [Dedicated allocations](@ref choosing_memory_type_dedicated_allocations)
+ - \subpage memory_mapping
+ - [Copy functions](@ref memory_mapping_copy_functions)
+ - [Mapping functions](@ref memory_mapping_mapping_functions)
+ - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory)
+ - [Cache flush and invalidate](@ref memory_mapping_cache_control)
+ - \subpage staying_within_budget
+ - [Querying for budget](@ref staying_within_budget_querying_for_budget)
+ - [Controlling memory usage](@ref staying_within_budget_controlling_memory_usage)
+ - \subpage resource_aliasing
+ - \subpage custom_memory_pools
+ - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex)
+ - [When not to use custom pools](@ref custom_memory_pools_when_not_use)
+ - [Linear allocation algorithm](@ref linear_algorithm)
+ - [Free-at-once](@ref linear_algorithm_free_at_once)
+ - [Stack](@ref linear_algorithm_stack)
+ - [Double stack](@ref linear_algorithm_double_stack)
+ - [Ring buffer](@ref linear_algorithm_ring_buffer)
+ - \subpage defragmentation
+ - \subpage statistics
+ - [Numeric statistics](@ref statistics_numeric_statistics)
+ - [JSON dump](@ref statistics_json_dump)
+ - \subpage allocation_annotation
+ - [Allocation user data](@ref allocation_user_data)
+ - [Allocation names](@ref allocation_names)
+ - \subpage virtual_allocator
+ - \subpage debugging_memory_usage
+ - [Memory initialization](@ref debugging_memory_usage_initialization)
+ - [Margins](@ref debugging_memory_usage_margins)
+ - [Corruption detection](@ref debugging_memory_usage_corruption_detection)
+ - [Leak detection features](@ref debugging_memory_usage_leak_detection)
+ - \subpage other_api_interop
+- \subpage usage_patterns
+ - [GPU-only resource](@ref usage_patterns_gpu_only)
+ - [Staging copy for upload](@ref usage_patterns_staging_copy_upload)
+ - [Readback](@ref usage_patterns_readback)
+ - [Advanced data uploading](@ref usage_patterns_advanced_data_uploading)
+ - [Other use cases](@ref usage_patterns_other_use_cases)
+- \subpage configuration
+ - [Pointers to Vulkan functions](@ref config_Vulkan_functions)
+ - [Custom host memory allocator](@ref custom_memory_allocator)
+ - [Device memory allocation callbacks](@ref allocation_callbacks)
+ - [Device heap memory limit](@ref heap_memory_limit)
+- <b>Extension support</b>
+ - \subpage vk_khr_dedicated_allocation
+ - \subpage enabling_buffer_device_address
+ - \subpage vk_ext_memory_priority
+ - \subpage vk_amd_device_coherent_memory
+- \subpage general_considerations
+ - [Thread safety](@ref general_considerations_thread_safety)
+ - [Versioning and compatibility](@ref general_considerations_versioning_and_compatibility)
+ - [Validation layer warnings](@ref general_considerations_validation_layer_warnings)
+ - [Allocation algorithm](@ref general_considerations_allocation_algorithm)
+ - [Features not supported](@ref general_considerations_features_not_supported)
+
+\defgroup group_init Library initialization
+
+\brief API elements related to the initialization and management of the entire library, especially #VmaAllocator object.
+
+\defgroup group_alloc Memory allocation
+
+\brief API elements related to the allocation, deallocation, and management of Vulkan memory, buffers, images.
+Most basic ones being: vmaCreateBuffer(), vmaCreateImage().
+
+\defgroup group_virtual Virtual allocator
+
+\brief API elements related to the mechanism of \ref virtual_allocator - using the core allocation algorithm
+for user-defined purpose without allocating any real GPU memory.
+
+\defgroup group_stats Statistics
+
+\brief API elements that query current status of the allocator, from memory usage, budget, to full dump of the internal state in JSON format.
+See documentation chapter: \ref statistics.
+*/
+
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include <vulkan/vulkan.h>
+
+#if !defined(VMA_VULKAN_VERSION)
+ #if defined(VK_VERSION_1_3)
+ #define VMA_VULKAN_VERSION 1003000
+ #elif defined(VK_VERSION_1_2)
+ #define VMA_VULKAN_VERSION 1002000
+ #elif defined(VK_VERSION_1_1)
+ #define VMA_VULKAN_VERSION 1001000
+ #else
+ #define VMA_VULKAN_VERSION 1000000
+ #endif
+#endif
+
+#if defined(__ANDROID__) && defined(VK_NO_PROTOTYPES) && VMA_STATIC_VULKAN_FUNCTIONS
+ extern PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr;
+ extern PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr;
+ extern PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties;
+ extern PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties;
+ extern PFN_vkAllocateMemory vkAllocateMemory;
+ extern PFN_vkFreeMemory vkFreeMemory;
+ extern PFN_vkMapMemory vkMapMemory;
+ extern PFN_vkUnmapMemory vkUnmapMemory;
+ extern PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges;
+ extern PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges;
+ extern PFN_vkBindBufferMemory vkBindBufferMemory;
+ extern PFN_vkBindImageMemory vkBindImageMemory;
+ extern PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements;
+ extern PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements;
+ extern PFN_vkCreateBuffer vkCreateBuffer;
+ extern PFN_vkDestroyBuffer vkDestroyBuffer;
+ extern PFN_vkCreateImage vkCreateImage;
+ extern PFN_vkDestroyImage vkDestroyImage;
+ extern PFN_vkCmdCopyBuffer vkCmdCopyBuffer;
+ #if VMA_VULKAN_VERSION >= 1001000
+ extern PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2;
+ extern PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2;
+ extern PFN_vkBindBufferMemory2 vkBindBufferMemory2;
+ extern PFN_vkBindImageMemory2 vkBindImageMemory2;
+ extern PFN_vkGetPhysicalDeviceMemoryProperties2 vkGetPhysicalDeviceMemoryProperties2;
+ #endif // #if VMA_VULKAN_VERSION >= 1001000
+#endif // #if defined(__ANDROID__) && VMA_STATIC_VULKAN_FUNCTIONS && VK_NO_PROTOTYPES
+
+#if !defined(VMA_DEDICATED_ALLOCATION)
+ #if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation
+ #define VMA_DEDICATED_ALLOCATION 1
+ #else
+ #define VMA_DEDICATED_ALLOCATION 0
+ #endif
+#endif
+
+#if !defined(VMA_BIND_MEMORY2)
+ #if VK_KHR_bind_memory2
+ #define VMA_BIND_MEMORY2 1
+ #else
+ #define VMA_BIND_MEMORY2 0
+ #endif
+#endif
+
+#if !defined(VMA_MEMORY_BUDGET)
+ #if VK_EXT_memory_budget && (VK_KHR_get_physical_device_properties2 || VMA_VULKAN_VERSION >= 1001000)
+ #define VMA_MEMORY_BUDGET 1
+ #else
+ #define VMA_MEMORY_BUDGET 0
+ #endif
+#endif
+
+// Defined to 1 when VK_KHR_buffer_device_address device extension or equivalent core Vulkan 1.2 feature is defined in its headers.
+#if !defined(VMA_BUFFER_DEVICE_ADDRESS)
+ #if VK_KHR_buffer_device_address || VMA_VULKAN_VERSION >= 1002000
+ #define VMA_BUFFER_DEVICE_ADDRESS 1
+ #else
+ #define VMA_BUFFER_DEVICE_ADDRESS 0
+ #endif
+#endif
+
+// Defined to 1 when VK_EXT_memory_priority device extension is defined in Vulkan headers.
+#if !defined(VMA_MEMORY_PRIORITY)
+ #if VK_EXT_memory_priority
+ #define VMA_MEMORY_PRIORITY 1
+ #else
+ #define VMA_MEMORY_PRIORITY 0
+ #endif
+#endif
+
+// Defined to 1 when VK_KHR_maintenance4 device extension is defined in Vulkan headers.
+#if !defined(VMA_KHR_MAINTENANCE4)
+ #if VK_KHR_maintenance4
+ #define VMA_KHR_MAINTENANCE4 1
+ #else
+ #define VMA_KHR_MAINTENANCE4 0
+ #endif
+#endif
+
+// Defined to 1 when VK_KHR_maintenance5 device extension is defined in Vulkan headers.
+#if !defined(VMA_KHR_MAINTENANCE5)
+ #if VK_KHR_maintenance5
+ #define VMA_KHR_MAINTENANCE5 1
+ #else
+ #define VMA_KHR_MAINTENANCE5 0
+ #endif
+#endif
+
+
+// Defined to 1 when VK_KHR_external_memory device extension is defined in Vulkan headers.
+#if !defined(VMA_EXTERNAL_MEMORY)
+ #if VK_KHR_external_memory
+ #define VMA_EXTERNAL_MEMORY 1
+ #else
+ #define VMA_EXTERNAL_MEMORY 0
+ #endif
+#endif
+
+// Define these macros to decorate all public functions with additional code,
+// before and after returned type, appropriately. This may be useful for
+// exporting the functions when compiling VMA as a separate library. Example:
+// #define VMA_CALL_PRE __declspec(dllexport)
+// #define VMA_CALL_POST __cdecl
+#ifndef VMA_CALL_PRE
+ #define VMA_CALL_PRE
+#endif
+#ifndef VMA_CALL_POST
+ #define VMA_CALL_POST
+#endif
+
+// Define this macro to decorate pNext pointers with an attribute specifying the Vulkan
+// structure that will be extended via the pNext chain.
+#ifndef VMA_EXTENDS_VK_STRUCT
+ #define VMA_EXTENDS_VK_STRUCT(vkStruct)
+#endif
+
+// Define this macro to decorate pointers with an attribute specifying the
+// length of the array they point to if they are not null.
+//
+// The length may be one of
+// - The name of another parameter in the argument list where the pointer is declared
+// - The name of another member in the struct where the pointer is declared
+// - The name of a member of a struct type, meaning the value of that member in
+// the context of the call. For example
+// VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount"),
+// this means the number of memory heaps available in the device associated
+// with the VmaAllocator being dealt with.
+#ifndef VMA_LEN_IF_NOT_NULL
+ #define VMA_LEN_IF_NOT_NULL(len)
+#endif
+
+// The VMA_NULLABLE macro is defined to be _Nullable when compiling with Clang.
+// see: https://clang.llvm.org/docs/AttributeReference.html#nullable
+#ifndef VMA_NULLABLE
+ #ifdef __clang__
+ #define VMA_NULLABLE _Nullable
+ #else
+ #define VMA_NULLABLE
+ #endif
+#endif
+
+// The VMA_NOT_NULL macro is defined to be _Nonnull when compiling with Clang.
+// see: https://clang.llvm.org/docs/AttributeReference.html#nonnull
+#ifndef VMA_NOT_NULL
+ #ifdef __clang__
+ #define VMA_NOT_NULL _Nonnull
+ #else
+ #define VMA_NOT_NULL
+ #endif
+#endif
+
+// If non-dispatchable handles are represented as pointers then we can give
+// then nullability annotations
+#ifndef VMA_NOT_NULL_NON_DISPATCHABLE
+ #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
+ #define VMA_NOT_NULL_NON_DISPATCHABLE VMA_NOT_NULL
+ #else
+ #define VMA_NOT_NULL_NON_DISPATCHABLE
+ #endif
+#endif
+
+#ifndef VMA_NULLABLE_NON_DISPATCHABLE
+ #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
+ #define VMA_NULLABLE_NON_DISPATCHABLE VMA_NULLABLE
+ #else
+ #define VMA_NULLABLE_NON_DISPATCHABLE
+ #endif
+#endif
+
+#ifndef VMA_STATS_STRING_ENABLED
+ #define VMA_STATS_STRING_ENABLED 1
+#endif
+
+////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////
+//
+// INTERFACE
+//
+////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////
+
+// Sections for managing code placement in file, only for development purposes e.g. for convenient folding inside an IDE.
+#ifndef _VMA_ENUM_DECLARATIONS
+
+/**
+\addtogroup group_init
+@{
+*/
+
+/// Flags for created #VmaAllocator.
+typedef enum VmaAllocatorCreateFlagBits
+{
+ /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you.
+
+ Using this flag may increase performance because internal mutexes are not used.
+ */
+ VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001,
+ /** \brief Enables usage of VK_KHR_dedicated_allocation extension.
+
+ The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`.
+ When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1.
+
+ Using this extension will automatically allocate dedicated blocks of memory for
+ some buffers and images instead of suballocating place for them out of bigger
+ memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT
+ flag) when it is recommended by the driver. It may improve performance on some
+ GPUs.
+
+ You may set this flag only if you found out that following device extensions are
+ supported, you enabled them while creating Vulkan device passed as
+ VmaAllocatorCreateInfo::device, and you want them to be used internally by this
+ library:
+
+ - VK_KHR_get_memory_requirements2 (device extension)
+ - VK_KHR_dedicated_allocation (device extension)
+
+ When this flag is set, you can experience following warnings reported by Vulkan
+ validation layer. You can ignore them.
+
+ > vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer.
+ */
+ VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002,
+ /**
+ Enables usage of VK_KHR_bind_memory2 extension.
+
+ The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`.
+ When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1.
+
+ You may set this flag only if you found out that this device extension is supported,
+ you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
+ and you want it to be used internally by this library.
+
+ The extension provides functions `vkBindBufferMemory2KHR` and `vkBindImageMemory2KHR`,
+ which allow to pass a chain of `pNext` structures while binding.
+ This flag is required if you use `pNext` parameter in vmaBindBufferMemory2() or vmaBindImageMemory2().
+ */
+ VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT = 0x00000004,
+ /**
+ Enables usage of VK_EXT_memory_budget extension.
+
+ You may set this flag only if you found out that this device extension is supported,
+ you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
+ and you want it to be used internally by this library, along with another instance extension
+ VK_KHR_get_physical_device_properties2, which is required by it (or Vulkan 1.1, where this extension is promoted).
+
+ The extension provides query for current memory usage and budget, which will probably
+ be more accurate than an estimation used by the library otherwise.
+ */
+ VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT = 0x00000008,
+ /**
+ Enables usage of VK_AMD_device_coherent_memory extension.
+
+ You may set this flag only if you:
+
+ - found out that this device extension is supported and enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
+ - checked that `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true and set it while creating the Vulkan device,
+ - want it to be used internally by this library.
+
+ The extension and accompanying device feature provide access to memory types with
+ `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flags.
+ They are useful mostly for writing breadcrumb markers - a common method for debugging GPU crash/hang/TDR.
+
+ When the extension is not enabled, such memory types are still enumerated, but their usage is illegal.
+ To protect from this error, if you don't create the allocator with this flag, it will refuse to allocate any memory or create a custom pool in such memory type,
+ returning `VK_ERROR_FEATURE_NOT_PRESENT`.
+ */
+ VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT = 0x00000010,
+ /**
+ Enables usage of "buffer device address" feature, which allows you to use function
+ `vkGetBufferDeviceAddress*` to get raw GPU pointer to a buffer and pass it for usage inside a shader.
+
+ You may set this flag only if you:
+
+ 1. (For Vulkan version < 1.2) Found as available and enabled device extension
+ VK_KHR_buffer_device_address.
+ This extension is promoted to core Vulkan 1.2.
+ 2. Found as available and enabled device feature `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress`.
+
+ When this flag is set, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT` using VMA.
+ The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT` to
+ allocated memory blocks wherever it might be needed.
+
+ For more information, see documentation chapter \ref enabling_buffer_device_address.
+ */
+ VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT = 0x00000020,
+ /**
+ Enables usage of VK_EXT_memory_priority extension in the library.
+
+ You may set this flag only if you found available and enabled this device extension,
+ along with `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority == VK_TRUE`,
+ while creating Vulkan device passed as VmaAllocatorCreateInfo::device.
+
+ When this flag is used, VmaAllocationCreateInfo::priority and VmaPoolCreateInfo::priority
+ are used to set priorities of allocated Vulkan memory. Without it, these variables are ignored.
+
+ A priority must be a floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations.
+ Larger values are higher priority. The granularity of the priorities is implementation-dependent.
+ It is automatically passed to every call to `vkAllocateMemory` done by the library using structure `VkMemoryPriorityAllocateInfoEXT`.
+ The value to be used for default priority is 0.5.
+ For more details, see the documentation of the VK_EXT_memory_priority extension.
+ */
+ VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT = 0x00000040,
+ /**
+ Enables usage of VK_KHR_maintenance4 extension in the library.
+
+ You may set this flag only if you found available and enabled this device extension,
+ while creating Vulkan device passed as VmaAllocatorCreateInfo::device.
+ */
+ VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE4_BIT = 0x00000080,
+ /**
+ Enables usage of VK_KHR_maintenance5 extension in the library.
+
+ You should set this flag if you found available and enabled this device extension,
+ while creating Vulkan device passed as VmaAllocatorCreateInfo::device.
+ */
+ VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT = 0x00000100,
+
+ VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaAllocatorCreateFlagBits;
+/// See #VmaAllocatorCreateFlagBits.
+typedef VkFlags VmaAllocatorCreateFlags;
+
+/** @} */
+
+/**
+\addtogroup group_alloc
+@{
+*/
+
+/// \brief Intended usage of the allocated memory.
+typedef enum VmaMemoryUsage
+{
+ /** No intended memory usage specified.
+ Use other members of VmaAllocationCreateInfo to specify your requirements.
+ */
+ VMA_MEMORY_USAGE_UNKNOWN = 0,
+ /**
+ \deprecated Obsolete, preserved for backward compatibility.
+ Prefers `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
+ */
+ VMA_MEMORY_USAGE_GPU_ONLY = 1,
+ /**
+ \deprecated Obsolete, preserved for backward compatibility.
+ Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT`.
+ */
+ VMA_MEMORY_USAGE_CPU_ONLY = 2,
+ /**
+ \deprecated Obsolete, preserved for backward compatibility.
+ Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, prefers `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
+ */
+ VMA_MEMORY_USAGE_CPU_TO_GPU = 3,
+ /**
+ \deprecated Obsolete, preserved for backward compatibility.
+ Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, prefers `VK_MEMORY_PROPERTY_HOST_CACHED_BIT`.
+ */
+ VMA_MEMORY_USAGE_GPU_TO_CPU = 4,
+ /**
+ \deprecated Obsolete, preserved for backward compatibility.
+ Prefers not `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
+ */
+ VMA_MEMORY_USAGE_CPU_COPY = 5,
+ /**
+ Lazily allocated GPU memory having `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`.
+ Exists mostly on mobile platforms. Using it on desktop PC or other GPUs with no such memory type present will fail the allocation.
+
+ Usage: Memory for transient attachment images (color attachments, depth attachments etc.), created with `VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT`.
+
+ Allocations with this usage are always created as dedicated - it implies #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
+ */
+ VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED = 6,
+ /**
+ Selects best memory type automatically.
+ This flag is recommended for most common use cases.
+
+ When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT),
+ you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
+ in VmaAllocationCreateInfo::flags.
+
+ It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g.
+ vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo()
+ and not with generic memory allocation functions.
+ */
+ VMA_MEMORY_USAGE_AUTO = 7,
+ /**
+ Selects best memory type automatically with preference for GPU (device) memory.
+
+ When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT),
+ you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
+ in VmaAllocationCreateInfo::flags.
+
+ It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g.
+ vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo()
+ and not with generic memory allocation functions.
+ */
+ VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE = 8,
+ /**
+ Selects best memory type automatically with preference for CPU (host) memory.
+
+ When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT),
+ you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
+ in VmaAllocationCreateInfo::flags.
+
+ It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g.
+ vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo()
+ and not with generic memory allocation functions.
+ */
+ VMA_MEMORY_USAGE_AUTO_PREFER_HOST = 9,
+
+ VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF
+} VmaMemoryUsage;
+
+/// Flags to be passed as VmaAllocationCreateInfo::flags.
+typedef enum VmaAllocationCreateFlagBits
+{
+ /** \brief Set this flag if the allocation should have its own memory block.
+
+ Use it for special, big resources, like fullscreen images used as attachments.
+
+ If you use this flag while creating a buffer or an image, `VkMemoryDedicatedAllocateInfo`
+ structure is applied if possible.
+ */
+ VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001,
+
+ /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block.
+
+ If new allocation cannot be placed in any of the existing blocks, allocation
+ fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
+
+ You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and
+ #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense.
+ */
+ VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002,
+ /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it.
+
+ Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData.
+
+ It is valid to use this flag for allocation made from memory type that is not
+ `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is
+ useful if you need an allocation that is efficient to use on GPU
+ (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that
+ support it (e.g. Intel GPU).
+ */
+ VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004,
+ /** \deprecated Preserved for backward compatibility. Consider using vmaSetAllocationName() instead.
+
+ Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a
+ null-terminated string. Instead of copying pointer value, a local copy of the
+ string is made and stored in allocation's `pName`. The string is automatically
+ freed together with the allocation. It is also used in vmaBuildStatsString().
+ */
+ VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020,
+ /** Allocation will be created from upper stack in a double stack pool.
+
+ This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag.
+ */
+ VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040,
+ /** Create both buffer/image and allocation, but don't bind them together.
+ It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions.
+ The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage().
+ Otherwise it is ignored.
+
+ If you want to make sure the new buffer/image is not tied to the new memory allocation
+ through `VkMemoryDedicatedAllocateInfoKHR` structure in case the allocation ends up in its own memory block,
+ use also flag #VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT.
+ */
+ VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080,
+ /** Create allocation only if additional device memory required for it, if any, won't exceed
+ memory budget. Otherwise return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
+ */
+ VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT = 0x00000100,
+ /** \brief Set this flag if the allocated memory will have aliasing resources.
+
+ Usage of this flag prevents supplying `VkMemoryDedicatedAllocateInfoKHR` when #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT is specified.
+ Otherwise created dedicated memory will not be suitable for aliasing resources, resulting in Vulkan Validation Layer errors.
+ */
+ VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT = 0x00000200,
+ /**
+ Requests possibility to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT).
+
+ - If you use #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` value,
+ you must use this flag to be able to map the allocation. Otherwise, mapping is incorrect.
+ - If you use other value of #VmaMemoryUsage, this flag is ignored and mapping is always possible in memory types that are `HOST_VISIBLE`.
+ This includes allocations created in \ref custom_memory_pools.
+
+ Declares that mapped memory will only be written sequentially, e.g. using `memcpy()` or a loop writing number-by-number,
+ never read or accessed randomly, so a memory type can be selected that is uncached and write-combined.
+
+ \warning Violating this declaration may work correctly, but will likely be very slow.
+ Watch out for implicit reads introduced by doing e.g. `pMappedData[i] += x;`
+ Better prepare your data in a local variable and `memcpy()` it to the mapped pointer all at once.
+ */
+ VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT = 0x00000400,
+ /**
+ Requests possibility to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT).
+
+ - If you use #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` value,
+ you must use this flag to be able to map the allocation. Otherwise, mapping is incorrect.
+ - If you use other value of #VmaMemoryUsage, this flag is ignored and mapping is always possible in memory types that are `HOST_VISIBLE`.
+ This includes allocations created in \ref custom_memory_pools.
+
+ Declares that mapped memory can be read, written, and accessed in random order,
+ so a `HOST_CACHED` memory type is preferred.
+ */
+ VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT = 0x00000800,
+ /**
+ Together with #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT,
+ it says that despite request for host access, a not-`HOST_VISIBLE` memory type can be selected
+ if it may improve performance.
+
+ By using this flag, you declare that you will check if the allocation ended up in a `HOST_VISIBLE` memory type
+ (e.g. using vmaGetAllocationMemoryProperties()) and if not, you will create some "staging" buffer and
+ issue an explicit transfer to write/read your data.
+ To prepare for this possibility, don't forget to add appropriate flags like
+ `VK_BUFFER_USAGE_TRANSFER_DST_BIT`, `VK_BUFFER_USAGE_TRANSFER_SRC_BIT` to the parameters of created buffer or image.
+ */
+ VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT = 0x00001000,
+ /** Allocation strategy that chooses smallest possible free range for the allocation
+ to minimize memory usage and fragmentation, possibly at the expense of allocation time.
+ */
+ VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = 0x00010000,
+ /** Allocation strategy that chooses first suitable free range for the allocation -
+ not necessarily in terms of the smallest offset but the one that is easiest and fastest to find
+ to minimize allocation time, possibly at the expense of allocation quality.
+ */
+ VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = 0x00020000,
+ /** Allocation strategy that chooses always the lowest offset in available space.
+ This is not the most efficient strategy but achieves highly packed data.
+ Used internally by defragmentation, not recommended in typical usage.
+ */
+ VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT = 0x00040000,
+ /** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT.
+ */
+ VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT,
+ /** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT.
+ */
+ VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT,
+ /** A bit mask to extract only `STRATEGY` bits from entire set of flags.
+ */
+ VMA_ALLOCATION_CREATE_STRATEGY_MASK =
+ VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT |
+ VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT |
+ VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
+
+ VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaAllocationCreateFlagBits;
+/// See #VmaAllocationCreateFlagBits.
+typedef VkFlags VmaAllocationCreateFlags;
+
+/// Flags to be passed as VmaPoolCreateInfo::flags.
+typedef enum VmaPoolCreateFlagBits
+{
+ /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored.
+
+ This is an optional optimization flag.
+
+ If you always allocate using vmaCreateBuffer(), vmaCreateImage(),
+ vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator
+ knows exact type of your allocations so it can handle Buffer-Image Granularity
+ in the optimal way.
+
+ If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(),
+ exact type of such allocations is not known, so allocator must be conservative
+ in handling Buffer-Image Granularity, which can lead to suboptimal allocation
+ (wasted memory). In that case, if you can make sure you always allocate only
+ buffers and linear images or only optimal images out of this pool, use this flag
+ to make allocator disregard Buffer-Image Granularity and so make allocations
+ faster and more optimal.
+ */
+ VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002,
+
+ /** \brief Enables alternative, linear allocation algorithm in this pool.
+
+ Specify this flag to enable linear allocation algorithm, which always creates
+ new allocations after last one and doesn't reuse space from allocations freed in
+ between. It trades memory consumption for simplified algorithm and data
+ structure, which has better performance and uses less memory for metadata.
+
+ By using this flag, you can achieve behavior of free-at-once, stack,
+ ring buffer, and double stack.
+ For details, see documentation chapter \ref linear_algorithm.
+ */
+ VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004,
+
+ /** Bit mask to extract only `ALGORITHM` bits from entire set of flags.
+ */
+ VMA_POOL_CREATE_ALGORITHM_MASK =
+ VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT,
+
+ VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaPoolCreateFlagBits;
+/// Flags to be passed as VmaPoolCreateInfo::flags. See #VmaPoolCreateFlagBits.
+typedef VkFlags VmaPoolCreateFlags;
+
+/// Flags to be passed as VmaDefragmentationInfo::flags.
+typedef enum VmaDefragmentationFlagBits
+{
+ /* \brief Use simple but fast algorithm for defragmentation.
+ May not achieve best results but will require least time to compute and least allocations to copy.
+ */
+ VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT = 0x1,
+ /* \brief Default defragmentation algorithm, applied also when no `ALGORITHM` flag is specified.
+ Offers a balance between defragmentation quality and the amount of allocations and bytes that need to be moved.
+ */
+ VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT = 0x2,
+ /* \brief Perform full defragmentation of memory.
+ Can result in notably more time to compute and allocations to copy, but will achieve best memory packing.
+ */
+ VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT = 0x4,
+ /** \brief Use the most roboust algorithm at the cost of time to compute and number of copies to make.
+ Only available when bufferImageGranularity is greater than 1, since it aims to reduce
+ alignment issues between different types of resources.
+ Otherwise falls back to same behavior as #VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT.
+ */
+ VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT = 0x8,
+
+ /// A bit mask to extract only `ALGORITHM` bits from entire set of flags.
+ VMA_DEFRAGMENTATION_FLAG_ALGORITHM_MASK =
+ VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT |
+ VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT |
+ VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT |
+ VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT,
+
+ VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaDefragmentationFlagBits;
+/// See #VmaDefragmentationFlagBits.
+typedef VkFlags VmaDefragmentationFlags;
+
+/// Operation performed on single defragmentation move. See structure #VmaDefragmentationMove.
+typedef enum VmaDefragmentationMoveOperation
+{
+ /// Buffer/image has been recreated at `dstTmpAllocation`, data has been copied, old buffer/image has been destroyed. `srcAllocation` should be changed to point to the new place. This is the default value set by vmaBeginDefragmentationPass().
+ VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY = 0,
+ /// Set this value if you cannot move the allocation. New place reserved at `dstTmpAllocation` will be freed. `srcAllocation` will remain unchanged.
+ VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE = 1,
+ /// Set this value if you decide to abandon the allocation and you destroyed the buffer/image. New place reserved at `dstTmpAllocation` will be freed, along with `srcAllocation`, which will be destroyed.
+ VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY = 2,
+} VmaDefragmentationMoveOperation;
+
+/** @} */
+
+/**
+\addtogroup group_virtual
+@{
+*/
+
+/// Flags to be passed as VmaVirtualBlockCreateInfo::flags.
+typedef enum VmaVirtualBlockCreateFlagBits
+{
+ /** \brief Enables alternative, linear allocation algorithm in this virtual block.
+
+ Specify this flag to enable linear allocation algorithm, which always creates
+ new allocations after last one and doesn't reuse space from allocations freed in
+ between. It trades memory consumption for simplified algorithm and data
+ structure, which has better performance and uses less memory for metadata.
+
+ By using this flag, you can achieve behavior of free-at-once, stack,
+ ring buffer, and double stack.
+ For details, see documentation chapter \ref linear_algorithm.
+ */
+ VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT = 0x00000001,
+
+ /** \brief Bit mask to extract only `ALGORITHM` bits from entire set of flags.
+ */
+ VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK =
+ VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT,
+
+ VMA_VIRTUAL_BLOCK_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaVirtualBlockCreateFlagBits;
+/// Flags to be passed as VmaVirtualBlockCreateInfo::flags. See #VmaVirtualBlockCreateFlagBits.
+typedef VkFlags VmaVirtualBlockCreateFlags;
+
+/// Flags to be passed as VmaVirtualAllocationCreateInfo::flags.
+typedef enum VmaVirtualAllocationCreateFlagBits
+{
+ /** \brief Allocation will be created from upper stack in a double stack pool.
+
+ This flag is only allowed for virtual blocks created with #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT flag.
+ */
+ VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT,
+ /** \brief Allocation strategy that tries to minimize memory usage.
+ */
+ VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT,
+ /** \brief Allocation strategy that tries to minimize allocation time.
+ */
+ VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT,
+ /** Allocation strategy that chooses always the lowest offset in available space.
+ This is not the most efficient strategy but achieves highly packed data.
+ */
+ VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
+ /** \brief A bit mask to extract only `STRATEGY` bits from entire set of flags.
+
+ These strategy flags are binary compatible with equivalent flags in #VmaAllocationCreateFlagBits.
+ */
+ VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK = VMA_ALLOCATION_CREATE_STRATEGY_MASK,
+
+ VMA_VIRTUAL_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
+} VmaVirtualAllocationCreateFlagBits;
+/// Flags to be passed as VmaVirtualAllocationCreateInfo::flags. See #VmaVirtualAllocationCreateFlagBits.
+typedef VkFlags VmaVirtualAllocationCreateFlags;
+
+/** @} */
+
+#endif // _VMA_ENUM_DECLARATIONS
+
+#ifndef _VMA_DATA_TYPES_DECLARATIONS
+
+/**
+\addtogroup group_init
+@{ */
+
+/** \struct VmaAllocator
+\brief Represents main object of this library initialized.
+
+Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it.
+Call function vmaDestroyAllocator() to destroy it.
+
+It is recommended to create just one object of this type per `VkDevice` object,
+right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed.
+*/
+VK_DEFINE_HANDLE(VmaAllocator)
+
+/** @} */
+
+/**
+\addtogroup group_alloc
+@{
+*/
+
+/** \struct VmaPool
+\brief Represents custom memory pool
+
+Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it.
+Call function vmaDestroyPool() to destroy it.
+
+For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools).
+*/
+VK_DEFINE_HANDLE(VmaPool)
+
+/** \struct VmaAllocation
+\brief Represents single memory allocation.
+
+It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type
+plus unique offset.
+
+There are multiple ways to create such object.
+You need to fill structure VmaAllocationCreateInfo.
+For more information see [Choosing memory type](@ref choosing_memory_type).
+
+Although the library provides convenience functions that create Vulkan buffer or image,
+allocate memory for it and bind them together,
+binding of the allocation to a buffer or an image is out of scope of the allocation itself.
+Allocation object can exist without buffer/image bound,
+binding can be done manually by the user, and destruction of it can be done
+independently of destruction of the allocation.
+
+The object also remembers its size and some other information.
+To retrieve this information, use function vmaGetAllocationInfo() and inspect
+returned structure VmaAllocationInfo.
+*/
+VK_DEFINE_HANDLE(VmaAllocation)
+
+/** \struct VmaDefragmentationContext
+\brief An opaque object that represents started defragmentation process.
+
+Fill structure #VmaDefragmentationInfo and call function vmaBeginDefragmentation() to create it.
+Call function vmaEndDefragmentation() to destroy it.
+*/
+VK_DEFINE_HANDLE(VmaDefragmentationContext)
+
+/** @} */
+
+/**
+\addtogroup group_virtual
+@{
+*/
+
+/** \struct VmaVirtualAllocation
+\brief Represents single memory allocation done inside VmaVirtualBlock.
+
+Use it as a unique identifier to virtual allocation within the single block.
+
+Use value `VK_NULL_HANDLE` to represent a null/invalid allocation.
+*/
+VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaVirtualAllocation)
+
+/** @} */
+
+/**
+\addtogroup group_virtual
+@{
+*/
+
+/** \struct VmaVirtualBlock
+\brief Handle to a virtual block object that allows to use core allocation algorithm without allocating any real GPU memory.
+
+Fill in #VmaVirtualBlockCreateInfo structure and use vmaCreateVirtualBlock() to create it. Use vmaDestroyVirtualBlock() to destroy it.
+For more information, see documentation chapter \ref virtual_allocator.
+
+This object is not thread-safe - should not be used from multiple threads simultaneously, must be synchronized externally.
+*/
+VK_DEFINE_HANDLE(VmaVirtualBlock)
+
+/** @} */
+
+/**
+\addtogroup group_init
+@{
+*/
+
+/// Callback function called after successful vkAllocateMemory.
+typedef void (VKAPI_PTR* PFN_vmaAllocateDeviceMemoryFunction)(
+ VmaAllocator VMA_NOT_NULL allocator,
+ uint32_t memoryType,
+ VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory,
+ VkDeviceSize size,
+ void* VMA_NULLABLE pUserData);
+
+/// Callback function called before vkFreeMemory.
+typedef void (VKAPI_PTR* PFN_vmaFreeDeviceMemoryFunction)(
+ VmaAllocator VMA_NOT_NULL allocator,
+ uint32_t memoryType,
+ VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory,
+ VkDeviceSize size,
+ void* VMA_NULLABLE pUserData);
+
+/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`.
+
+Provided for informative purpose, e.g. to gather statistics about number of
+allocations or total amount of memory allocated in Vulkan.
+
+Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
+*/
+typedef struct VmaDeviceMemoryCallbacks
+{
+ /// Optional, can be null.
+ PFN_vmaAllocateDeviceMemoryFunction VMA_NULLABLE pfnAllocate;
+ /// Optional, can be null.
+ PFN_vmaFreeDeviceMemoryFunction VMA_NULLABLE pfnFree;
+ /// Optional, can be null.
+ void* VMA_NULLABLE pUserData;
+} VmaDeviceMemoryCallbacks;
+
+/** \brief Pointers to some Vulkan functions - a subset used by the library.
+
+Used in VmaAllocatorCreateInfo::pVulkanFunctions.
+*/
+typedef struct VmaVulkanFunctions
+{
+ /// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS.
+ PFN_vkGetInstanceProcAddr VMA_NULLABLE vkGetInstanceProcAddr;
+ /// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS.
+ PFN_vkGetDeviceProcAddr VMA_NULLABLE vkGetDeviceProcAddr;
+ PFN_vkGetPhysicalDeviceProperties VMA_NULLABLE vkGetPhysicalDeviceProperties;
+ PFN_vkGetPhysicalDeviceMemoryProperties VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties;
+ PFN_vkAllocateMemory VMA_NULLABLE vkAllocateMemory;
+ PFN_vkFreeMemory VMA_NULLABLE vkFreeMemory;
+ PFN_vkMapMemory VMA_NULLABLE vkMapMemory;
+ PFN_vkUnmapMemory VMA_NULLABLE vkUnmapMemory;
+ PFN_vkFlushMappedMemoryRanges VMA_NULLABLE vkFlushMappedMemoryRanges;
+ PFN_vkInvalidateMappedMemoryRanges VMA_NULLABLE vkInvalidateMappedMemoryRanges;
+ PFN_vkBindBufferMemory VMA_NULLABLE vkBindBufferMemory;
+ PFN_vkBindImageMemory VMA_NULLABLE vkBindImageMemory;
+ PFN_vkGetBufferMemoryRequirements VMA_NULLABLE vkGetBufferMemoryRequirements;
+ PFN_vkGetImageMemoryRequirements VMA_NULLABLE vkGetImageMemoryRequirements;
+ PFN_vkCreateBuffer VMA_NULLABLE vkCreateBuffer;
+ PFN_vkDestroyBuffer VMA_NULLABLE vkDestroyBuffer;
+ PFN_vkCreateImage VMA_NULLABLE vkCreateImage;
+ PFN_vkDestroyImage VMA_NULLABLE vkDestroyImage;
+ PFN_vkCmdCopyBuffer VMA_NULLABLE vkCmdCopyBuffer;
+#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
+ /// Fetch "vkGetBufferMemoryRequirements2" on Vulkan >= 1.1, fetch "vkGetBufferMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension.
+ PFN_vkGetBufferMemoryRequirements2KHR VMA_NULLABLE vkGetBufferMemoryRequirements2KHR;
+ /// Fetch "vkGetImageMemoryRequirements2" on Vulkan >= 1.1, fetch "vkGetImageMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension.
+ PFN_vkGetImageMemoryRequirements2KHR VMA_NULLABLE vkGetImageMemoryRequirements2KHR;
+#endif
+#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
+ /// Fetch "vkBindBufferMemory2" on Vulkan >= 1.1, fetch "vkBindBufferMemory2KHR" when using VK_KHR_bind_memory2 extension.
+ PFN_vkBindBufferMemory2KHR VMA_NULLABLE vkBindBufferMemory2KHR;
+ /// Fetch "vkBindImageMemory2" on Vulkan >= 1.1, fetch "vkBindImageMemory2KHR" when using VK_KHR_bind_memory2 extension.
+ PFN_vkBindImageMemory2KHR VMA_NULLABLE vkBindImageMemory2KHR;
+#endif
+#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
+ /// Fetch from "vkGetPhysicalDeviceMemoryProperties2" on Vulkan >= 1.1, but you can also fetch it from "vkGetPhysicalDeviceMemoryProperties2KHR" if you enabled extension VK_KHR_get_physical_device_properties2.
+ PFN_vkGetPhysicalDeviceMemoryProperties2KHR VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties2KHR;
+#endif
+#if VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000
+ /// Fetch from "vkGetDeviceBufferMemoryRequirements" on Vulkan >= 1.3, but you can also fetch it from "vkGetDeviceBufferMemoryRequirementsKHR" if you enabled extension VK_KHR_maintenance4.
+ PFN_vkGetDeviceBufferMemoryRequirementsKHR VMA_NULLABLE vkGetDeviceBufferMemoryRequirements;
+ /// Fetch from "vkGetDeviceImageMemoryRequirements" on Vulkan >= 1.3, but you can also fetch it from "vkGetDeviceImageMemoryRequirementsKHR" if you enabled extension VK_KHR_maintenance4.
+ PFN_vkGetDeviceImageMemoryRequirementsKHR VMA_NULLABLE vkGetDeviceImageMemoryRequirements;
+#endif
+} VmaVulkanFunctions;
+
+/// Description of a Allocator to be created.
+typedef struct VmaAllocatorCreateInfo
+{
+ /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum.
+ VmaAllocatorCreateFlags flags;
+ /// Vulkan physical device.
+ /** It must be valid throughout whole lifetime of created allocator. */
+ VkPhysicalDevice VMA_NOT_NULL physicalDevice;
+ /// Vulkan device.
+ /** It must be valid throughout whole lifetime of created allocator. */
+ VkDevice VMA_NOT_NULL device;
+ /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional.
+ /** Set to 0 to use default, which is currently 256 MiB. */
+ VkDeviceSize preferredLargeHeapBlockSize;
+ /// Custom CPU memory allocation callbacks. Optional.
+ /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */
+ const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks;
+ /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional.
+ /** Optional, can be null. */
+ const VmaDeviceMemoryCallbacks* VMA_NULLABLE pDeviceMemoryCallbacks;
+ /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap.
+
+ If not NULL, it must be a pointer to an array of
+ `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on
+ maximum number of bytes that can be allocated out of particular Vulkan memory
+ heap.
+
+ Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that
+ heap. This is also the default in case of `pHeapSizeLimit` = NULL.
+
+ If there is a limit defined for a heap:
+
+ - If user tries to allocate more memory from that heap using this allocator,
+ the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
+ - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the
+ value of this limit will be reported instead when using vmaGetMemoryProperties().
+
+ Warning! Using this feature may not be equivalent to installing a GPU with
+ smaller amount of memory, because graphics driver doesn't necessary fail new
+ allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is
+ exceeded. It may return success and just silently migrate some device memory
+ blocks to system RAM. This driver behavior can also be controlled using
+ VK_AMD_memory_overallocation_behavior extension.
+ */
+ const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pHeapSizeLimit;
+
+ /** \brief Pointers to Vulkan functions. Can be null.
+
+ For details see [Pointers to Vulkan functions](@ref config_Vulkan_functions).
+ */
+ const VmaVulkanFunctions* VMA_NULLABLE pVulkanFunctions;
+ /** \brief Handle to Vulkan instance object.
+
+ Starting from version 3.0.0 this member is no longer optional, it must be set!
+ */
+ VkInstance VMA_NOT_NULL instance;
+ /** \brief Optional. Vulkan version that the application uses.
+
+ It must be a value in the format as created by macro `VK_MAKE_VERSION` or a constant like: `VK_API_VERSION_1_1`, `VK_API_VERSION_1_0`.
+ The patch version number specified is ignored. Only the major and minor versions are considered.
+ Only versions 1.0, 1.1, 1.2, 1.3 are supported by the current implementation.
+ Leaving it initialized to zero is equivalent to `VK_API_VERSION_1_0`.
+ It must match the Vulkan version used by the application and supported on the selected physical device,
+ so it must be no higher than `VkApplicationInfo::apiVersion` passed to `vkCreateInstance`
+ and no higher than `VkPhysicalDeviceProperties::apiVersion` found on the physical device used.
+ */
+ uint32_t vulkanApiVersion;
+#if VMA_EXTERNAL_MEMORY
+ /** \brief Either null or a pointer to an array of external memory handle types for each Vulkan memory type.
+
+ If not NULL, it must be a pointer to an array of `VkPhysicalDeviceMemoryProperties::memoryTypeCount`
+ elements, defining external memory handle types of particular Vulkan memory type,
+ to be passed using `VkExportMemoryAllocateInfoKHR`.
+
+ Any of the elements may be equal to 0, which means not to use `VkExportMemoryAllocateInfoKHR` on this memory type.
+ This is also the default in case of `pTypeExternalMemoryHandleTypes` = NULL.
+ */
+ const VkExternalMemoryHandleTypeFlagsKHR* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryTypeCount") pTypeExternalMemoryHandleTypes;
+#endif // #if VMA_EXTERNAL_MEMORY
+} VmaAllocatorCreateInfo;
+
+/// Information about existing #VmaAllocator object.
+typedef struct VmaAllocatorInfo
+{
+ /** \brief Handle to Vulkan instance object.
+
+ This is the same value as has been passed through VmaAllocatorCreateInfo::instance.
+ */
+ VkInstance VMA_NOT_NULL instance;
+ /** \brief Handle to Vulkan physical device object.
+
+ This is the same value as has been passed through VmaAllocatorCreateInfo::physicalDevice.
+ */
+ VkPhysicalDevice VMA_NOT_NULL physicalDevice;
+ /** \brief Handle to Vulkan device object.
+
+ This is the same value as has been passed through VmaAllocatorCreateInfo::device.
+ */
+ VkDevice VMA_NOT_NULL device;
+} VmaAllocatorInfo;
+
+/** @} */
+
+/**
+\addtogroup group_stats
+@{
+*/
+
+/** \brief Calculated statistics of memory usage e.g. in a specific memory type, heap, custom pool, or total.
+
+These are fast to calculate.
+See functions: vmaGetHeapBudgets(), vmaGetPoolStatistics().
+*/
+typedef struct VmaStatistics
+{
+ /** \brief Number of `VkDeviceMemory` objects - Vulkan memory blocks allocated.
+ */
+ uint32_t blockCount;
+ /** \brief Number of #VmaAllocation objects allocated.
+
+ Dedicated allocations have their own blocks, so each one adds 1 to `allocationCount` as well as `blockCount`.
+ */
+ uint32_t allocationCount;
+ /** \brief Number of bytes allocated in `VkDeviceMemory` blocks.
+
+ \note To avoid confusion, please be aware that what Vulkan calls an "allocation" - a whole `VkDeviceMemory` object
+ (e.g. as in `VkPhysicalDeviceLimits::maxMemoryAllocationCount`) is called a "block" in VMA, while VMA calls
+ "allocation" a #VmaAllocation object that represents a memory region sub-allocated from such block, usually for a single buffer or image.
+ */
+ VkDeviceSize blockBytes;
+ /** \brief Total number of bytes occupied by all #VmaAllocation objects.
+
+ Always less or equal than `blockBytes`.
+ Difference `(blockBytes - allocationBytes)` is the amount of memory allocated from Vulkan
+ but unused by any #VmaAllocation.
+ */
+ VkDeviceSize allocationBytes;
+} VmaStatistics;
+
+/** \brief More detailed statistics than #VmaStatistics.
+
+These are slower to calculate. Use for debugging purposes.
+See functions: vmaCalculateStatistics(), vmaCalculatePoolStatistics().
+
+Previous version of the statistics API provided averages, but they have been removed
+because they can be easily calculated as:
+
+\code
+VkDeviceSize allocationSizeAvg = detailedStats.statistics.allocationBytes / detailedStats.statistics.allocationCount;
+VkDeviceSize unusedBytes = detailedStats.statistics.blockBytes - detailedStats.statistics.allocationBytes;
+VkDeviceSize unusedRangeSizeAvg = unusedBytes / detailedStats.unusedRangeCount;
+\endcode
+*/
+typedef struct VmaDetailedStatistics
+{
+ /// Basic statistics.
+ VmaStatistics statistics;
+ /// Number of free ranges of memory between allocations.
+ uint32_t unusedRangeCount;
+ /// Smallest allocation size. `VK_WHOLE_SIZE` if there are 0 allocations.
+ VkDeviceSize allocationSizeMin;
+ /// Largest allocation size. 0 if there are 0 allocations.
+ VkDeviceSize allocationSizeMax;
+ /// Smallest empty range size. `VK_WHOLE_SIZE` if there are 0 empty ranges.
+ VkDeviceSize unusedRangeSizeMin;
+ /// Largest empty range size. 0 if there are 0 empty ranges.
+ VkDeviceSize unusedRangeSizeMax;
+} VmaDetailedStatistics;
+
+/** \brief General statistics from current state of the Allocator -
+total memory usage across all memory heaps and types.
+
+These are slower to calculate. Use for debugging purposes.
+See function vmaCalculateStatistics().
+*/
+typedef struct VmaTotalStatistics
+{
+ VmaDetailedStatistics memoryType[VK_MAX_MEMORY_TYPES];
+ VmaDetailedStatistics memoryHeap[VK_MAX_MEMORY_HEAPS];
+ VmaDetailedStatistics total;
+} VmaTotalStatistics;
+
+/** \brief Statistics of current memory usage and available budget for a specific memory heap.
+
+These are fast to calculate.
+See function vmaGetHeapBudgets().
+*/
+typedef struct VmaBudget
+{
+ /** \brief Statistics fetched from the library.
+ */
+ VmaStatistics statistics;
+ /** \brief Estimated current memory usage of the program, in bytes.
+
+ Fetched from system using VK_EXT_memory_budget extension if enabled.
+
+ It might be different than `statistics.blockBytes` (usually higher) due to additional implicit objects
+ also occupying the memory, like swapchain, pipelines, descriptor heaps, command buffers, or
+ `VkDeviceMemory` blocks allocated outside of this library, if any.
+ */
+ VkDeviceSize usage;
+ /** \brief Estimated amount of memory available to the program, in bytes.
+
+ Fetched from system using VK_EXT_memory_budget extension if enabled.
+
+ It might be different (most probably smaller) than `VkMemoryHeap::size[heapIndex]` due to factors
+ external to the program, decided by the operating system.
+ Difference `budget - usage` is the amount of additional memory that can probably
+ be allocated without problems. Exceeding the budget may result in various problems.
+ */
+ VkDeviceSize budget;
+} VmaBudget;
+
+/** @} */
+
+/**
+\addtogroup group_alloc
+@{
+*/
+
+/** \brief Parameters of new #VmaAllocation.
+
+To be used with functions like vmaCreateBuffer(), vmaCreateImage(), and many others.
+*/
+typedef struct VmaAllocationCreateInfo
+{
+ /// Use #VmaAllocationCreateFlagBits enum.
+ VmaAllocationCreateFlags flags;
+ /** \brief Intended usage of memory.
+
+ You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n
+ If `pool` is not null, this member is ignored.
+ */
+ VmaMemoryUsage usage;
+ /** \brief Flags that must be set in a Memory Type chosen for an allocation.
+
+ Leave 0 if you specify memory requirements in other way. \n
+ If `pool` is not null, this member is ignored.*/
+ VkMemoryPropertyFlags requiredFlags;
+ /** \brief Flags that preferably should be set in a memory type chosen for an allocation.
+
+ Set to 0 if no additional flags are preferred. \n
+ If `pool` is not null, this member is ignored. */
+ VkMemoryPropertyFlags preferredFlags;
+ /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation.
+
+ Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if
+ it meets other requirements specified by this structure, with no further
+ restrictions on memory type index. \n
+ If `pool` is not null, this member is ignored.
+ */
+ uint32_t memoryTypeBits;
+ /** \brief Pool that this allocation should be created in.
+
+ Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members:
+ `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored.
+ */
+ VmaPool VMA_NULLABLE pool;
+ /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData().
+
+ If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either
+ null or pointer to a null-terminated string. The string will be then copied to
+ internal buffer, so it doesn't need to be valid after allocation call.
+ */
+ void* VMA_NULLABLE pUserData;
+ /** \brief A floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations.
+
+ It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object
+ and this allocation ends up as dedicated or is explicitly forced as dedicated using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
+ Otherwise, it has the priority of a memory block where it is placed and this variable is ignored.
+ */
+ float priority;
+} VmaAllocationCreateInfo;
+
+/// Describes parameter of created #VmaPool.
+typedef struct VmaPoolCreateInfo
+{
+ /** \brief Vulkan memory type index to allocate this pool from.
+ */
+ uint32_t memoryTypeIndex;
+ /** \brief Use combination of #VmaPoolCreateFlagBits.
+ */
+ VmaPoolCreateFlags flags;
+ /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional.
+
+ Specify nonzero to set explicit, constant size of memory blocks used by this
+ pool.
+
+ Leave 0 to use default and let the library manage block sizes automatically.
+ Sizes of particular blocks may vary.
+ In this case, the pool will also support dedicated allocations.
+ */
+ VkDeviceSize blockSize;
+ /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty.
+
+ Set to 0 to have no preallocated blocks and allow the pool be completely empty.
+ */
+ size_t minBlockCount;
+ /** \brief Maximum number of blocks that can be allocated in this pool. Optional.
+
+ Set to 0 to use default, which is `SIZE_MAX`, which means no limit.
+
+ Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated
+ throughout whole lifetime of this pool.
+ */
+ size_t maxBlockCount;
+ /** \brief A floating-point value between 0 and 1, indicating the priority of the allocations in this pool relative to other memory allocations.
+
+ It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object.
+ Otherwise, this variable is ignored.
+ */
+ float priority;
+ /** \brief Additional minimum alignment to be used for all allocations created from this pool. Can be 0.
+
+ Leave 0 (default) not to impose any additional alignment. If not 0, it must be a power of two.
+ It can be useful in cases where alignment returned by Vulkan by functions like `vkGetBufferMemoryRequirements` is not enough,
+ e.g. when doing interop with OpenGL.
+ */
+ VkDeviceSize minAllocationAlignment;
+ /** \brief Additional `pNext` chain to be attached to `VkMemoryAllocateInfo` used for every allocation made by this pool. Optional.
+
+ Optional, can be null. If not null, it must point to a `pNext` chain of structures that can be attached to `VkMemoryAllocateInfo`.
+ It can be useful for special needs such as adding `VkExportMemoryAllocateInfoKHR`.
+ Structures pointed by this member must remain alive and unchanged for the whole lifetime of the custom pool.
+
+ Please note that some structures, e.g. `VkMemoryPriorityAllocateInfoEXT`, `VkMemoryDedicatedAllocateInfoKHR`,
+ can be attached automatically by this library when using other, more convenient of its features.
+ */
+ void* VMA_NULLABLE VMA_EXTENDS_VK_STRUCT(VkMemoryAllocateInfo) pMemoryAllocateNext;
+} VmaPoolCreateInfo;
+
+/** @} */
+
+/**
+\addtogroup group_alloc
+@{
+*/
+
+/**
+Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo().
+
+There is also an extended version of this structure that carries additional parameters: #VmaAllocationInfo2.
+*/
+typedef struct VmaAllocationInfo
+{
+ /** \brief Memory type index that this allocation was allocated from.
+
+ It never changes.
+ */
+ uint32_t memoryType;
+ /** \brief Handle to Vulkan memory object.
+
+ Same memory object can be shared by multiple allocations.
+
+ It can change after the allocation is moved during \ref defragmentation.
+ */
+ VkDeviceMemory VMA_NULLABLE_NON_DISPATCHABLE deviceMemory;
+ /** \brief Offset in `VkDeviceMemory` object to the beginning of this allocation, in bytes. `(deviceMemory, offset)` pair is unique to this allocation.
+
+ You usually don't need to use this offset. If you create a buffer or an image together with the allocation using e.g. function
+ vmaCreateBuffer(), vmaCreateImage(), functions that operate on these resources refer to the beginning of the buffer or image,
+ not entire device memory block. Functions like vmaMapMemory(), vmaBindBufferMemory() also refer to the beginning of the allocation
+ and apply this offset automatically.
+
+ It can change after the allocation is moved during \ref defragmentation.
+ */
+ VkDeviceSize offset;
+ /** \brief Size of this allocation, in bytes.
+
+ It never changes.
+
+ \note Allocation size returned in this variable may be greater than the size
+ requested for the resource e.g. as `VkBufferCreateInfo::size`. Whole size of the
+ allocation is accessible for operations on memory e.g. using a pointer after
+ mapping with vmaMapMemory(), but operations on the resource e.g. using
+ `vkCmdCopyBuffer` must be limited to the size of the resource.
+ */
+ VkDeviceSize size;
+ /** \brief Pointer to the beginning of this allocation as mapped data.
+
+ If the allocation hasn't been mapped using vmaMapMemory() and hasn't been
+ created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value is null.
+
+ It can change after call to vmaMapMemory(), vmaUnmapMemory().
+ It can also change after the allocation is moved during \ref defragmentation.
+ */
+ void* VMA_NULLABLE pMappedData;
+ /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData().
+
+ It can change after call to vmaSetAllocationUserData() for this allocation.
+ */
+ void* VMA_NULLABLE pUserData;
+ /** \brief Custom allocation name that was set with vmaSetAllocationName().
+
+ It can change after call to vmaSetAllocationName() for this allocation.
+
+ Another way to set custom name is to pass it in VmaAllocationCreateInfo::pUserData with
+ additional flag #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT set [DEPRECATED].
+ */
+ const char* VMA_NULLABLE pName;
+} VmaAllocationInfo;
+
+/// Extended parameters of a #VmaAllocation object that can be retrieved using function vmaGetAllocationInfo2().
+typedef struct VmaAllocationInfo2
+{
+ /** \brief Basic parameters of the allocation.
+
+ If you need only these, you can use function vmaGetAllocationInfo() and structure #VmaAllocationInfo instead.
+ */
+ VmaAllocationInfo allocationInfo;
+ /** \brief Size of the `VkDeviceMemory` block that the allocation belongs to.
+
+ In case of an allocation with dedicated memory, it will be equal to `allocationInfo.size`.
+ */
+ VkDeviceSize blockSize;
+ /** \brief `VK_TRUE` if the allocation has dedicated memory, `VK_FALSE` if it was placed as part of a larger memory block.
+
+ When `VK_TRUE`, it also means `VkMemoryDedicatedAllocateInfo` was used when creating the allocation
+ (if VK_KHR_dedicated_allocation extension or Vulkan version >= 1.1 is enabled).
+ */
+ VkBool32 dedicatedMemory;
+} VmaAllocationInfo2;
+
+/** Callback function called during vmaBeginDefragmentation() to check custom criterion about ending current defragmentation pass.
+
+Should return true if the defragmentation needs to stop current pass.
+*/
+typedef VkBool32 (VKAPI_PTR* PFN_vmaCheckDefragmentationBreakFunction)(void* VMA_NULLABLE pUserData);
+
+/** \brief Parameters for defragmentation.
+
+To be used with function vmaBeginDefragmentation().
+*/
+typedef struct VmaDefragmentationInfo
+{
+ /// \brief Use combination of #VmaDefragmentationFlagBits.
+ VmaDefragmentationFlags flags;
+ /** \brief Custom pool to be defragmented.
+
+ If null then default pools will undergo defragmentation process.
+ */
+ VmaPool VMA_NULLABLE pool;
+ /** \brief Maximum numbers of bytes that can be copied during single pass, while moving allocations to different places.
+
+ `0` means no limit.
+ */
+ VkDeviceSize maxBytesPerPass;
+ /** \brief Maximum number of allocations that can be moved during single pass to a different place.
+
+ `0` means no limit.
+ */
+ uint32_t maxAllocationsPerPass;
+ /** \brief Optional custom callback for stopping vmaBeginDefragmentation().
+
+ Have to return true for breaking current defragmentation pass.
+ */
+ PFN_vmaCheckDefragmentationBreakFunction VMA_NULLABLE pfnBreakCallback;
+ /// \brief Optional data to pass to custom callback for stopping pass of defragmentation.
+ void* VMA_NULLABLE pBreakCallbackUserData;
+} VmaDefragmentationInfo;
+
+/// Single move of an allocation to be done for defragmentation.
+typedef struct VmaDefragmentationMove
+{
+ /// Operation to be performed on the allocation by vmaEndDefragmentationPass(). Default value is #VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY. You can modify it.
+ VmaDefragmentationMoveOperation operation;
+ /// Allocation that should be moved.
+ VmaAllocation VMA_NOT_NULL srcAllocation;
+ /** \brief Temporary allocation pointing to destination memory that will replace `srcAllocation`.
+
+ \warning Do not store this allocation in your data structures! It exists only temporarily, for the duration of the defragmentation pass,
+ to be used for binding new buffer/image to the destination memory using e.g. vmaBindBufferMemory().
+ vmaEndDefragmentationPass() will destroy it and make `srcAllocation` point to this memory.
+ */
+ VmaAllocation VMA_NOT_NULL dstTmpAllocation;
+} VmaDefragmentationMove;
+
+/** \brief Parameters for incremental defragmentation steps.
+
+To be used with function vmaBeginDefragmentationPass().
+*/
+typedef struct VmaDefragmentationPassMoveInfo
+{
+ /// Number of elements in the `pMoves` array.
+ uint32_t moveCount;
+ /** \brief Array of moves to be performed by the user in the current defragmentation pass.
+
+ Pointer to an array of `moveCount` elements, owned by VMA, created in vmaBeginDefragmentationPass(), destroyed in vmaEndDefragmentationPass().
+
+ For each element, you should:
+
+ 1. Create a new buffer/image in the place pointed by VmaDefragmentationMove::dstMemory + VmaDefragmentationMove::dstOffset.
+ 2. Copy data from the VmaDefragmentationMove::srcAllocation e.g. using `vkCmdCopyBuffer`, `vkCmdCopyImage`.
+ 3. Make sure these commands finished executing on the GPU.
+ 4. Destroy the old buffer/image.
+
+ Only then you can finish defragmentation pass by calling vmaEndDefragmentationPass().
+ After this call, the allocation will point to the new place in memory.
+
+ Alternatively, if you cannot move specific allocation, you can set VmaDefragmentationMove::operation to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE.
+
+ Alternatively, if you decide you want to completely remove the allocation:
+
+ 1. Destroy its buffer/image.
+ 2. Set VmaDefragmentationMove::operation to #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY.
+
+ Then, after vmaEndDefragmentationPass() the allocation will be freed.
+ */
+ VmaDefragmentationMove* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(moveCount) pMoves;
+} VmaDefragmentationPassMoveInfo;
+
+/// Statistics returned for defragmentation process in function vmaEndDefragmentation().
+typedef struct VmaDefragmentationStats
+{
+ /// Total number of bytes that have been copied while moving allocations to different places.
+ VkDeviceSize bytesMoved;
+ /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects.
+ VkDeviceSize bytesFreed;
+ /// Number of allocations that have been moved to different places.
+ uint32_t allocationsMoved;
+ /// Number of empty `VkDeviceMemory` objects that have been released to the system.
+ uint32_t deviceMemoryBlocksFreed;
+} VmaDefragmentationStats;
+
+/** @} */
+
+/**
+\addtogroup group_virtual
+@{
+*/
+
+/// Parameters of created #VmaVirtualBlock object to be passed to vmaCreateVirtualBlock().
+typedef struct VmaVirtualBlockCreateInfo
+{
+ /** \brief Total size of the virtual block.
+
+ Sizes can be expressed in bytes or any units you want as long as you are consistent in using them.
+ For example, if you allocate from some array of structures, 1 can mean single instance of entire structure.
+ */
+ VkDeviceSize size;
+
+ /** \brief Use combination of #VmaVirtualBlockCreateFlagBits.
+ */
+ VmaVirtualBlockCreateFlags flags;
+
+ /** \brief Custom CPU memory allocation callbacks. Optional.
+
+ Optional, can be null. When specified, they will be used for all CPU-side memory allocations.
+ */
+ const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks;
+} VmaVirtualBlockCreateInfo;
+
+/// Parameters of created virtual allocation to be passed to vmaVirtualAllocate().
+typedef struct VmaVirtualAllocationCreateInfo
+{
+ /** \brief Size of the allocation.
+
+ Cannot be zero.
+ */
+ VkDeviceSize size;
+ /** \brief Required alignment of the allocation. Optional.
+
+ Must be power of two. Special value 0 has the same meaning as 1 - means no special alignment is required, so allocation can start at any offset.
+ */
+ VkDeviceSize alignment;
+ /** \brief Use combination of #VmaVirtualAllocationCreateFlagBits.
+ */
+ VmaVirtualAllocationCreateFlags flags;
+ /** \brief Custom pointer to be associated with the allocation. Optional.
+
+ It can be any value and can be used for user-defined purposes. It can be fetched or changed later.
+ */
+ void* VMA_NULLABLE pUserData;
+} VmaVirtualAllocationCreateInfo;
+
+/// Parameters of an existing virtual allocation, returned by vmaGetVirtualAllocationInfo().
+typedef struct VmaVirtualAllocationInfo
+{
+ /** \brief Offset of the allocation.
+
+ Offset at which the allocation was made.
+ */
+ VkDeviceSize offset;
+ /** \brief Size of the allocation.
+
+ Same value as passed in VmaVirtualAllocationCreateInfo::size.
+ */
+ VkDeviceSize size;
+ /** \brief Custom pointer associated with the allocation.
+
+ Same value as passed in VmaVirtualAllocationCreateInfo::pUserData or to vmaSetVirtualAllocationUserData().
+ */
+ void* VMA_NULLABLE pUserData;
+} VmaVirtualAllocationInfo;
+
+/** @} */
+
+#endif // _VMA_DATA_TYPES_DECLARATIONS
+
+#ifndef _VMA_FUNCTION_HEADERS
+
+/**
+\addtogroup group_init
+@{
+*/
+
+/// Creates #VmaAllocator object.
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator(
+ const VmaAllocatorCreateInfo* VMA_NOT_NULL pCreateInfo,
+ VmaAllocator VMA_NULLABLE* VMA_NOT_NULL pAllocator);
+
+/// Destroys allocator object.
+VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator(
+ VmaAllocator VMA_NULLABLE allocator);
+
+/** \brief Returns information about existing #VmaAllocator object - handle to Vulkan device etc.
+
+It might be useful if you want to keep just the #VmaAllocator handle and fetch other required handles to
+`VkPhysicalDevice`, `VkDevice` etc. every time using this function.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocatorInfo* VMA_NOT_NULL pAllocatorInfo);
+
+/**
+PhysicalDeviceProperties are fetched from physicalDevice by the allocator.
+You can access it here, without fetching it again on your own.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties(
+ VmaAllocator VMA_NOT_NULL allocator,
+ const VkPhysicalDeviceProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceProperties);
+
+/**
+PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator.
+You can access it here, without fetching it again on your own.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties(
+ VmaAllocator VMA_NOT_NULL allocator,
+ const VkPhysicalDeviceMemoryProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceMemoryProperties);
+
+/**
+\brief Given Memory Type Index, returns Property Flags of this memory type.
+
+This is just a convenience function. Same information can be obtained using
+vmaGetMemoryProperties().
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties(
+ VmaAllocator VMA_NOT_NULL allocator,
+ uint32_t memoryTypeIndex,
+ VkMemoryPropertyFlags* VMA_NOT_NULL pFlags);
+
+/** \brief Sets index of the current frame.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex(
+ VmaAllocator VMA_NOT_NULL allocator,
+ uint32_t frameIndex);
+
+/** @} */
+
+/**
+\addtogroup group_stats
+@{
+*/
+
+/** \brief Retrieves statistics from current state of the Allocator.
+
+This function is called "calculate" not "get" because it has to traverse all
+internal data structures, so it may be quite slow. Use it for debugging purposes.
+For faster but more brief statistics suitable to be called every frame or every allocation,
+use vmaGetHeapBudgets().
+
+Note that when using allocator from multiple threads, returned information may immediately
+become outdated.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStatistics(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaTotalStatistics* VMA_NOT_NULL pStats);
+
+/** \brief Retrieves information about current memory usage and budget for all memory heaps.
+
+\param allocator
+\param[out] pBudgets Must point to array with number of elements at least equal to number of memory heaps in physical device used.
+
+This function is called "get" not "calculate" because it is very fast, suitable to be called
+every frame or every allocation. For more detailed statistics use vmaCalculateStatistics().
+
+Note that when using allocator from multiple threads, returned information may immediately
+become outdated.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaBudget* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pBudgets);
+
+/** @} */
+
+/**
+\addtogroup group_alloc
+@{
+*/
+
+/**
+\brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo.
+
+This algorithm tries to find a memory type that:
+
+- Is allowed by memoryTypeBits.
+- Contains all the flags from pAllocationCreateInfo->requiredFlags.
+- Matches intended usage.
+- Has as many flags from pAllocationCreateInfo->preferredFlags as possible.
+
+\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result
+from this function or any other allocating function probably means that your
+device doesn't support any memory type with requested features for the specific
+type of resource you want to use it for. Please check parameters of your
+resource, like image layout (OPTIMAL versus LINEAR) or mip level count.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex(
+ VmaAllocator VMA_NOT_NULL allocator,
+ uint32_t memoryTypeBits,
+ const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
+ uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
+
+/**
+\brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo.
+
+It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
+It internally creates a temporary, dummy buffer that never has memory bound.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo(
+ VmaAllocator VMA_NOT_NULL allocator,
+ const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
+ const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
+ uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
+
+/**
+\brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo.
+
+It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
+It internally creates a temporary, dummy image that never has memory bound.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo(
+ VmaAllocator VMA_NOT_NULL allocator,
+ const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
+ const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
+ uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
+
+/** \brief Allocates Vulkan device memory and creates #VmaPool object.
+
+\param allocator Allocator object.
+\param pCreateInfo Parameters of pool to create.
+\param[out] pPool Handle to created pool.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool(
+ VmaAllocator VMA_NOT_NULL allocator,
+ const VmaPoolCreateInfo* VMA_NOT_NULL pCreateInfo,
+ VmaPool VMA_NULLABLE* VMA_NOT_NULL pPool);
+
+/** \brief Destroys #VmaPool object and frees Vulkan device memory.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaPool VMA_NULLABLE pool);
+
+/** @} */
+
+/**
+\addtogroup group_stats
+@{
+*/
+
+/** \brief Retrieves statistics of existing #VmaPool object.
+
+\param allocator Allocator object.
+\param pool Pool object.
+\param[out] pPoolStats Statistics of specified pool.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStatistics(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaPool VMA_NOT_NULL pool,
+ VmaStatistics* VMA_NOT_NULL pPoolStats);
+
+/** \brief Retrieves detailed statistics of existing #VmaPool object.
+
+\param allocator Allocator object.
+\param pool Pool object.
+\param[out] pPoolStats Statistics of specified pool.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaCalculatePoolStatistics(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaPool VMA_NOT_NULL pool,
+ VmaDetailedStatistics* VMA_NOT_NULL pPoolStats);
+
+/** @} */
+
+/**
+\addtogroup group_alloc
+@{
+*/
+
+/** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions.
+
+Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
+`VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is
+`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
+
+Possible return values:
+
+- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool.
+- `VK_SUCCESS` - corruption detection has been performed and succeeded.
+- `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations.
+ `VMA_ASSERT` is also fired in that case.
+- Other value: Error returned by Vulkan, e.g. memory mapping failure.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaPool VMA_NOT_NULL pool);
+
+/** \brief Retrieves name of a custom pool.
+
+After the call `ppName` is either null or points to an internally-owned null-terminated string
+containing name of the pool that was previously set. The pointer becomes invalid when the pool is
+destroyed or its name is changed using vmaSetPoolName().
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaPool VMA_NOT_NULL pool,
+ const char* VMA_NULLABLE* VMA_NOT_NULL ppName);
+
+/** \brief Sets name of a custom pool.
+
+`pName` can be either null or pointer to a null-terminated string with new name for the pool.
+Function makes internal copy of the string, so it can be changed or freed immediately after this call.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaPool VMA_NOT_NULL pool,
+ const char* VMA_NULLABLE pName);
+
+/** \brief General purpose memory allocation.
+
+\param allocator
+\param pVkMemoryRequirements
+\param pCreateInfo
+\param[out] pAllocation Handle to allocated memory.
+\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
+
+You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
+
+It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(),
+vmaCreateBuffer(), vmaCreateImage() instead whenever possible.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory(
+ VmaAllocator VMA_NOT_NULL allocator,
+ const VkMemoryRequirements* VMA_NOT_NULL pVkMemoryRequirements,
+ const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
+ VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
+ VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
+
+/** \brief General purpose memory allocation for multiple allocation objects at once.
+
+\param allocator Allocator object.
+\param pVkMemoryRequirements Memory requirements for each allocation.
+\param pCreateInfo Creation parameters for each allocation.
+\param allocationCount Number of allocations to make.
+\param[out] pAllocations Pointer to array that will be filled with handles to created allocations.
+\param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations.
+
+You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
+
+Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding.
+It is just a general purpose allocation function able to make multiple allocations at once.
+It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times.
+
+All allocations are made using same parameters. All of them are created out of the same memory pool and type.
+If any allocation fails, all allocations already made within this function call are also freed, so that when
+returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages(
+ VmaAllocator VMA_NOT_NULL allocator,
+ const VkMemoryRequirements* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pVkMemoryRequirements,
+ const VmaAllocationCreateInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pCreateInfo,
+ size_t allocationCount,
+ VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations,
+ VmaAllocationInfo* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationInfo);
+
+/** \brief Allocates memory suitable for given `VkBuffer`.
+
+\param allocator
+\param buffer
+\param pCreateInfo
+\param[out] pAllocation Handle to allocated memory.
+\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
+
+It only creates #VmaAllocation. To bind the memory to the buffer, use vmaBindBufferMemory().
+
+This is a special-purpose function. In most cases you should use vmaCreateBuffer().
+
+You must free the allocation using vmaFreeMemory() when no longer needed.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer,
+ const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
+ VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
+ VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
+
+/** \brief Allocates memory suitable for given `VkImage`.
+
+\param allocator
+\param image
+\param pCreateInfo
+\param[out] pAllocation Handle to allocated memory.
+\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
+
+It only creates #VmaAllocation. To bind the memory to the buffer, use vmaBindImageMemory().
+
+This is a special-purpose function. In most cases you should use vmaCreateImage().
+
+You must free the allocation using vmaFreeMemory() when no longer needed.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VkImage VMA_NOT_NULL_NON_DISPATCHABLE image,
+ const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
+ VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
+ VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
+
+/** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage().
+
+Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory(
+ VmaAllocator VMA_NOT_NULL allocator,
+ const VmaAllocation VMA_NULLABLE allocation);
+
+/** \brief Frees memory and destroys multiple allocations.
+
+Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding.
+It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(),
+vmaAllocateMemoryPages() and other functions.
+It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times.
+
+Allocations in `pAllocations` array can come from any memory pools and types.
+Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages(
+ VmaAllocator VMA_NOT_NULL allocator,
+ size_t allocationCount,
+ const VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations);
+
+/** \brief Returns current information about specified allocation.
+
+Current parameters of given allocation are returned in `pAllocationInfo`.
+
+Although this function doesn't lock any mutex, so it should be quite efficient,
+you should avoid calling it too often.
+You can retrieve same VmaAllocationInfo structure while creating your resource, from function
+vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change
+(e.g. due to defragmentation).
+
+There is also a new function vmaGetAllocationInfo2() that offers extended information
+about the allocation, returned using new structure #VmaAllocationInfo2.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ VmaAllocationInfo* VMA_NOT_NULL pAllocationInfo);
+
+/** \brief Returns extended information about specified allocation.
+
+Current parameters of given allocation are returned in `pAllocationInfo`.
+Extended parameters in structure #VmaAllocationInfo2 include memory block size
+and a flag telling whether the allocation has dedicated memory.
+It can be useful e.g. for interop with OpenGL.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo2(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ VmaAllocationInfo2* VMA_NOT_NULL pAllocationInfo);
+
+/** \brief Sets pUserData in given allocation to new value.
+
+The value of pointer `pUserData` is copied to allocation's `pUserData`.
+It is opaque, so you can use it however you want - e.g.
+as a pointer, ordinal number or some handle to you own data.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ void* VMA_NULLABLE pUserData);
+
+/** \brief Sets pName in given allocation to new value.
+
+`pName` must be either null, or pointer to a null-terminated string. The function
+makes local copy of the string and sets it as allocation's `pName`. String
+passed as pName doesn't need to be valid for whole lifetime of the allocation -
+you can free it after this call. String previously pointed by allocation's
+`pName` is freed from memory.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationName(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ const char* VMA_NULLABLE pName);
+
+/**
+\brief Given an allocation, returns Property Flags of its memory type.
+
+This is just a convenience function. Same information can be obtained using
+vmaGetAllocationInfo() + vmaGetMemoryProperties().
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ VkMemoryPropertyFlags* VMA_NOT_NULL pFlags);
+
+/** \brief Maps memory represented by given allocation and returns pointer to it.
+
+Maps memory represented by given allocation to make it accessible to CPU code.
+When succeeded, `*ppData` contains pointer to first byte of this memory.
+
+\warning
+If the allocation is part of a bigger `VkDeviceMemory` block, returned pointer is
+correctly offsetted to the beginning of region assigned to this particular allocation.
+Unlike the result of `vkMapMemory`, it points to the allocation, not to the beginning of the whole block.
+You should not add VmaAllocationInfo::offset to it!
+
+Mapping is internally reference-counted and synchronized, so despite raw Vulkan
+function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory`
+multiple times simultaneously, it is safe to call this function on allocations
+assigned to the same memory block. Actual Vulkan memory will be mapped on first
+mapping and unmapped on last unmapping.
+
+If the function succeeded, you must call vmaUnmapMemory() to unmap the
+allocation when mapping is no longer needed or before freeing the allocation, at
+the latest.
+
+It also safe to call this function multiple times on the same allocation. You
+must call vmaUnmapMemory() same number of times as you called vmaMapMemory().
+
+It is also safe to call this function on allocation created with
+#VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time.
+You must still call vmaUnmapMemory() same number of times as you called
+vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the
+"0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag.
+
+This function fails when used on allocation made in memory type that is not
+`HOST_VISIBLE`.
+
+This function doesn't automatically flush or invalidate caches.
+If the allocation is made from a memory types that is not `HOST_COHERENT`,
+you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ void* VMA_NULLABLE* VMA_NOT_NULL ppData);
+
+/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory().
+
+For details, see description of vmaMapMemory().
+
+This function doesn't automatically flush or invalidate caches.
+If the allocation is made from a memory types that is not `HOST_COHERENT`,
+you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation);
+
+/** \brief Flushes memory of given allocation.
+
+Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation.
+It needs to be called after writing to a mapped memory for memory types that are not `HOST_COHERENT`.
+Unmap operation doesn't do that automatically.
+
+- `offset` must be relative to the beginning of allocation.
+- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
+- `offset` and `size` don't have to be aligned.
+ They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
+- If `size` is 0, this call is ignored.
+- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
+ this call is ignored.
+
+Warning! `offset` and `size` are relative to the contents of given `allocation`.
+If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
+Do not pass allocation's offset as `offset`!!!
+
+This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is
+called, otherwise `VK_SUCCESS`.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ VkDeviceSize offset,
+ VkDeviceSize size);
+
+/** \brief Invalidates memory of given allocation.
+
+Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation.
+It needs to be called before reading from a mapped memory for memory types that are not `HOST_COHERENT`.
+Map operation doesn't do that automatically.
+
+- `offset` must be relative to the beginning of allocation.
+- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
+- `offset` and `size` don't have to be aligned.
+ They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
+- If `size` is 0, this call is ignored.
+- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
+ this call is ignored.
+
+Warning! `offset` and `size` are relative to the contents of given `allocation`.
+If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
+Do not pass allocation's offset as `offset`!!!
+
+This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if
+it is called, otherwise `VK_SUCCESS`.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ VkDeviceSize offset,
+ VkDeviceSize size);
+
+/** \brief Flushes memory of given set of allocations.
+
+Calls `vkFlushMappedMemoryRanges()` for memory associated with given ranges of given allocations.
+For more information, see documentation of vmaFlushAllocation().
+
+\param allocator
+\param allocationCount
+\param allocations
+\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all offsets are zero.
+\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations.
+
+This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is
+called, otherwise `VK_SUCCESS`.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations(
+ VmaAllocator VMA_NOT_NULL allocator,
+ uint32_t allocationCount,
+ const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations,
+ const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets,
+ const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes);
+
+/** \brief Invalidates memory of given set of allocations.
+
+Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given ranges of given allocations.
+For more information, see documentation of vmaInvalidateAllocation().
+
+\param allocator
+\param allocationCount
+\param allocations
+\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all offsets are zero.
+\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations.
+
+This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if it is
+called, otherwise `VK_SUCCESS`.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations(
+ VmaAllocator VMA_NOT_NULL allocator,
+ uint32_t allocationCount,
+ const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations,
+ const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets,
+ const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes);
+
+/** \brief Maps the allocation temporarily if needed, copies data from specified host pointer to it, and flushes the memory from the host caches if needed.
+
+\param allocator
+\param pSrcHostPointer Pointer to the host data that become source of the copy.
+\param dstAllocation Handle to the allocation that becomes destination of the copy.
+\param dstAllocationLocalOffset Offset within `dstAllocation` where to write copied data, in bytes.
+\param size Number of bytes to copy.
+
+This is a convenience function that allows to copy data from a host pointer to an allocation easily.
+Same behavior can be achieved by calling vmaMapMemory(), `memcpy()`, vmaUnmapMemory(), vmaFlushAllocation().
+
+This function can be called only for allocations created in a memory type that has `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag.
+It can be ensured e.g. by using #VMA_MEMORY_USAGE_AUTO and #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or
+#VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
+Otherwise, the function will fail and generate a Validation Layers error.
+
+`dstAllocationLocalOffset` is relative to the contents of given `dstAllocation`.
+If you mean whole allocation, you should pass 0.
+Do not pass allocation's offset within device memory block this parameter!
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCopyMemoryToAllocation(
+ VmaAllocator VMA_NOT_NULL allocator,
+ const void* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(size) pSrcHostPointer,
+ VmaAllocation VMA_NOT_NULL dstAllocation,
+ VkDeviceSize dstAllocationLocalOffset,
+ VkDeviceSize size);
+
+/** \brief Invalidates memory in the host caches if needed, maps the allocation temporarily if needed, and copies data from it to a specified host pointer.
+
+\param allocator
+\param srcAllocation Handle to the allocation that becomes source of the copy.
+\param srcAllocationLocalOffset Offset within `srcAllocation` where to read copied data, in bytes.
+\param pDstHostPointer Pointer to the host memory that become destination of the copy.
+\param size Number of bytes to copy.
+
+This is a convenience function that allows to copy data from an allocation to a host pointer easily.
+Same behavior can be achieved by calling vmaInvalidateAllocation(), vmaMapMemory(), `memcpy()`, vmaUnmapMemory().
+
+This function should be called only for allocations created in a memory type that has `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`
+and `VK_MEMORY_PROPERTY_HOST_CACHED_BIT` flag.
+It can be ensured e.g. by using #VMA_MEMORY_USAGE_AUTO and #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
+Otherwise, the function may fail and generate a Validation Layers error.
+It may also work very slowly when reading from an uncached memory.
+
+`srcAllocationLocalOffset` is relative to the contents of given `srcAllocation`.
+If you mean whole allocation, you should pass 0.
+Do not pass allocation's offset within device memory block as this parameter!
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCopyAllocationToMemory(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL srcAllocation,
+ VkDeviceSize srcAllocationLocalOffset,
+ void* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(size) pDstHostPointer,
+ VkDeviceSize size);
+
+/** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions.
+
+\param allocator
+\param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked.
+
+Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
+`VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are
+`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
+
+Possible return values:
+
+- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types.
+- `VK_SUCCESS` - corruption detection has been performed and succeeded.
+- `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations.
+ `VMA_ASSERT` is also fired in that case.
+- Other value: Error returned by Vulkan, e.g. memory mapping failure.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(
+ VmaAllocator VMA_NOT_NULL allocator,
+ uint32_t memoryTypeBits);
+
+/** \brief Begins defragmentation process.
+
+\param allocator Allocator object.
+\param pInfo Structure filled with parameters of defragmentation.
+\param[out] pContext Context object that must be passed to vmaEndDefragmentation() to finish defragmentation.
+\returns
+- `VK_SUCCESS` if defragmentation can begin.
+- `VK_ERROR_FEATURE_NOT_PRESENT` if defragmentation is not supported.
+
+For more information about defragmentation, see documentation chapter:
+[Defragmentation](@ref defragmentation).
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentation(
+ VmaAllocator VMA_NOT_NULL allocator,
+ const VmaDefragmentationInfo* VMA_NOT_NULL pInfo,
+ VmaDefragmentationContext VMA_NULLABLE* VMA_NOT_NULL pContext);
+
+/** \brief Ends defragmentation process.
+
+\param allocator Allocator object.
+\param context Context object that has been created by vmaBeginDefragmentation().
+\param[out] pStats Optional stats for the defragmentation. Can be null.
+
+Use this function to finish defragmentation started by vmaBeginDefragmentation().
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaEndDefragmentation(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaDefragmentationContext VMA_NOT_NULL context,
+ VmaDefragmentationStats* VMA_NULLABLE pStats);
+
+/** \brief Starts single defragmentation pass.
+
+\param allocator Allocator object.
+\param context Context object that has been created by vmaBeginDefragmentation().
+\param[out] pPassInfo Computed information for current pass.
+\returns
+- `VK_SUCCESS` if no more moves are possible. Then you can omit call to vmaEndDefragmentationPass() and simply end whole defragmentation.
+- `VK_INCOMPLETE` if there are pending moves returned in `pPassInfo`. You need to perform them, call vmaEndDefragmentationPass(),
+ and then preferably try another pass with vmaBeginDefragmentationPass().
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaDefragmentationContext VMA_NOT_NULL context,
+ VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo);
+
+/** \brief Ends single defragmentation pass.
+
+\param allocator Allocator object.
+\param context Context object that has been created by vmaBeginDefragmentation().
+\param pPassInfo Computed information for current pass filled by vmaBeginDefragmentationPass() and possibly modified by you.
+
+Returns `VK_SUCCESS` if no more moves are possible or `VK_INCOMPLETE` if more defragmentations are possible.
+
+Ends incremental defragmentation pass and commits all defragmentation moves from `pPassInfo`.
+After this call:
+
+- Allocations at `pPassInfo[i].srcAllocation` that had `pPassInfo[i].operation ==` #VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY
+ (which is the default) will be pointing to the new destination place.
+- Allocation at `pPassInfo[i].srcAllocation` that had `pPassInfo[i].operation ==` #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY
+ will be freed.
+
+If no more moves are possible you can end whole defragmentation.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaDefragmentationContext VMA_NOT_NULL context,
+ VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo);
+
+/** \brief Binds buffer to allocation.
+
+Binds specified buffer to region of memory represented by specified allocation.
+Gets `VkDeviceMemory` handle and offset from the allocation.
+If you want to create a buffer, allocate memory for it and bind them together separately,
+you should use this function for binding instead of standard `vkBindBufferMemory()`,
+because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
+allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
+(which is illegal in Vulkan).
+
+It is recommended to use function vmaCreateBuffer() instead of this one.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer);
+
+/** \brief Binds buffer to allocation with additional parameters.
+
+\param allocator
+\param allocation
+\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0.
+\param buffer
+\param pNext A chain of structures to be attached to `VkBindBufferMemoryInfoKHR` structure used internally. Normally it should be null.
+
+This function is similar to vmaBindBufferMemory(), but it provides additional parameters.
+
+If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag
+or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ VkDeviceSize allocationLocalOffset,
+ VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer,
+ const void* VMA_NULLABLE VMA_EXTENDS_VK_STRUCT(VkBindBufferMemoryInfoKHR) pNext);
+
+/** \brief Binds image to allocation.
+
+Binds specified image to region of memory represented by specified allocation.
+Gets `VkDeviceMemory` handle and offset from the allocation.
+If you want to create an image, allocate memory for it and bind them together separately,
+you should use this function for binding instead of standard `vkBindImageMemory()`,
+because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
+allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
+(which is illegal in Vulkan).
+
+It is recommended to use function vmaCreateImage() instead of this one.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ VkImage VMA_NOT_NULL_NON_DISPATCHABLE image);
+
+/** \brief Binds image to allocation with additional parameters.
+
+\param allocator
+\param allocation
+\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0.
+\param image
+\param pNext A chain of structures to be attached to `VkBindImageMemoryInfoKHR` structure used internally. Normally it should be null.
+
+This function is similar to vmaBindImageMemory(), but it provides additional parameters.
+
+If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag
+or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ VkDeviceSize allocationLocalOffset,
+ VkImage VMA_NOT_NULL_NON_DISPATCHABLE image,
+ const void* VMA_NULLABLE VMA_EXTENDS_VK_STRUCT(VkBindImageMemoryInfoKHR) pNext);
+
+/** \brief Creates a new `VkBuffer`, allocates and binds memory for it.
+
+\param allocator
+\param pBufferCreateInfo
+\param pAllocationCreateInfo
+\param[out] pBuffer Buffer that was created.
+\param[out] pAllocation Allocation that was created.
+\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
+
+This function automatically:
+
+-# Creates buffer.
+-# Allocates appropriate memory for it.
+-# Binds the buffer with the memory.
+
+If any of these operations fail, buffer and allocation are not created,
+returned value is negative error code, `*pBuffer` and `*pAllocation` are null.
+
+If the function succeeded, you must destroy both buffer and allocation when you
+no longer need them using either convenience function vmaDestroyBuffer() or
+separately, using `vkDestroyBuffer()` and vmaFreeMemory().
+
+If #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used,
+VK_KHR_dedicated_allocation extension is used internally to query driver whether
+it requires or prefers the new buffer to have dedicated allocation. If yes,
+and if dedicated allocation is possible
+(#VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated
+allocation for this buffer, just like when using
+#VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
+
+\note This function creates a new `VkBuffer`. Sub-allocation of parts of one large buffer,
+although recommended as a good practice, is out of scope of this library and could be implemented
+by the user as a higher-level logic on top of VMA.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer(
+ VmaAllocator VMA_NOT_NULL allocator,
+ const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
+ const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
+ VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer,
+ VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
+ VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
+
+/** \brief Creates a buffer with additional minimum alignment.
+
+Similar to vmaCreateBuffer() but provides additional parameter `minAlignment` which allows to specify custom,
+minimum alignment to be used when placing the buffer inside a larger memory block, which may be needed e.g.
+for interop with OpenGL.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment(
+ VmaAllocator VMA_NOT_NULL allocator,
+ const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
+ const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
+ VkDeviceSize minAlignment,
+ VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer,
+ VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
+ VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
+
+/** \brief Creates a new `VkBuffer`, binds already created memory for it.
+
+\param allocator
+\param allocation Allocation that provides memory to be used for binding new buffer to it.
+\param pBufferCreateInfo
+\param[out] pBuffer Buffer that was created.
+
+This function automatically:
+
+-# Creates buffer.
+-# Binds the buffer with the supplied memory.
+
+If any of these operations fail, buffer is not created,
+returned value is negative error code and `*pBuffer` is null.
+
+If the function succeeded, you must destroy the buffer when you
+no longer need it using `vkDestroyBuffer()`. If you want to also destroy the corresponding
+allocation you can use convenience function vmaDestroyBuffer().
+
+\note There is a new version of this function augmented with parameter `allocationLocalOffset` - see vmaCreateAliasingBuffer2().
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
+ VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer);
+
+/** \brief Creates a new `VkBuffer`, binds already created memory for it.
+
+\param allocator
+\param allocation Allocation that provides memory to be used for binding new buffer to it.
+\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the allocation. Normally it should be 0.
+\param pBufferCreateInfo
+\param[out] pBuffer Buffer that was created.
+
+This function automatically:
+
+-# Creates buffer.
+-# Binds the buffer with the supplied memory.
+
+If any of these operations fail, buffer is not created,
+returned value is negative error code and `*pBuffer` is null.
+
+If the function succeeded, you must destroy the buffer when you
+no longer need it using `vkDestroyBuffer()`. If you want to also destroy the corresponding
+allocation you can use convenience function vmaDestroyBuffer().
+
+\note This is a new version of the function augmented with parameter `allocationLocalOffset`.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer2(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ VkDeviceSize allocationLocalOffset,
+ const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
+ VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer);
+
+/** \brief Destroys Vulkan buffer and frees allocated memory.
+
+This is just a convenience function equivalent to:
+
+\code
+vkDestroyBuffer(device, buffer, allocationCallbacks);
+vmaFreeMemory(allocator, allocation);
+\endcode
+
+It is safe to pass null as buffer and/or allocation.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VkBuffer VMA_NULLABLE_NON_DISPATCHABLE buffer,
+ VmaAllocation VMA_NULLABLE allocation);
+
+/// Function similar to vmaCreateBuffer().
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage(
+ VmaAllocator VMA_NOT_NULL allocator,
+ const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
+ const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
+ VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage,
+ VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
+ VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
+
+/// Function similar to vmaCreateAliasingBuffer() but for images.
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
+ VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage);
+
+/// Function similar to vmaCreateAliasingBuffer2() but for images.
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage2(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ VkDeviceSize allocationLocalOffset,
+ const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
+ VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage);
+
+/** \brief Destroys Vulkan image and frees allocated memory.
+
+This is just a convenience function equivalent to:
+
+\code
+vkDestroyImage(device, image, allocationCallbacks);
+vmaFreeMemory(allocator, allocation);
+\endcode
+
+It is safe to pass null as image and/or allocation.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VkImage VMA_NULLABLE_NON_DISPATCHABLE image,
+ VmaAllocation VMA_NULLABLE allocation);
+
+/** @} */
+
+/**
+\addtogroup group_virtual
+@{
+*/
+
+/** \brief Creates new #VmaVirtualBlock object.
+
+\param pCreateInfo Parameters for creation.
+\param[out] pVirtualBlock Returned virtual block object or `VMA_NULL` if creation failed.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock(
+ const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo,
+ VmaVirtualBlock VMA_NULLABLE* VMA_NOT_NULL pVirtualBlock);
+
+/** \brief Destroys #VmaVirtualBlock object.
+
+Please note that you should consciously handle virtual allocations that could remain unfreed in the block.
+You should either free them individually using vmaVirtualFree() or call vmaClearVirtualBlock()
+if you are sure this is what you want. If you do neither, an assert is called.
+
+If you keep pointers to some additional metadata associated with your virtual allocations in their `pUserData`,
+don't forget to free them.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock(
+ VmaVirtualBlock VMA_NULLABLE virtualBlock);
+
+/** \brief Returns true of the #VmaVirtualBlock is empty - contains 0 virtual allocations and has all its space available for new allocations.
+*/
+VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty(
+ VmaVirtualBlock VMA_NOT_NULL virtualBlock);
+
+/** \brief Returns information about a specific virtual allocation within a virtual block, like its size and `pUserData` pointer.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo(
+ VmaVirtualBlock VMA_NOT_NULL virtualBlock,
+ VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo);
+
+/** \brief Allocates new virtual allocation inside given #VmaVirtualBlock.
+
+If the allocation fails due to not enough free space available, `VK_ERROR_OUT_OF_DEVICE_MEMORY` is returned
+(despite the function doesn't ever allocate actual GPU memory).
+`pAllocation` is then set to `VK_NULL_HANDLE` and `pOffset`, if not null, it set to `UINT64_MAX`.
+
+\param virtualBlock Virtual block
+\param pCreateInfo Parameters for the allocation
+\param[out] pAllocation Returned handle of the new allocation
+\param[out] pOffset Returned offset of the new allocation. Optional, can be null.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate(
+ VmaVirtualBlock VMA_NOT_NULL virtualBlock,
+ const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
+ VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation,
+ VkDeviceSize* VMA_NULLABLE pOffset);
+
+/** \brief Frees virtual allocation inside given #VmaVirtualBlock.
+
+It is correct to call this function with `allocation == VK_NULL_HANDLE` - it does nothing.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree(
+ VmaVirtualBlock VMA_NOT_NULL virtualBlock,
+ VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation);
+
+/** \brief Frees all virtual allocations inside given #VmaVirtualBlock.
+
+You must either call this function or free each virtual allocation individually with vmaVirtualFree()
+before destroying a virtual block. Otherwise, an assert is called.
+
+If you keep pointer to some additional metadata associated with your virtual allocation in its `pUserData`,
+don't forget to free it as well.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock(
+ VmaVirtualBlock VMA_NOT_NULL virtualBlock);
+
+/** \brief Changes custom pointer associated with given virtual allocation.
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData(
+ VmaVirtualBlock VMA_NOT_NULL virtualBlock,
+ VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation,
+ void* VMA_NULLABLE pUserData);
+
+/** \brief Calculates and returns statistics about virtual allocations and memory usage in given #VmaVirtualBlock.
+
+This function is fast to call. For more detailed statistics, see vmaCalculateVirtualBlockStatistics().
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualBlockStatistics(
+ VmaVirtualBlock VMA_NOT_NULL virtualBlock,
+ VmaStatistics* VMA_NOT_NULL pStats);
+
+/** \brief Calculates and returns detailed statistics about virtual allocations and memory usage in given #VmaVirtualBlock.
+
+This function is slow to call. Use for debugging purposes.
+For less detailed statistics, see vmaGetVirtualBlockStatistics().
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStatistics(
+ VmaVirtualBlock VMA_NOT_NULL virtualBlock,
+ VmaDetailedStatistics* VMA_NOT_NULL pStats);
+
+/** @} */
+
+#if VMA_STATS_STRING_ENABLED
+/**
+\addtogroup group_stats
+@{
+*/
+
+/** \brief Builds and returns a null-terminated string in JSON format with information about given #VmaVirtualBlock.
+\param virtualBlock Virtual block.
+\param[out] ppStatsString Returned string.
+\param detailedMap Pass `VK_FALSE` to only obtain statistics as returned by vmaCalculateVirtualBlockStatistics(). Pass `VK_TRUE` to also obtain full list of allocations and free spaces.
+
+Returned string must be freed using vmaFreeVirtualBlockStatsString().
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString(
+ VmaVirtualBlock VMA_NOT_NULL virtualBlock,
+ char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString,
+ VkBool32 detailedMap);
+
+/// Frees a string returned by vmaBuildVirtualBlockStatsString().
+VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString(
+ VmaVirtualBlock VMA_NOT_NULL virtualBlock,
+ char* VMA_NULLABLE pStatsString);
+
+/** \brief Builds and returns statistics as a null-terminated string in JSON format.
+\param allocator
+\param[out] ppStatsString Must be freed using vmaFreeStatsString() function.
+\param detailedMap
+*/
+VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString(
+ VmaAllocator VMA_NOT_NULL allocator,
+ char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString,
+ VkBool32 detailedMap);
+
+VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString(
+ VmaAllocator VMA_NOT_NULL allocator,
+ char* VMA_NULLABLE pStatsString);
+
+/** @} */
+
+#endif // VMA_STATS_STRING_ENABLED
+
+#endif // _VMA_FUNCTION_HEADERS
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H
+
+////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////
+//
+// IMPLEMENTATION
+//
+////////////////////////////////////////////////////////////////////////////////
+////////////////////////////////////////////////////////////////////////////////
+
+// For Visual Studio IntelliSense.
+#if defined(__cplusplus) && defined(__INTELLISENSE__)
+#define VMA_IMPLEMENTATION
+#endif
+
+#ifdef VMA_IMPLEMENTATION
+#undef VMA_IMPLEMENTATION
+
+#include <cstdint>
+#include <cstdlib>
+#include <cstring>
+#include <cinttypes>
+#include <utility>
+#include <type_traits>
+
+#if !defined(VMA_CPP20)
+ #if __cplusplus >= 202002L || _MSVC_LANG >= 202002L // C++20
+ #define VMA_CPP20 1
+ #else
+ #define VMA_CPP20 0
+ #endif
+#endif
+
+#ifdef _MSC_VER
+ #include <intrin.h> // For functions like __popcnt, _BitScanForward etc.
+#endif
+#if VMA_CPP20
+ #include <bit>
+#endif
+
+#if VMA_STATS_STRING_ENABLED
+ #include <cstdio> // For snprintf
+#endif
+
+/*******************************************************************************
+CONFIGURATION SECTION
+
+Define some of these macros before each #include of this header or change them
+here if you need other then default behavior depending on your environment.
+*/
+#ifndef _VMA_CONFIGURATION
+
+/*
+Define this macro to 1 to make the library fetch pointers to Vulkan functions
+internally, like:
+
+ vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
+*/
+#if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES)
+ #define VMA_STATIC_VULKAN_FUNCTIONS 1
+#endif
+
+/*
+Define this macro to 1 to make the library fetch pointers to Vulkan functions
+internally, like:
+
+ vulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkGetDeviceProcAddr(device, "vkAllocateMemory");
+
+To use this feature in new versions of VMA you now have to pass
+VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as
+VmaAllocatorCreateInfo::pVulkanFunctions. Other members can be null.
+*/
+#if !defined(VMA_DYNAMIC_VULKAN_FUNCTIONS)
+ #define VMA_DYNAMIC_VULKAN_FUNCTIONS 1
+#endif
+
+#ifndef VMA_USE_STL_SHARED_MUTEX
+ #if __cplusplus >= 201703L || _MSVC_LANG >= 201703L // C++17
+ #define VMA_USE_STL_SHARED_MUTEX 1
+ // Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus
+ // Otherwise it is always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2.
+ #elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L
+ #define VMA_USE_STL_SHARED_MUTEX 1
+ #else
+ #define VMA_USE_STL_SHARED_MUTEX 0
+ #endif
+#endif
+
+/*
+Define this macro to include custom header files without having to edit this file directly, e.g.:
+
+ // Inside of "my_vma_configuration_user_includes.h":
+
+ #include "my_custom_assert.h" // for MY_CUSTOM_ASSERT
+ #include "my_custom_min.h" // for my_custom_min
+ #include <algorithm>
+ #include <mutex>
+
+ // Inside a different file, which includes "vk_mem_alloc.h":
+
+ #define VMA_CONFIGURATION_USER_INCLUDES_H "my_vma_configuration_user_includes.h"
+ #define VMA_ASSERT(expr) MY_CUSTOM_ASSERT(expr)
+ #define VMA_MIN(v1, v2) (my_custom_min(v1, v2))
+ #include "vk_mem_alloc.h"
+ ...
+
+The following headers are used in this CONFIGURATION section only, so feel free to
+remove them if not needed.
+*/
+#if !defined(VMA_CONFIGURATION_USER_INCLUDES_H)
+ #include <cassert> // for assert
+ #include <algorithm> // for min, max, swap
+ #include <mutex>
+#else
+ #include VMA_CONFIGURATION_USER_INCLUDES_H
+#endif
+
+#ifndef VMA_NULL
+ // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0.
+ #define VMA_NULL nullptr
+#endif
+
+#ifndef VMA_FALLTHROUGH
+ #if __cplusplus >= 201703L || _MSVC_LANG >= 201703L // C++17
+ #define VMA_FALLTHROUGH [[fallthrough]]
+ #else
+ #define VMA_FALLTHROUGH
+ #endif
+#endif
+
+// Normal assert to check for programmer's errors, especially in Debug configuration.
+#ifndef VMA_ASSERT
+ #ifdef NDEBUG
+ #define VMA_ASSERT(expr)
+ #else
+ #define VMA_ASSERT(expr) assert(expr)
+ #endif
+#endif
+
+// Assert that will be called very often, like inside data structures e.g. operator[].
+// Making it non-empty can make program slow.
+#ifndef VMA_HEAVY_ASSERT
+ #ifdef NDEBUG
+ #define VMA_HEAVY_ASSERT(expr)
+ #else
+ #define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr)
+ #endif
+#endif
+
+// Assert used for reporting memory leaks - unfreed allocations.
+#ifndef VMA_ASSERT_LEAK
+ #define VMA_ASSERT_LEAK(expr) VMA_ASSERT(expr)
+#endif
+
+// If your compiler is not compatible with C++17 and definition of
+// aligned_alloc() function is missing, uncommenting following line may help:
+
+//#include <malloc.h>
+
+#if defined(__ANDROID_API__) && (__ANDROID_API__ < 16)
+#include <cstdlib>
+static void* vma_aligned_alloc(size_t alignment, size_t size)
+{
+ // alignment must be >= sizeof(void*)
+ if(alignment < sizeof(void*))
+ {
+ alignment = sizeof(void*);
+ }
+
+ return memalign(alignment, size);
+}
+#elif defined(__APPLE__) || defined(__ANDROID__) || (defined(__linux__) && defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC))
+#include <cstdlib>
+
+#if defined(__APPLE__)
+#include <AvailabilityMacros.h>
+#endif
+
+static void* vma_aligned_alloc(size_t alignment, size_t size)
+{
+ // Unfortunately, aligned_alloc causes VMA to crash due to it returning null pointers. (At least under 11.4)
+ // Therefore, for now disable this specific exception until a proper solution is found.
+ //#if defined(__APPLE__) && (defined(MAC_OS_X_VERSION_10_16) || defined(__IPHONE_14_0))
+ //#if MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_16 || __IPHONE_OS_VERSION_MAX_ALLOWED >= __IPHONE_14_0
+ // // For C++14, usr/include/malloc/_malloc.h declares aligned_alloc()) only
+ // // with the MacOSX11.0 SDK in Xcode 12 (which is what adds
+ // // MAC_OS_X_VERSION_10_16), even though the function is marked
+ // // available for 10.15. That is why the preprocessor checks for 10.16 but
+ // // the __builtin_available checks for 10.15.
+ // // People who use C++17 could call aligned_alloc with the 10.15 SDK already.
+ // if (__builtin_available(macOS 10.15, iOS 13, *))
+ // return aligned_alloc(alignment, size);
+ //#endif
+ //#endif
+
+ // alignment must be >= sizeof(void*)
+ if(alignment < sizeof(void*))
+ {
+ alignment = sizeof(void*);
+ }
+
+ void *pointer;
+ if(posix_memalign(&pointer, alignment, size) == 0)
+ return pointer;
+ return VMA_NULL;
+}
+#elif defined(_WIN32)
+static void* vma_aligned_alloc(size_t alignment, size_t size)
+{
+ return _aligned_malloc(size, alignment);
+}
+#elif __cplusplus >= 201703L || _MSVC_LANG >= 201703L // C++17
+static void* vma_aligned_alloc(size_t alignment, size_t size)
+{
+ return aligned_alloc(alignment, size);
+}
+#else
+static void* vma_aligned_alloc(size_t alignment, size_t size)
+{
+ VMA_ASSERT(0 && "Could not implement aligned_alloc automatically. Please enable C++17 or later in your compiler or provide custom implementation of macro VMA_SYSTEM_ALIGNED_MALLOC (and VMA_SYSTEM_ALIGNED_FREE if needed) using the API of your system.");
+ return VMA_NULL;
+}
+#endif
+
+#if defined(_WIN32)
+static void vma_aligned_free(void* ptr)
+{
+ _aligned_free(ptr);
+}
+#else
+static void vma_aligned_free(void* VMA_NULLABLE ptr)
+{
+ free(ptr);
+}
+#endif
+
+#ifndef VMA_ALIGN_OF
+ #define VMA_ALIGN_OF(type) (alignof(type))
+#endif
+
+#ifndef VMA_SYSTEM_ALIGNED_MALLOC
+ #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) vma_aligned_alloc((alignment), (size))
+#endif
+
+#ifndef VMA_SYSTEM_ALIGNED_FREE
+ // VMA_SYSTEM_FREE is the old name, but might have been defined by the user
+ #if defined(VMA_SYSTEM_FREE)
+ #define VMA_SYSTEM_ALIGNED_FREE(ptr) VMA_SYSTEM_FREE(ptr)
+ #else
+ #define VMA_SYSTEM_ALIGNED_FREE(ptr) vma_aligned_free(ptr)
+ #endif
+#endif
+
+#ifndef VMA_COUNT_BITS_SET
+ // Returns number of bits set to 1 in (v)
+ #define VMA_COUNT_BITS_SET(v) VmaCountBitsSet(v)
+#endif
+
+#ifndef VMA_BITSCAN_LSB
+ // Scans integer for index of first nonzero value from the Least Significant Bit (LSB). If mask is 0 then returns UINT8_MAX
+ #define VMA_BITSCAN_LSB(mask) VmaBitScanLSB(mask)
+#endif
+
+#ifndef VMA_BITSCAN_MSB
+ // Scans integer for index of first nonzero value from the Most Significant Bit (MSB). If mask is 0 then returns UINT8_MAX
+ #define VMA_BITSCAN_MSB(mask) VmaBitScanMSB(mask)
+#endif
+
+#ifndef VMA_MIN
+ #define VMA_MIN(v1, v2) ((std::min)((v1), (v2)))
+#endif
+
+#ifndef VMA_MAX
+ #define VMA_MAX(v1, v2) ((std::max)((v1), (v2)))
+#endif
+
+#ifndef VMA_SORT
+ #define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp)
+#endif
+
+#ifndef VMA_DEBUG_LOG_FORMAT
+ #define VMA_DEBUG_LOG_FORMAT(format, ...)
+ /*
+ #define VMA_DEBUG_LOG_FORMAT(format, ...) do { \
+ printf((format), __VA_ARGS__); \
+ printf("\n"); \
+ } while(false)
+ */
+#endif
+
+#ifndef VMA_DEBUG_LOG
+ #define VMA_DEBUG_LOG(str) VMA_DEBUG_LOG_FORMAT("%s", (str))
+#endif
+
+#ifndef VMA_LEAK_LOG_FORMAT
+ #define VMA_LEAK_LOG_FORMAT(format, ...) VMA_DEBUG_LOG_FORMAT(format, __VA_ARGS__)
+#endif
+
+#ifndef VMA_CLASS_NO_COPY
+ #define VMA_CLASS_NO_COPY(className) \
+ private: \
+ className(const className&) = delete; \
+ className& operator=(const className&) = delete;
+#endif
+#ifndef VMA_CLASS_NO_COPY_NO_MOVE
+ #define VMA_CLASS_NO_COPY_NO_MOVE(className) \
+ private: \
+ className(const className&) = delete; \
+ className(className&&) = delete; \
+ className& operator=(const className&) = delete; \
+ className& operator=(className&&) = delete;
+#endif
+
+// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString.
+#if VMA_STATS_STRING_ENABLED
+ static inline void VmaUint32ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint32_t num)
+ {
+ snprintf(outStr, strLen, "%" PRIu32, num);
+ }
+ static inline void VmaUint64ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint64_t num)
+ {
+ snprintf(outStr, strLen, "%" PRIu64, num);
+ }
+ static inline void VmaPtrToStr(char* VMA_NOT_NULL outStr, size_t strLen, const void* ptr)
+ {
+ snprintf(outStr, strLen, "%p", ptr);
+ }
+#endif
+
+#ifndef VMA_MUTEX
+ class VmaMutex
+ {
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaMutex)
+ public:
+ VmaMutex() { }
+ void Lock() { m_Mutex.lock(); }
+ void Unlock() { m_Mutex.unlock(); }
+ bool TryLock() { return m_Mutex.try_lock(); }
+ private:
+ std::mutex m_Mutex;
+ };
+ #define VMA_MUTEX VmaMutex
+#endif
+
+// Read-write mutex, where "read" is shared access, "write" is exclusive access.
+#ifndef VMA_RW_MUTEX
+ #if VMA_USE_STL_SHARED_MUTEX
+ // Use std::shared_mutex from C++17.
+ #include <shared_mutex>
+ class VmaRWMutex
+ {
+ public:
+ void LockRead() { m_Mutex.lock_shared(); }
+ void UnlockRead() { m_Mutex.unlock_shared(); }
+ bool TryLockRead() { return m_Mutex.try_lock_shared(); }
+ void LockWrite() { m_Mutex.lock(); }
+ void UnlockWrite() { m_Mutex.unlock(); }
+ bool TryLockWrite() { return m_Mutex.try_lock(); }
+ private:
+ std::shared_mutex m_Mutex;
+ };
+ #define VMA_RW_MUTEX VmaRWMutex
+ #elif defined(_WIN32) && defined(WINVER) && WINVER >= 0x0600
+ // Use SRWLOCK from WinAPI.
+ // Minimum supported client = Windows Vista, server = Windows Server 2008.
+ class VmaRWMutex
+ {
+ public:
+ VmaRWMutex() { InitializeSRWLock(&m_Lock); }
+ void LockRead() { AcquireSRWLockShared(&m_Lock); }
+ void UnlockRead() { ReleaseSRWLockShared(&m_Lock); }
+ bool TryLockRead() { return TryAcquireSRWLockShared(&m_Lock) != FALSE; }
+ void LockWrite() { AcquireSRWLockExclusive(&m_Lock); }
+ void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); }
+ bool TryLockWrite() { return TryAcquireSRWLockExclusive(&m_Lock) != FALSE; }
+ private:
+ SRWLOCK m_Lock;
+ };
+ #define VMA_RW_MUTEX VmaRWMutex
+ #else
+ // Less efficient fallback: Use normal mutex.
+ class VmaRWMutex
+ {
+ public:
+ void LockRead() { m_Mutex.Lock(); }
+ void UnlockRead() { m_Mutex.Unlock(); }
+ bool TryLockRead() { return m_Mutex.TryLock(); }
+ void LockWrite() { m_Mutex.Lock(); }
+ void UnlockWrite() { m_Mutex.Unlock(); }
+ bool TryLockWrite() { return m_Mutex.TryLock(); }
+ private:
+ VMA_MUTEX m_Mutex;
+ };
+ #define VMA_RW_MUTEX VmaRWMutex
+ #endif // #if VMA_USE_STL_SHARED_MUTEX
+#endif // #ifndef VMA_RW_MUTEX
+
+/*
+If providing your own implementation, you need to implement a subset of std::atomic.
+*/
+#ifndef VMA_ATOMIC_UINT32
+ #include <atomic>
+ #define VMA_ATOMIC_UINT32 std::atomic<uint32_t>
+#endif
+
+#ifndef VMA_ATOMIC_UINT64
+ #include <atomic>
+ #define VMA_ATOMIC_UINT64 std::atomic<uint64_t>
+#endif
+
+#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY
+ /**
+ Every allocation will have its own memory block.
+ Define to 1 for debugging purposes only.
+ */
+ #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0)
+#endif
+
+#ifndef VMA_MIN_ALIGNMENT
+ /**
+ Minimum alignment of all allocations, in bytes.
+ Set to more than 1 for debugging purposes. Must be power of two.
+ */
+ #ifdef VMA_DEBUG_ALIGNMENT // Old name
+ #define VMA_MIN_ALIGNMENT VMA_DEBUG_ALIGNMENT
+ #else
+ #define VMA_MIN_ALIGNMENT (1)
+ #endif
+#endif
+
+#ifndef VMA_DEBUG_MARGIN
+ /**
+ Minimum margin after every allocation, in bytes.
+ Set nonzero for debugging purposes only.
+ */
+ #define VMA_DEBUG_MARGIN (0)
+#endif
+
+#ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS
+ /**
+ Define this macro to 1 to automatically fill new allocations and destroyed
+ allocations with some bit pattern.
+ */
+ #define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0)
+#endif
+
+#ifndef VMA_DEBUG_DETECT_CORRUPTION
+ /**
+ Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to
+ enable writing magic value to the margin after every allocation and
+ validating it, so that memory corruptions (out-of-bounds writes) are detected.
+ */
+ #define VMA_DEBUG_DETECT_CORRUPTION (0)
+#endif
+
+#ifndef VMA_DEBUG_GLOBAL_MUTEX
+ /**
+ Set this to 1 for debugging purposes only, to enable single mutex protecting all
+ entry calls to the library. Can be useful for debugging multithreading issues.
+ */
+ #define VMA_DEBUG_GLOBAL_MUTEX (0)
+#endif
+
+#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY
+ /**
+ Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity.
+ Set to more than 1 for debugging purposes only. Must be power of two.
+ */
+ #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1)
+#endif
+
+#ifndef VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT
+ /*
+ Set this to 1 to make VMA never exceed VkPhysicalDeviceLimits::maxMemoryAllocationCount
+ and return error instead of leaving up to Vulkan implementation what to do in such cases.
+ */
+ #define VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT (0)
+#endif
+
+#ifndef VMA_SMALL_HEAP_MAX_SIZE
+ /// Maximum size of a memory heap in Vulkan to consider it "small".
+ #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024)
+#endif
+
+#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE
+ /// Default size of a block allocated as single VkDeviceMemory from a "large" heap.
+ #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024)
+#endif
+
+/*
+Mapping hysteresis is a logic that launches when vmaMapMemory/vmaUnmapMemory is called
+or a persistently mapped allocation is created and destroyed several times in a row.
+It keeps additional +1 mapping of a device memory block to prevent calling actual
+vkMapMemory/vkUnmapMemory too many times, which may improve performance and help
+tools like RenderDoc.
+*/
+#ifndef VMA_MAPPING_HYSTERESIS_ENABLED
+ #define VMA_MAPPING_HYSTERESIS_ENABLED 1
+#endif
+
+#define VMA_VALIDATE(cond) do { if(!(cond)) { \
+ VMA_ASSERT(0 && "Validation failed: " #cond); \
+ return false; \
+ } } while(false)
+
+/*******************************************************************************
+END OF CONFIGURATION
+*/
+#endif // _VMA_CONFIGURATION
+
+
+static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED = 0xDC;
+static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF;
+// Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F.
+static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666;
+
+// Copy of some Vulkan definitions so we don't need to check their existence just to handle few constants.
+static const uint32_t VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY = 0x00000040;
+static const uint32_t VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY = 0x00000080;
+static const uint32_t VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY = 0x00020000;
+static const uint32_t VK_IMAGE_CREATE_DISJOINT_BIT_COPY = 0x00000200;
+static const int32_t VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT_COPY = 1000158000;
+static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u;
+static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32;
+static const uint32_t VMA_VENDOR_ID_AMD = 4098;
+
+// This one is tricky. Vulkan specification defines this code as available since
+// Vulkan 1.0, but doesn't actually define it in Vulkan SDK earlier than 1.2.131.
+// See pull request #207.
+#define VK_ERROR_UNKNOWN_COPY ((VkResult)-13)
+
+
+#if VMA_STATS_STRING_ENABLED
+// Correspond to values of enum VmaSuballocationType.
+static const char* VMA_SUBALLOCATION_TYPE_NAMES[] =
+{
+ "FREE",
+ "UNKNOWN",
+ "BUFFER",
+ "IMAGE_UNKNOWN",
+ "IMAGE_LINEAR",
+ "IMAGE_OPTIMAL",
+};
+#endif
+
+static VkAllocationCallbacks VmaEmptyAllocationCallbacks =
+ { VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL };
+
+
+#ifndef _VMA_ENUM_DECLARATIONS
+
+enum VmaSuballocationType
+{
+ VMA_SUBALLOCATION_TYPE_FREE = 0,
+ VMA_SUBALLOCATION_TYPE_UNKNOWN = 1,
+ VMA_SUBALLOCATION_TYPE_BUFFER = 2,
+ VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3,
+ VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4,
+ VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5,
+ VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF
+};
+
+enum VMA_CACHE_OPERATION
+{
+ VMA_CACHE_FLUSH,
+ VMA_CACHE_INVALIDATE
+};
+
+enum class VmaAllocationRequestType
+{
+ Normal,
+ TLSF,
+ // Used by "Linear" algorithm.
+ UpperAddress,
+ EndOf1st,
+ EndOf2nd,
+};
+
+#endif // _VMA_ENUM_DECLARATIONS
+
+#ifndef _VMA_FORWARD_DECLARATIONS
+// Opaque handle used by allocation algorithms to identify single allocation in any conforming way.
+VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaAllocHandle);
+
+struct VmaMutexLock;
+struct VmaMutexLockRead;
+struct VmaMutexLockWrite;
+
+template<typename T>
+struct AtomicTransactionalIncrement;
+
+template<typename T>
+struct VmaStlAllocator;
+
+template<typename T, typename AllocatorT>
+class VmaVector;
+
+template<typename T, typename AllocatorT, size_t N>
+class VmaSmallVector;
+
+template<typename T>
+class VmaPoolAllocator;
+
+template<typename T>
+struct VmaListItem;
+
+template<typename T>
+class VmaRawList;
+
+template<typename T, typename AllocatorT>
+class VmaList;
+
+template<typename ItemTypeTraits>
+class VmaIntrusiveLinkedList;
+
+#if VMA_STATS_STRING_ENABLED
+class VmaStringBuilder;
+class VmaJsonWriter;
+#endif
+
+class VmaDeviceMemoryBlock;
+
+struct VmaDedicatedAllocationListItemTraits;
+class VmaDedicatedAllocationList;
+
+struct VmaSuballocation;
+struct VmaSuballocationOffsetLess;
+struct VmaSuballocationOffsetGreater;
+struct VmaSuballocationItemSizeLess;
+
+typedef VmaList<VmaSuballocation, VmaStlAllocator<VmaSuballocation>> VmaSuballocationList;
+
+struct VmaAllocationRequest;
+
+class VmaBlockMetadata;
+class VmaBlockMetadata_Linear;
+class VmaBlockMetadata_TLSF;
+
+class VmaBlockVector;
+
+struct VmaPoolListItemTraits;
+
+struct VmaCurrentBudgetData;
+
+class VmaAllocationObjectAllocator;
+
+#endif // _VMA_FORWARD_DECLARATIONS
+
+
+#ifndef _VMA_FUNCTIONS
+
+/*
+Returns number of bits set to 1 in (v).
+
+On specific platforms and compilers you can use intrinsics like:
+
+Visual Studio:
+ return __popcnt(v);
+GCC, Clang:
+ return static_cast<uint32_t>(__builtin_popcount(v));
+
+Define macro VMA_COUNT_BITS_SET to provide your optimized implementation.
+But you need to check in runtime whether user's CPU supports these, as some old processors don't.
+*/
+static inline uint32_t VmaCountBitsSet(uint32_t v)
+{
+#if VMA_CPP20
+ return std::popcount(v);
+#else
+ uint32_t c = v - ((v >> 1) & 0x55555555);
+ c = ((c >> 2) & 0x33333333) + (c & 0x33333333);
+ c = ((c >> 4) + c) & 0x0F0F0F0F;
+ c = ((c >> 8) + c) & 0x00FF00FF;
+ c = ((c >> 16) + c) & 0x0000FFFF;
+ return c;
+#endif
+}
+
+static inline uint8_t VmaBitScanLSB(uint64_t mask)
+{
+#if defined(_MSC_VER) && defined(_WIN64)
+ unsigned long pos;
+ if (_BitScanForward64(&pos, mask))
+ return static_cast<uint8_t>(pos);
+ return UINT8_MAX;
+#elif VMA_CPP20
+ if(mask)
+ return static_cast<uint8_t>(std::countr_zero(mask));
+ return UINT8_MAX;
+#elif defined __GNUC__ || defined __clang__
+ return static_cast<uint8_t>(__builtin_ffsll(mask)) - 1U;
+#else
+ uint8_t pos = 0;
+ uint64_t bit = 1;
+ do
+ {
+ if (mask & bit)
+ return pos;
+ bit <<= 1;
+ } while (pos++ < 63);
+ return UINT8_MAX;
+#endif
+}
+
+static inline uint8_t VmaBitScanLSB(uint32_t mask)
+{
+#ifdef _MSC_VER
+ unsigned long pos;
+ if (_BitScanForward(&pos, mask))
+ return static_cast<uint8_t>(pos);
+ return UINT8_MAX;
+#elif VMA_CPP20
+ if(mask)
+ return static_cast<uint8_t>(std::countr_zero(mask));
+ return UINT8_MAX;
+#elif defined __GNUC__ || defined __clang__
+ return static_cast<uint8_t>(__builtin_ffs(mask)) - 1U;
+#else
+ uint8_t pos = 0;
+ uint32_t bit = 1;
+ do
+ {
+ if (mask & bit)
+ return pos;
+ bit <<= 1;
+ } while (pos++ < 31);
+ return UINT8_MAX;
+#endif
+}
+
+static inline uint8_t VmaBitScanMSB(uint64_t mask)
+{
+#if defined(_MSC_VER) && defined(_WIN64)
+ unsigned long pos;
+ if (_BitScanReverse64(&pos, mask))
+ return static_cast<uint8_t>(pos);
+#elif VMA_CPP20
+ if(mask)
+ return 63 - static_cast<uint8_t>(std::countl_zero(mask));
+#elif defined __GNUC__ || defined __clang__
+ if (mask)
+ return 63 - static_cast<uint8_t>(__builtin_clzll(mask));
+#else
+ uint8_t pos = 63;
+ uint64_t bit = 1ULL << 63;
+ do
+ {
+ if (mask & bit)
+ return pos;
+ bit >>= 1;
+ } while (pos-- > 0);
+#endif
+ return UINT8_MAX;
+}
+
+static inline uint8_t VmaBitScanMSB(uint32_t mask)
+{
+#ifdef _MSC_VER
+ unsigned long pos;
+ if (_BitScanReverse(&pos, mask))
+ return static_cast<uint8_t>(pos);
+#elif VMA_CPP20
+ if(mask)
+ return 31 - static_cast<uint8_t>(std::countl_zero(mask));
+#elif defined __GNUC__ || defined __clang__
+ if (mask)
+ return 31 - static_cast<uint8_t>(__builtin_clz(mask));
+#else
+ uint8_t pos = 31;
+ uint32_t bit = 1UL << 31;
+ do
+ {
+ if (mask & bit)
+ return pos;
+ bit >>= 1;
+ } while (pos-- > 0);
+#endif
+ return UINT8_MAX;
+}
+
+/*
+Returns true if given number is a power of two.
+T must be unsigned integer number or signed integer but always nonnegative.
+For 0 returns true.
+*/
+template <typename T>
+inline bool VmaIsPow2(T x)
+{
+ return (x & (x - 1)) == 0;
+}
+
+// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16.
+// Use types like uint32_t, uint64_t as T.
+template <typename T>
+static inline T VmaAlignUp(T val, T alignment)
+{
+ VMA_HEAVY_ASSERT(VmaIsPow2(alignment));
+ return (val + alignment - 1) & ~(alignment - 1);
+}
+
+// Aligns given value down to nearest multiply of align value. For example: VmaAlignDown(11, 8) = 8.
+// Use types like uint32_t, uint64_t as T.
+template <typename T>
+static inline T VmaAlignDown(T val, T alignment)
+{
+ VMA_HEAVY_ASSERT(VmaIsPow2(alignment));
+ return val & ~(alignment - 1);
+}
+
+// Division with mathematical rounding to nearest number.
+template <typename T>
+static inline T VmaRoundDiv(T x, T y)
+{
+ return (x + (y / (T)2)) / y;
+}
+
+// Divide by 'y' and round up to nearest integer.
+template <typename T>
+static inline T VmaDivideRoundingUp(T x, T y)
+{
+ return (x + y - (T)1) / y;
+}
+
+// Returns smallest power of 2 greater or equal to v.
+static inline uint32_t VmaNextPow2(uint32_t v)
+{
+ v--;
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ v++;
+ return v;
+}
+
+static inline uint64_t VmaNextPow2(uint64_t v)
+{
+ v--;
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ v |= v >> 32;
+ v++;
+ return v;
+}
+
+// Returns largest power of 2 less or equal to v.
+static inline uint32_t VmaPrevPow2(uint32_t v)
+{
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ v = v ^ (v >> 1);
+ return v;
+}
+
+static inline uint64_t VmaPrevPow2(uint64_t v)
+{
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ v |= v >> 32;
+ v = v ^ (v >> 1);
+ return v;
+}
+
+static inline bool VmaStrIsEmpty(const char* pStr)
+{
+ return pStr == VMA_NULL || *pStr == '\0';
+}
+
+/*
+Returns true if two memory blocks occupy overlapping pages.
+ResourceA must be in less memory offset than ResourceB.
+
+Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)"
+chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity".
+*/
+static inline bool VmaBlocksOnSamePage(
+ VkDeviceSize resourceAOffset,
+ VkDeviceSize resourceASize,
+ VkDeviceSize resourceBOffset,
+ VkDeviceSize pageSize)
+{
+ VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0);
+ VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1;
+ VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1);
+ VkDeviceSize resourceBStart = resourceBOffset;
+ VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1);
+ return resourceAEndPage == resourceBStartPage;
+}
+
+/*
+Returns true if given suballocation types could conflict and must respect
+VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer
+or linear image and another one is optimal image. If type is unknown, behave
+conservatively.
+*/
+static inline bool VmaIsBufferImageGranularityConflict(
+ VmaSuballocationType suballocType1,
+ VmaSuballocationType suballocType2)
+{
+ if (suballocType1 > suballocType2)
+ {
+ std::swap(suballocType1, suballocType2);
+ }
+
+ switch (suballocType1)
+ {
+ case VMA_SUBALLOCATION_TYPE_FREE:
+ return false;
+ case VMA_SUBALLOCATION_TYPE_UNKNOWN:
+ return true;
+ case VMA_SUBALLOCATION_TYPE_BUFFER:
+ return
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
+ case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN:
+ return
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR ||
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
+ case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR:
+ return
+ suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
+ case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL:
+ return false;
+ default:
+ VMA_ASSERT(0);
+ return true;
+ }
+}
+
+static void VmaWriteMagicValue(void* pData, VkDeviceSize offset)
+{
+#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION
+ uint32_t* pDst = (uint32_t*)((char*)pData + offset);
+ const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
+ for (size_t i = 0; i < numberCount; ++i, ++pDst)
+ {
+ *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE;
+ }
+#else
+ // no-op
+#endif
+}
+
+static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset)
+{
+#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION
+ const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset);
+ const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
+ for (size_t i = 0; i < numberCount; ++i, ++pSrc)
+ {
+ if (*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE)
+ {
+ return false;
+ }
+ }
+#endif
+ return true;
+}
+
+/*
+Fills structure with parameters of an example buffer to be used for transfers
+during GPU memory defragmentation.
+*/
+static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo& outBufCreateInfo)
+{
+ memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo));
+ outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
+ outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+ outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size.
+}
+
+
+/*
+Performs binary search and returns iterator to first element that is greater or
+equal to (key), according to comparison (cmp).
+
+Cmp should return true if first argument is less than second argument.
+
+Returned value is the found element, if present in the collection or place where
+new element with value (key) should be inserted.
+*/
+template <typename CmpLess, typename IterT, typename KeyT>
+static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT& key, const CmpLess& cmp)
+{
+ size_t down = 0, up = size_t(end - beg);
+ while (down < up)
+ {
+ const size_t mid = down + (up - down) / 2; // Overflow-safe midpoint calculation
+ if (cmp(*(beg + mid), key))
+ {
+ down = mid + 1;
+ }
+ else
+ {
+ up = mid;
+ }
+ }
+ return beg + down;
+}
+
+template<typename CmpLess, typename IterT, typename KeyT>
+IterT VmaBinaryFindSorted(const IterT& beg, const IterT& end, const KeyT& value, const CmpLess& cmp)
+{
+ IterT it = VmaBinaryFindFirstNotLess<CmpLess, IterT, KeyT>(
+ beg, end, value, cmp);
+ if (it == end ||
+ (!cmp(*it, value) && !cmp(value, *it)))
+ {
+ return it;
+ }
+ return end;
+}
+
+/*
+Returns true if all pointers in the array are not-null and unique.
+Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT.
+T must be pointer type, e.g. VmaAllocation, VmaPool.
+*/
+template<typename T>
+static bool VmaValidatePointerArray(uint32_t count, const T* arr)
+{
+ for (uint32_t i = 0; i < count; ++i)
+ {
+ const T iPtr = arr[i];
+ if (iPtr == VMA_NULL)
+ {
+ return false;
+ }
+ for (uint32_t j = i + 1; j < count; ++j)
+ {
+ if (iPtr == arr[j])
+ {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+template<typename MainT, typename NewT>
+static inline void VmaPnextChainPushFront(MainT* mainStruct, NewT* newStruct)
+{
+ newStruct->pNext = mainStruct->pNext;
+ mainStruct->pNext = newStruct;
+}
+// Finds structure with s->sType == sType in mainStruct->pNext chain.
+// Returns pointer to it. If not found, returns null.
+template<typename FindT, typename MainT>
+static inline const FindT* VmaPnextChainFind(const MainT* mainStruct, VkStructureType sType)
+{
+ for(const VkBaseInStructure* s = (const VkBaseInStructure*)mainStruct->pNext;
+ s != VMA_NULL; s = s->pNext)
+ {
+ if(s->sType == sType)
+ {
+ return (const FindT*)s;
+ }
+ }
+ return VMA_NULL;
+}
+
+// An abstraction over buffer or image `usage` flags, depending on available extensions.
+struct VmaBufferImageUsage
+{
+#if VMA_KHR_MAINTENANCE5
+ typedef uint64_t BaseType; // VkFlags64
+#else
+ typedef uint32_t BaseType; // VkFlags32
+#endif
+
+ static const VmaBufferImageUsage UNKNOWN;
+
+ BaseType Value;
+
+ VmaBufferImageUsage() { *this = UNKNOWN; }
+ explicit VmaBufferImageUsage(BaseType usage) : Value(usage) { }
+ VmaBufferImageUsage(const VkBufferCreateInfo &createInfo, bool useKhrMaintenance5);
+ explicit VmaBufferImageUsage(const VkImageCreateInfo &createInfo);
+
+ bool operator==(const VmaBufferImageUsage& rhs) const { return Value == rhs.Value; }
+ bool operator!=(const VmaBufferImageUsage& rhs) const { return Value != rhs.Value; }
+
+ bool Contains(BaseType flag) const { return (Value & flag) != 0; }
+ bool ContainsDeviceAccess() const
+ {
+ // This relies on values of VK_IMAGE_USAGE_TRANSFER* being the same as VK_BUFFER_IMAGE_TRANSFER*.
+ return (Value & ~BaseType(VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT)) != 0;
+ }
+};
+
+const VmaBufferImageUsage VmaBufferImageUsage::UNKNOWN = VmaBufferImageUsage(0);
+
+static void swap(VmaBufferImageUsage& lhs, VmaBufferImageUsage& rhs) noexcept
+{
+ using std::swap;
+ swap(lhs.Value, rhs.Value);
+}
+
+VmaBufferImageUsage::VmaBufferImageUsage(const VkBufferCreateInfo &createInfo,
+ bool useKhrMaintenance5)
+{
+#if VMA_KHR_MAINTENANCE5
+ if(useKhrMaintenance5)
+ {
+ // If VkBufferCreateInfo::pNext chain contains VkBufferUsageFlags2CreateInfoKHR,
+ // take usage from it and ignore VkBufferCreateInfo::usage, per specification
+ // of the VK_KHR_maintenance5 extension.
+ const VkBufferUsageFlags2CreateInfoKHR* const usageFlags2 =
+ VmaPnextChainFind<VkBufferUsageFlags2CreateInfoKHR>(&createInfo, VK_STRUCTURE_TYPE_BUFFER_USAGE_FLAGS_2_CREATE_INFO_KHR);
+ if(usageFlags2)
+ {
+ this->Value = usageFlags2->usage;
+ return;
+ }
+ }
+#endif
+
+ this->Value = (BaseType)createInfo.usage;
+}
+
+VmaBufferImageUsage::VmaBufferImageUsage(const VkImageCreateInfo &createInfo)
+{
+ // Maybe in the future there will be VK_KHR_maintenanceN extension with structure
+ // VkImageUsageFlags2CreateInfoKHR, like the one for buffers...
+
+ this->Value = (BaseType)createInfo.usage;
+}
+
+// This is the main algorithm that guides the selection of a memory type best for an allocation -
+// converts usage to required/preferred/not preferred flags.
+static bool FindMemoryPreferences(
+ bool isIntegratedGPU,
+ const VmaAllocationCreateInfo& allocCreateInfo,
+ VmaBufferImageUsage bufImgUsage,
+ VkMemoryPropertyFlags& outRequiredFlags,
+ VkMemoryPropertyFlags& outPreferredFlags,
+ VkMemoryPropertyFlags& outNotPreferredFlags)
+{
+ outRequiredFlags = allocCreateInfo.requiredFlags;
+ outPreferredFlags = allocCreateInfo.preferredFlags;
+ outNotPreferredFlags = 0;
+
+ switch(allocCreateInfo.usage)
+ {
+ case VMA_MEMORY_USAGE_UNKNOWN:
+ break;
+ case VMA_MEMORY_USAGE_GPU_ONLY:
+ if(!isIntegratedGPU || (outPreferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
+ {
+ outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+ }
+ break;
+ case VMA_MEMORY_USAGE_CPU_ONLY:
+ outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
+ break;
+ case VMA_MEMORY_USAGE_CPU_TO_GPU:
+ outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+ if(!isIntegratedGPU || (outPreferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
+ {
+ outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+ }
+ break;
+ case VMA_MEMORY_USAGE_GPU_TO_CPU:
+ outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+ outPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+ break;
+ case VMA_MEMORY_USAGE_CPU_COPY:
+ outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+ break;
+ case VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED:
+ outRequiredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;
+ break;
+ case VMA_MEMORY_USAGE_AUTO:
+ case VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE:
+ case VMA_MEMORY_USAGE_AUTO_PREFER_HOST:
+ {
+ if(bufImgUsage == VmaBufferImageUsage::UNKNOWN)
+ {
+ VMA_ASSERT(0 && "VMA_MEMORY_USAGE_AUTO* values can only be used with functions like vmaCreateBuffer, vmaCreateImage so that the details of the created resource are known."
+ " Maybe you use VkBufferUsageFlags2CreateInfoKHR but forgot to use VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT?" );
+ return false;
+ }
+
+ const bool deviceAccess = bufImgUsage.ContainsDeviceAccess();
+ const bool hostAccessSequentialWrite = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT) != 0;
+ const bool hostAccessRandom = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT) != 0;
+ const bool hostAccessAllowTransferInstead = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT) != 0;
+ const bool preferDevice = allocCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE;
+ const bool preferHost = allocCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_HOST;
+
+ // CPU random access - e.g. a buffer written to or transferred from GPU to read back on CPU.
+ if(hostAccessRandom)
+ {
+ // Prefer cached. Cannot require it, because some platforms don't have it (e.g. Raspberry Pi - see #362)!
+ outPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+
+ if (!isIntegratedGPU && deviceAccess && hostAccessAllowTransferInstead && !preferHost)
+ {
+ // Nice if it will end up in HOST_VISIBLE, but more importantly prefer DEVICE_LOCAL.
+ // Omitting HOST_VISIBLE here is intentional.
+ // In case there is DEVICE_LOCAL | HOST_VISIBLE | HOST_CACHED, it will pick that one.
+ // Otherwise, this will give same weight to DEVICE_LOCAL as HOST_VISIBLE | HOST_CACHED and select the former if occurs first on the list.
+ outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+ }
+ else
+ {
+ // Always CPU memory.
+ outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+ }
+ }
+ // CPU sequential write - may be CPU or host-visible GPU memory, uncached and write-combined.
+ else if(hostAccessSequentialWrite)
+ {
+ // Want uncached and write-combined.
+ outNotPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+
+ if(!isIntegratedGPU && deviceAccess && hostAccessAllowTransferInstead && !preferHost)
+ {
+ outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+ }
+ else
+ {
+ outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+ // Direct GPU access, CPU sequential write (e.g. a dynamic uniform buffer updated every frame)
+ if(deviceAccess)
+ {
+ // Could go to CPU memory or GPU BAR/unified. Up to the user to decide. If no preference, choose GPU memory.
+ if(preferHost)
+ outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+ else
+ outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+ }
+ // GPU no direct access, CPU sequential write (e.g. an upload buffer to be transferred to the GPU)
+ else
+ {
+ // Could go to CPU memory or GPU BAR/unified. Up to the user to decide. If no preference, choose CPU memory.
+ if(preferDevice)
+ outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+ else
+ outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+ }
+ }
+ }
+ // No CPU access
+ else
+ {
+ // if(deviceAccess)
+ //
+ // GPU access, no CPU access (e.g. a color attachment image) - prefer GPU memory,
+ // unless there is a clear preference from the user not to do so.
+ //
+ // else:
+ //
+ // No direct GPU access, no CPU access, just transfers.
+ // It may be staging copy intended for e.g. preserving image for next frame (then better GPU memory) or
+ // a "swap file" copy to free some GPU memory (then better CPU memory).
+ // Up to the user to decide. If no preferece, assume the former and choose GPU memory.
+
+ if(preferHost)
+ outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+ else
+ outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+ }
+ break;
+ }
+ default:
+ VMA_ASSERT(0);
+ }
+
+ // Avoid DEVICE_COHERENT unless explicitly requested.
+ if(((allocCreateInfo.requiredFlags | allocCreateInfo.preferredFlags) &
+ (VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)) == 0)
+ {
+ outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY;
+ }
+
+ return true;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Memory allocation
+
+static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment)
+{
+ void* result = VMA_NULL;
+ if ((pAllocationCallbacks != VMA_NULL) &&
+ (pAllocationCallbacks->pfnAllocation != VMA_NULL))
+ {
+ result = (*pAllocationCallbacks->pfnAllocation)(
+ pAllocationCallbacks->pUserData,
+ size,
+ alignment,
+ VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
+ }
+ else
+ {
+ result = VMA_SYSTEM_ALIGNED_MALLOC(size, alignment);
+ }
+ VMA_ASSERT(result != VMA_NULL && "CPU memory allocation failed.");
+ return result;
+}
+
+static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr)
+{
+ if ((pAllocationCallbacks != VMA_NULL) &&
+ (pAllocationCallbacks->pfnFree != VMA_NULL))
+ {
+ (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr);
+ }
+ else
+ {
+ VMA_SYSTEM_ALIGNED_FREE(ptr);
+ }
+}
+
+template<typename T>
+static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks)
+{
+ return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T));
+}
+
+template<typename T>
+static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count)
+{
+ return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T));
+}
+
+#define vma_new(allocator, type) new(VmaAllocate<type>(allocator))(type)
+
+#define vma_new_array(allocator, type, count) new(VmaAllocateArray<type>((allocator), (count)))(type)
+
+template<typename T>
+static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr)
+{
+ ptr->~T();
+ VmaFree(pAllocationCallbacks, ptr);
+}
+
+template<typename T>
+static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count)
+{
+ if (ptr != VMA_NULL)
+ {
+ for (size_t i = count; i--; )
+ {
+ ptr[i].~T();
+ }
+ VmaFree(pAllocationCallbacks, ptr);
+ }
+}
+
+static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr)
+{
+ if (srcStr != VMA_NULL)
+ {
+ const size_t len = strlen(srcStr);
+ char* const result = vma_new_array(allocs, char, len + 1);
+ memcpy(result, srcStr, len + 1);
+ return result;
+ }
+ return VMA_NULL;
+}
+
+#if VMA_STATS_STRING_ENABLED
+static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr, size_t strLen)
+{
+ if (srcStr != VMA_NULL)
+ {
+ char* const result = vma_new_array(allocs, char, strLen + 1);
+ memcpy(result, srcStr, strLen);
+ result[strLen] = '\0';
+ return result;
+ }
+ return VMA_NULL;
+}
+#endif // VMA_STATS_STRING_ENABLED
+
+static void VmaFreeString(const VkAllocationCallbacks* allocs, char* str)
+{
+ if (str != VMA_NULL)
+ {
+ const size_t len = strlen(str);
+ vma_delete_array(allocs, str, len + 1);
+ }
+}
+
+template<typename CmpLess, typename VectorT>
+size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value)
+{
+ const size_t indexToInsert = VmaBinaryFindFirstNotLess(
+ vector.data(),
+ vector.data() + vector.size(),
+ value,
+ CmpLess()) - vector.data();
+ VmaVectorInsert(vector, indexToInsert, value);
+ return indexToInsert;
+}
+
+template<typename CmpLess, typename VectorT>
+bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value)
+{
+ CmpLess comparator;
+ typename VectorT::iterator it = VmaBinaryFindFirstNotLess(
+ vector.begin(),
+ vector.end(),
+ value,
+ comparator);
+ if ((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it))
+ {
+ size_t indexToRemove = it - vector.begin();
+ VmaVectorRemove(vector, indexToRemove);
+ return true;
+ }
+ return false;
+}
+#endif // _VMA_FUNCTIONS
+
+#ifndef _VMA_STATISTICS_FUNCTIONS
+
+static void VmaClearStatistics(VmaStatistics& outStats)
+{
+ outStats.blockCount = 0;
+ outStats.allocationCount = 0;
+ outStats.blockBytes = 0;
+ outStats.allocationBytes = 0;
+}
+
+static void VmaAddStatistics(VmaStatistics& inoutStats, const VmaStatistics& src)
+{
+ inoutStats.blockCount += src.blockCount;
+ inoutStats.allocationCount += src.allocationCount;
+ inoutStats.blockBytes += src.blockBytes;
+ inoutStats.allocationBytes += src.allocationBytes;
+}
+
+static void VmaClearDetailedStatistics(VmaDetailedStatistics& outStats)
+{
+ VmaClearStatistics(outStats.statistics);
+ outStats.unusedRangeCount = 0;
+ outStats.allocationSizeMin = VK_WHOLE_SIZE;
+ outStats.allocationSizeMax = 0;
+ outStats.unusedRangeSizeMin = VK_WHOLE_SIZE;
+ outStats.unusedRangeSizeMax = 0;
+}
+
+static void VmaAddDetailedStatisticsAllocation(VmaDetailedStatistics& inoutStats, VkDeviceSize size)
+{
+ inoutStats.statistics.allocationCount++;
+ inoutStats.statistics.allocationBytes += size;
+ inoutStats.allocationSizeMin = VMA_MIN(inoutStats.allocationSizeMin, size);
+ inoutStats.allocationSizeMax = VMA_MAX(inoutStats.allocationSizeMax, size);
+}
+
+static void VmaAddDetailedStatisticsUnusedRange(VmaDetailedStatistics& inoutStats, VkDeviceSize size)
+{
+ inoutStats.unusedRangeCount++;
+ inoutStats.unusedRangeSizeMin = VMA_MIN(inoutStats.unusedRangeSizeMin, size);
+ inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, size);
+}
+
+static void VmaAddDetailedStatistics(VmaDetailedStatistics& inoutStats, const VmaDetailedStatistics& src)
+{
+ VmaAddStatistics(inoutStats.statistics, src.statistics);
+ inoutStats.unusedRangeCount += src.unusedRangeCount;
+ inoutStats.allocationSizeMin = VMA_MIN(inoutStats.allocationSizeMin, src.allocationSizeMin);
+ inoutStats.allocationSizeMax = VMA_MAX(inoutStats.allocationSizeMax, src.allocationSizeMax);
+ inoutStats.unusedRangeSizeMin = VMA_MIN(inoutStats.unusedRangeSizeMin, src.unusedRangeSizeMin);
+ inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, src.unusedRangeSizeMax);
+}
+
+#endif // _VMA_STATISTICS_FUNCTIONS
+
+#ifndef _VMA_MUTEX_LOCK
+// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope).
+struct VmaMutexLock
+{
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaMutexLock)
+public:
+ VmaMutexLock(VMA_MUTEX& mutex, bool useMutex = true) :
+ m_pMutex(useMutex ? &mutex : VMA_NULL)
+ {
+ if (m_pMutex) { m_pMutex->Lock(); }
+ }
+ ~VmaMutexLock() { if (m_pMutex) { m_pMutex->Unlock(); } }
+
+private:
+ VMA_MUTEX* m_pMutex;
+};
+
+// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading.
+struct VmaMutexLockRead
+{
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaMutexLockRead)
+public:
+ VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) :
+ m_pMutex(useMutex ? &mutex : VMA_NULL)
+ {
+ if (m_pMutex) { m_pMutex->LockRead(); }
+ }
+ ~VmaMutexLockRead() { if (m_pMutex) { m_pMutex->UnlockRead(); } }
+
+private:
+ VMA_RW_MUTEX* m_pMutex;
+};
+
+// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing.
+struct VmaMutexLockWrite
+{
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaMutexLockWrite)
+public:
+ VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex)
+ : m_pMutex(useMutex ? &mutex : VMA_NULL)
+ {
+ if (m_pMutex) { m_pMutex->LockWrite(); }
+ }
+ ~VmaMutexLockWrite() { if (m_pMutex) { m_pMutex->UnlockWrite(); } }
+
+private:
+ VMA_RW_MUTEX* m_pMutex;
+};
+
+#if VMA_DEBUG_GLOBAL_MUTEX
+ static VMA_MUTEX gDebugGlobalMutex;
+ #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true);
+#else
+ #define VMA_DEBUG_GLOBAL_MUTEX_LOCK
+#endif
+#endif // _VMA_MUTEX_LOCK
+
+#ifndef _VMA_ATOMIC_TRANSACTIONAL_INCREMENT
+// An object that increments given atomic but decrements it back in the destructor unless Commit() is called.
+template<typename AtomicT>
+struct AtomicTransactionalIncrement
+{
+public:
+ using T = decltype(AtomicT().load());
+
+ ~AtomicTransactionalIncrement()
+ {
+ if(m_Atomic)
+ --(*m_Atomic);
+ }
+
+ void Commit() { m_Atomic = VMA_NULL; }
+ T Increment(AtomicT* atomic)
+ {
+ m_Atomic = atomic;
+ return m_Atomic->fetch_add(1);
+ }
+
+private:
+ AtomicT* m_Atomic = VMA_NULL;
+};
+#endif // _VMA_ATOMIC_TRANSACTIONAL_INCREMENT
+
+#ifndef _VMA_STL_ALLOCATOR
+// STL-compatible allocator.
+template<typename T>
+struct VmaStlAllocator
+{
+ const VkAllocationCallbacks* const m_pCallbacks;
+ typedef T value_type;
+
+ VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) {}
+ template<typename U>
+ VmaStlAllocator(const VmaStlAllocator<U>& src) : m_pCallbacks(src.m_pCallbacks) {}
+ VmaStlAllocator(const VmaStlAllocator&) = default;
+ VmaStlAllocator& operator=(const VmaStlAllocator&) = delete;
+
+ T* allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); }
+ void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); }
+
+ template<typename U>
+ bool operator==(const VmaStlAllocator<U>& rhs) const
+ {
+ return m_pCallbacks == rhs.m_pCallbacks;
+ }
+ template<typename U>
+ bool operator!=(const VmaStlAllocator<U>& rhs) const
+ {
+ return m_pCallbacks != rhs.m_pCallbacks;
+ }
+};
+#endif // _VMA_STL_ALLOCATOR
+
+#ifndef _VMA_VECTOR
+/* Class with interface compatible with subset of std::vector.
+T must be POD because constructors and destructors are not called and memcpy is
+used for these objects. */
+template<typename T, typename AllocatorT>
+class VmaVector
+{
+public:
+ typedef T value_type;
+ typedef T* iterator;
+ typedef const T* const_iterator;
+
+ VmaVector(const AllocatorT& allocator);
+ VmaVector(size_t count, const AllocatorT& allocator);
+ // This version of the constructor is here for compatibility with pre-C++14 std::vector.
+ // value is unused.
+ VmaVector(size_t count, const T& value, const AllocatorT& allocator) : VmaVector(count, allocator) {}
+ VmaVector(const VmaVector<T, AllocatorT>& src);
+ VmaVector& operator=(const VmaVector& rhs);
+ ~VmaVector() { VmaFree(m_Allocator.m_pCallbacks, m_pArray); }
+
+ bool empty() const { return m_Count == 0; }
+ size_t size() const { return m_Count; }
+ T* data() { return m_pArray; }
+ T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; }
+ T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; }
+ const T* data() const { return m_pArray; }
+ const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; }
+ const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; }
+
+ iterator begin() { return m_pArray; }
+ iterator end() { return m_pArray + m_Count; }
+ const_iterator cbegin() const { return m_pArray; }
+ const_iterator cend() const { return m_pArray + m_Count; }
+ const_iterator begin() const { return cbegin(); }
+ const_iterator end() const { return cend(); }
+
+ void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); }
+ void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); }
+ void push_front(const T& src) { insert(0, src); }
+
+ void push_back(const T& src);
+ void reserve(size_t newCapacity, bool freeMemory = false);
+ void resize(size_t newCount);
+ void clear() { resize(0); }
+ void shrink_to_fit();
+ void insert(size_t index, const T& src);
+ void remove(size_t index);
+
+ T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; }
+ const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; }
+
+private:
+ AllocatorT m_Allocator;
+ T* m_pArray;
+ size_t m_Count;
+ size_t m_Capacity;
+};
+
+#ifndef _VMA_VECTOR_FUNCTIONS
+template<typename T, typename AllocatorT>
+VmaVector<T, AllocatorT>::VmaVector(const AllocatorT& allocator)
+ : m_Allocator(allocator),
+ m_pArray(VMA_NULL),
+ m_Count(0),
+ m_Capacity(0) {}
+
+template<typename T, typename AllocatorT>
+VmaVector<T, AllocatorT>::VmaVector(size_t count, const AllocatorT& allocator)
+ : m_Allocator(allocator),
+ m_pArray(count ? (T*)VmaAllocateArray<T>(allocator.m_pCallbacks, count) : VMA_NULL),
+ m_Count(count),
+ m_Capacity(count) {}
+
+template<typename T, typename AllocatorT>
+VmaVector<T, AllocatorT>::VmaVector(const VmaVector& src)
+ : m_Allocator(src.m_Allocator),
+ m_pArray(src.m_Count ? (T*)VmaAllocateArray<T>(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL),
+ m_Count(src.m_Count),
+ m_Capacity(src.m_Count)
+{
+ if (m_Count != 0)
+ {
+ memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T));
+ }
+}
+
+template<typename T, typename AllocatorT>
+VmaVector<T, AllocatorT>& VmaVector<T, AllocatorT>::operator=(const VmaVector& rhs)
+{
+ if (&rhs != this)
+ {
+ resize(rhs.m_Count);
+ if (m_Count != 0)
+ {
+ memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T));
+ }
+ }
+ return *this;
+}
+
+template<typename T, typename AllocatorT>
+void VmaVector<T, AllocatorT>::push_back(const T& src)
+{
+ const size_t newIndex = size();
+ resize(newIndex + 1);
+ m_pArray[newIndex] = src;
+}
+
+template<typename T, typename AllocatorT>
+void VmaVector<T, AllocatorT>::reserve(size_t newCapacity, bool freeMemory)
+{
+ newCapacity = VMA_MAX(newCapacity, m_Count);
+
+ if ((newCapacity < m_Capacity) && !freeMemory)
+ {
+ newCapacity = m_Capacity;
+ }
+
+ if (newCapacity != m_Capacity)
+ {
+ T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL;
+ if (m_Count != 0)
+ {
+ memcpy(newArray, m_pArray, m_Count * sizeof(T));
+ }
+ VmaFree(m_Allocator.m_pCallbacks, m_pArray);
+ m_Capacity = newCapacity;
+ m_pArray = newArray;
+ }
+}
+
+template<typename T, typename AllocatorT>
+void VmaVector<T, AllocatorT>::resize(size_t newCount)
+{
+ size_t newCapacity = m_Capacity;
+ if (newCount > m_Capacity)
+ {
+ newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8));
+ }
+
+ if (newCapacity != m_Capacity)
+ {
+ T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL;
+ const size_t elementsToCopy = VMA_MIN(m_Count, newCount);
+ if (elementsToCopy != 0)
+ {
+ memcpy(newArray, m_pArray, elementsToCopy * sizeof(T));
+ }
+ VmaFree(m_Allocator.m_pCallbacks, m_pArray);
+ m_Capacity = newCapacity;
+ m_pArray = newArray;
+ }
+
+ m_Count = newCount;
+}
+
+template<typename T, typename AllocatorT>
+void VmaVector<T, AllocatorT>::shrink_to_fit()
+{
+ if (m_Capacity > m_Count)
+ {
+ T* newArray = VMA_NULL;
+ if (m_Count > 0)
+ {
+ newArray = VmaAllocateArray<T>(m_Allocator.m_pCallbacks, m_Count);
+ memcpy(newArray, m_pArray, m_Count * sizeof(T));
+ }
+ VmaFree(m_Allocator.m_pCallbacks, m_pArray);
+ m_Capacity = m_Count;
+ m_pArray = newArray;
+ }
+}
+
+template<typename T, typename AllocatorT>
+void VmaVector<T, AllocatorT>::insert(size_t index, const T& src)
+{
+ VMA_HEAVY_ASSERT(index <= m_Count);
+ const size_t oldCount = size();
+ resize(oldCount + 1);
+ if (index < oldCount)
+ {
+ memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T));
+ }
+ m_pArray[index] = src;
+}
+
+template<typename T, typename AllocatorT>
+void VmaVector<T, AllocatorT>::remove(size_t index)
+{
+ VMA_HEAVY_ASSERT(index < m_Count);
+ const size_t oldCount = size();
+ if (index < oldCount - 1)
+ {
+ memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T));
+ }
+ resize(oldCount - 1);
+}
+#endif // _VMA_VECTOR_FUNCTIONS
+
+template<typename T, typename allocatorT>
+static void VmaVectorInsert(VmaVector<T, allocatorT>& vec, size_t index, const T& item)
+{
+ vec.insert(index, item);
+}
+
+template<typename T, typename allocatorT>
+static void VmaVectorRemove(VmaVector<T, allocatorT>& vec, size_t index)
+{
+ vec.remove(index);
+}
+#endif // _VMA_VECTOR
+
+#ifndef _VMA_SMALL_VECTOR
+/*
+This is a vector (a variable-sized array), optimized for the case when the array is small.
+
+It contains some number of elements in-place, which allows it to avoid heap allocation
+when the actual number of elements is below that threshold. This allows normal "small"
+cases to be fast without losing generality for large inputs.
+*/
+template<typename T, typename AllocatorT, size_t N>
+class VmaSmallVector
+{
+public:
+ typedef T value_type;
+ typedef T* iterator;
+
+ VmaSmallVector(const AllocatorT& allocator);
+ VmaSmallVector(size_t count, const AllocatorT& allocator);
+ template<typename SrcT, typename SrcAllocatorT, size_t SrcN>
+ VmaSmallVector(const VmaSmallVector<SrcT, SrcAllocatorT, SrcN>&) = delete;
+ template<typename SrcT, typename SrcAllocatorT, size_t SrcN>
+ VmaSmallVector<T, AllocatorT, N>& operator=(const VmaSmallVector<SrcT, SrcAllocatorT, SrcN>&) = delete;
+ ~VmaSmallVector() = default;
+
+ bool empty() const { return m_Count == 0; }
+ size_t size() const { return m_Count; }
+ T* data() { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; }
+ T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; }
+ T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; }
+ const T* data() const { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; }
+ const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; }
+ const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; }
+
+ iterator begin() { return data(); }
+ iterator end() { return data() + m_Count; }
+
+ void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); }
+ void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); }
+ void push_front(const T& src) { insert(0, src); }
+
+ void push_back(const T& src);
+ void resize(size_t newCount, bool freeMemory = false);
+ void clear(bool freeMemory = false);
+ void insert(size_t index, const T& src);
+ void remove(size_t index);
+
+ T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; }
+ const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; }
+
+private:
+ size_t m_Count;
+ T m_StaticArray[N]; // Used when m_Size <= N
+ VmaVector<T, AllocatorT> m_DynamicArray; // Used when m_Size > N
+};
+
+#ifndef _VMA_SMALL_VECTOR_FUNCTIONS
+template<typename T, typename AllocatorT, size_t N>
+VmaSmallVector<T, AllocatorT, N>::VmaSmallVector(const AllocatorT& allocator)
+ : m_Count(0),
+ m_DynamicArray(allocator) {}
+
+template<typename T, typename AllocatorT, size_t N>
+VmaSmallVector<T, AllocatorT, N>::VmaSmallVector(size_t count, const AllocatorT& allocator)
+ : m_Count(count),
+ m_DynamicArray(count > N ? count : 0, allocator) {}
+
+template<typename T, typename AllocatorT, size_t N>
+void VmaSmallVector<T, AllocatorT, N>::push_back(const T& src)
+{
+ const size_t newIndex = size();
+ resize(newIndex + 1);
+ data()[newIndex] = src;
+}
+
+template<typename T, typename AllocatorT, size_t N>
+void VmaSmallVector<T, AllocatorT, N>::resize(size_t newCount, bool freeMemory)
+{
+ if (newCount > N && m_Count > N)
+ {
+ // Any direction, staying in m_DynamicArray
+ m_DynamicArray.resize(newCount);
+ if (freeMemory)
+ {
+ m_DynamicArray.shrink_to_fit();
+ }
+ }
+ else if (newCount > N && m_Count <= N)
+ {
+ // Growing, moving from m_StaticArray to m_DynamicArray
+ m_DynamicArray.resize(newCount);
+ if (m_Count > 0)
+ {
+ memcpy(m_DynamicArray.data(), m_StaticArray, m_Count * sizeof(T));
+ }
+ }
+ else if (newCount <= N && m_Count > N)
+ {
+ // Shrinking, moving from m_DynamicArray to m_StaticArray
+ if (newCount > 0)
+ {
+ memcpy(m_StaticArray, m_DynamicArray.data(), newCount * sizeof(T));
+ }
+ m_DynamicArray.resize(0);
+ if (freeMemory)
+ {
+ m_DynamicArray.shrink_to_fit();
+ }
+ }
+ else
+ {
+ // Any direction, staying in m_StaticArray - nothing to do here
+ }
+ m_Count = newCount;
+}
+
+template<typename T, typename AllocatorT, size_t N>
+void VmaSmallVector<T, AllocatorT, N>::clear(bool freeMemory)
+{
+ m_DynamicArray.clear();
+ if (freeMemory)
+ {
+ m_DynamicArray.shrink_to_fit();
+ }
+ m_Count = 0;
+}
+
+template<typename T, typename AllocatorT, size_t N>
+void VmaSmallVector<T, AllocatorT, N>::insert(size_t index, const T& src)
+{
+ VMA_HEAVY_ASSERT(index <= m_Count);
+ const size_t oldCount = size();
+ resize(oldCount + 1);
+ T* const dataPtr = data();
+ if (index < oldCount)
+ {
+ // I know, this could be more optimal for case where memmove can be memcpy directly from m_StaticArray to m_DynamicArray.
+ memmove(dataPtr + (index + 1), dataPtr + index, (oldCount - index) * sizeof(T));
+ }
+ dataPtr[index] = src;
+}
+
+template<typename T, typename AllocatorT, size_t N>
+void VmaSmallVector<T, AllocatorT, N>::remove(size_t index)
+{
+ VMA_HEAVY_ASSERT(index < m_Count);
+ const size_t oldCount = size();
+ if (index < oldCount - 1)
+ {
+ // I know, this could be more optimal for case where memmove can be memcpy directly from m_DynamicArray to m_StaticArray.
+ T* const dataPtr = data();
+ memmove(dataPtr + index, dataPtr + (index + 1), (oldCount - index - 1) * sizeof(T));
+ }
+ resize(oldCount - 1);
+}
+#endif // _VMA_SMALL_VECTOR_FUNCTIONS
+#endif // _VMA_SMALL_VECTOR
+
+#ifndef _VMA_POOL_ALLOCATOR
+/*
+Allocator for objects of type T using a list of arrays (pools) to speed up
+allocation. Number of elements that can be allocated is not bounded because
+allocator can create multiple blocks.
+*/
+template<typename T>
+class VmaPoolAllocator
+{
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaPoolAllocator)
+public:
+ VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity);
+ ~VmaPoolAllocator();
+ template<typename... Types> T* Alloc(Types&&... args);
+ void Free(T* ptr);
+
+private:
+ union Item
+ {
+ uint32_t NextFreeIndex;
+ alignas(T) char Value[sizeof(T)];
+ };
+ struct ItemBlock
+ {
+ Item* pItems;
+ uint32_t Capacity;
+ uint32_t FirstFreeIndex;
+ };
+
+ const VkAllocationCallbacks* m_pAllocationCallbacks;
+ const uint32_t m_FirstBlockCapacity;
+ VmaVector<ItemBlock, VmaStlAllocator<ItemBlock>> m_ItemBlocks;
+
+ ItemBlock& CreateNewBlock();
+};
+
+#ifndef _VMA_POOL_ALLOCATOR_FUNCTIONS
+template<typename T>
+VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity)
+ : m_pAllocationCallbacks(pAllocationCallbacks),
+ m_FirstBlockCapacity(firstBlockCapacity),
+ m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks))
+{
+ VMA_ASSERT(m_FirstBlockCapacity > 1);
+}
+
+template<typename T>
+VmaPoolAllocator<T>::~VmaPoolAllocator()
+{
+ for (size_t i = m_ItemBlocks.size(); i--;)
+ vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity);
+ m_ItemBlocks.clear();
+}
+
+template<typename T>
+template<typename... Types> T* VmaPoolAllocator<T>::Alloc(Types&&... args)
+{
+ for (size_t i = m_ItemBlocks.size(); i--; )
+ {
+ ItemBlock& block = m_ItemBlocks[i];
+ // This block has some free items: Use first one.
+ if (block.FirstFreeIndex != UINT32_MAX)
+ {
+ Item* const pItem = &block.pItems[block.FirstFreeIndex];
+ block.FirstFreeIndex = pItem->NextFreeIndex;
+ T* result = (T*)&pItem->Value;
+ new(result)T(std::forward<Types>(args)...); // Explicit constructor call.
+ return result;
+ }
+ }
+
+ // No block has free item: Create new one and use it.
+ ItemBlock& newBlock = CreateNewBlock();
+ Item* const pItem = &newBlock.pItems[0];
+ newBlock.FirstFreeIndex = pItem->NextFreeIndex;
+ T* result = (T*)&pItem->Value;
+ new(result) T(std::forward<Types>(args)...); // Explicit constructor call.
+ return result;
+}
+
+template<typename T>
+void VmaPoolAllocator<T>::Free(T* ptr)
+{
+ // Search all memory blocks to find ptr.
+ for (size_t i = m_ItemBlocks.size(); i--; )
+ {
+ ItemBlock& block = m_ItemBlocks[i];
+
+ // Casting to union.
+ Item* pItemPtr;
+ memcpy(&pItemPtr, &ptr, sizeof(pItemPtr));
+
+ // Check if pItemPtr is in address range of this block.
+ if ((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity))
+ {
+ ptr->~T(); // Explicit destructor call.
+ const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems);
+ pItemPtr->NextFreeIndex = block.FirstFreeIndex;
+ block.FirstFreeIndex = index;
+ return;
+ }
+ }
+ VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool.");
+}
+
+template<typename T>
+typename VmaPoolAllocator<T>::ItemBlock& VmaPoolAllocator<T>::CreateNewBlock()
+{
+ const uint32_t newBlockCapacity = m_ItemBlocks.empty() ?
+ m_FirstBlockCapacity : m_ItemBlocks.back().Capacity * 3 / 2;
+
+ const ItemBlock newBlock =
+ {
+ vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity),
+ newBlockCapacity,
+ 0
+ };
+
+ m_ItemBlocks.push_back(newBlock);
+
+ // Setup singly-linked list of all free items in this block.
+ for (uint32_t i = 0; i < newBlockCapacity - 1; ++i)
+ newBlock.pItems[i].NextFreeIndex = i + 1;
+ newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX;
+ return m_ItemBlocks.back();
+}
+#endif // _VMA_POOL_ALLOCATOR_FUNCTIONS
+#endif // _VMA_POOL_ALLOCATOR
+
+#ifndef _VMA_RAW_LIST
+template<typename T>
+struct VmaListItem
+{
+ VmaListItem* pPrev;
+ VmaListItem* pNext;
+ T Value;
+};
+
+// Doubly linked list.
+template<typename T>
+class VmaRawList
+{
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaRawList)
+public:
+ typedef VmaListItem<T> ItemType;
+
+ VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks);
+ // Intentionally not calling Clear, because that would be unnecessary
+ // computations to return all items to m_ItemAllocator as free.
+ ~VmaRawList() = default;
+
+ size_t GetCount() const { return m_Count; }
+ bool IsEmpty() const { return m_Count == 0; }
+
+ ItemType* Front() { return m_pFront; }
+ ItemType* Back() { return m_pBack; }
+ const ItemType* Front() const { return m_pFront; }
+ const ItemType* Back() const { return m_pBack; }
+
+ ItemType* PushFront();
+ ItemType* PushBack();
+ ItemType* PushFront(const T& value);
+ ItemType* PushBack(const T& value);
+ void PopFront();
+ void PopBack();
+
+ // Item can be null - it means PushBack.
+ ItemType* InsertBefore(ItemType* pItem);
+ // Item can be null - it means PushFront.
+ ItemType* InsertAfter(ItemType* pItem);
+ ItemType* InsertBefore(ItemType* pItem, const T& value);
+ ItemType* InsertAfter(ItemType* pItem, const T& value);
+
+ void Clear();
+ void Remove(ItemType* pItem);
+
+private:
+ const VkAllocationCallbacks* const m_pAllocationCallbacks;
+ VmaPoolAllocator<ItemType> m_ItemAllocator;
+ ItemType* m_pFront;
+ ItemType* m_pBack;
+ size_t m_Count;
+};
+
+#ifndef _VMA_RAW_LIST_FUNCTIONS
+template<typename T>
+VmaRawList<T>::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks)
+ : m_pAllocationCallbacks(pAllocationCallbacks),
+ m_ItemAllocator(pAllocationCallbacks, 128),
+ m_pFront(VMA_NULL),
+ m_pBack(VMA_NULL),
+ m_Count(0) {}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::PushFront()
+{
+ ItemType* const pNewItem = m_ItemAllocator.Alloc();
+ pNewItem->pPrev = VMA_NULL;
+ if (IsEmpty())
+ {
+ pNewItem->pNext = VMA_NULL;
+ m_pFront = pNewItem;
+ m_pBack = pNewItem;
+ m_Count = 1;
+ }
+ else
+ {
+ pNewItem->pNext = m_pFront;
+ m_pFront->pPrev = pNewItem;
+ m_pFront = pNewItem;
+ ++m_Count;
+ }
+ return pNewItem;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::PushBack()
+{
+ ItemType* const pNewItem = m_ItemAllocator.Alloc();
+ pNewItem->pNext = VMA_NULL;
+ if(IsEmpty())
+ {
+ pNewItem->pPrev = VMA_NULL;
+ m_pFront = pNewItem;
+ m_pBack = pNewItem;
+ m_Count = 1;
+ }
+ else
+ {
+ pNewItem->pPrev = m_pBack;
+ m_pBack->pNext = pNewItem;
+ m_pBack = pNewItem;
+ ++m_Count;
+ }
+ return pNewItem;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::PushFront(const T& value)
+{
+ ItemType* const pNewItem = PushFront();
+ pNewItem->Value = value;
+ return pNewItem;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::PushBack(const T& value)
+{
+ ItemType* const pNewItem = PushBack();
+ pNewItem->Value = value;
+ return pNewItem;
+}
+
+template<typename T>
+void VmaRawList<T>::PopFront()
+{
+ VMA_HEAVY_ASSERT(m_Count > 0);
+ ItemType* const pFrontItem = m_pFront;
+ ItemType* const pNextItem = pFrontItem->pNext;
+ if (pNextItem != VMA_NULL)
+ {
+ pNextItem->pPrev = VMA_NULL;
+ }
+ m_pFront = pNextItem;
+ m_ItemAllocator.Free(pFrontItem);
+ --m_Count;
+}
+
+template<typename T>
+void VmaRawList<T>::PopBack()
+{
+ VMA_HEAVY_ASSERT(m_Count > 0);
+ ItemType* const pBackItem = m_pBack;
+ ItemType* const pPrevItem = pBackItem->pPrev;
+ if(pPrevItem != VMA_NULL)
+ {
+ pPrevItem->pNext = VMA_NULL;
+ }
+ m_pBack = pPrevItem;
+ m_ItemAllocator.Free(pBackItem);
+ --m_Count;
+}
+
+template<typename T>
+void VmaRawList<T>::Clear()
+{
+ if (IsEmpty() == false)
+ {
+ ItemType* pItem = m_pBack;
+ while (pItem != VMA_NULL)
+ {
+ ItemType* const pPrevItem = pItem->pPrev;
+ m_ItemAllocator.Free(pItem);
+ pItem = pPrevItem;
+ }
+ m_pFront = VMA_NULL;
+ m_pBack = VMA_NULL;
+ m_Count = 0;
+ }
+}
+
+template<typename T>
+void VmaRawList<T>::Remove(ItemType* pItem)
+{
+ VMA_HEAVY_ASSERT(pItem != VMA_NULL);
+ VMA_HEAVY_ASSERT(m_Count > 0);
+
+ if(pItem->pPrev != VMA_NULL)
+ {
+ pItem->pPrev->pNext = pItem->pNext;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(m_pFront == pItem);
+ m_pFront = pItem->pNext;
+ }
+
+ if(pItem->pNext != VMA_NULL)
+ {
+ pItem->pNext->pPrev = pItem->pPrev;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(m_pBack == pItem);
+ m_pBack = pItem->pPrev;
+ }
+
+ m_ItemAllocator.Free(pItem);
+ --m_Count;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem)
+{
+ if(pItem != VMA_NULL)
+ {
+ ItemType* const prevItem = pItem->pPrev;
+ ItemType* const newItem = m_ItemAllocator.Alloc();
+ newItem->pPrev = prevItem;
+ newItem->pNext = pItem;
+ pItem->pPrev = newItem;
+ if(prevItem != VMA_NULL)
+ {
+ prevItem->pNext = newItem;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(m_pFront == pItem);
+ m_pFront = newItem;
+ }
+ ++m_Count;
+ return newItem;
+ }
+ else
+ return PushBack();
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem)
+{
+ if(pItem != VMA_NULL)
+ {
+ ItemType* const nextItem = pItem->pNext;
+ ItemType* const newItem = m_ItemAllocator.Alloc();
+ newItem->pNext = nextItem;
+ newItem->pPrev = pItem;
+ pItem->pNext = newItem;
+ if(nextItem != VMA_NULL)
+ {
+ nextItem->pPrev = newItem;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(m_pBack == pItem);
+ m_pBack = newItem;
+ }
+ ++m_Count;
+ return newItem;
+ }
+ else
+ return PushFront();
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem, const T& value)
+{
+ ItemType* const newItem = InsertBefore(pItem);
+ newItem->Value = value;
+ return newItem;
+}
+
+template<typename T>
+VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem, const T& value)
+{
+ ItemType* const newItem = InsertAfter(pItem);
+ newItem->Value = value;
+ return newItem;
+}
+#endif // _VMA_RAW_LIST_FUNCTIONS
+#endif // _VMA_RAW_LIST
+
+#ifndef _VMA_LIST
+template<typename T, typename AllocatorT>
+class VmaList
+{
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaList)
+public:
+ class reverse_iterator;
+ class const_iterator;
+ class const_reverse_iterator;
+
+ class iterator
+ {
+ friend class const_iterator;
+ friend class VmaList<T, AllocatorT>;
+ public:
+ iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
+ iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
+
+ T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
+ T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
+
+ bool operator==(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
+ bool operator!=(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
+
+ iterator operator++(int) { iterator result = *this; ++*this; return result; }
+ iterator operator--(int) { iterator result = *this; --*this; return result; }
+
+ iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; }
+ iterator& operator--();
+
+ private:
+ VmaRawList<T>* m_pList;
+ VmaListItem<T>* m_pItem;
+
+ iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) : m_pList(pList), m_pItem(pItem) {}
+ };
+ class reverse_iterator
+ {
+ friend class const_reverse_iterator;
+ friend class VmaList<T, AllocatorT>;
+ public:
+ reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
+ reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
+
+ T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
+ T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
+
+ bool operator==(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
+ bool operator!=(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
+
+ reverse_iterator operator++(int) { reverse_iterator result = *this; ++* this; return result; }
+ reverse_iterator operator--(int) { reverse_iterator result = *this; --* this; return result; }
+
+ reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; }
+ reverse_iterator& operator--();
+
+ private:
+ VmaRawList<T>* m_pList;
+ VmaListItem<T>* m_pItem;
+
+ reverse_iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) : m_pList(pList), m_pItem(pItem) {}
+ };
+ class const_iterator
+ {
+ friend class VmaList<T, AllocatorT>;
+ public:
+ const_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
+ const_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
+ const_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
+
+ iterator drop_const() { return { const_cast<VmaRawList<T>*>(m_pList), const_cast<VmaListItem<T>*>(m_pItem) }; }
+
+ const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
+ const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
+
+ bool operator==(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
+ bool operator!=(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
+
+ const_iterator operator++(int) { const_iterator result = *this; ++* this; return result; }
+ const_iterator operator--(int) { const_iterator result = *this; --* this; return result; }
+
+ const_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; }
+ const_iterator& operator--();
+
+ private:
+ const VmaRawList<T>* m_pList;
+ const VmaListItem<T>* m_pItem;
+
+ const_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) : m_pList(pList), m_pItem(pItem) {}
+ };
+ class const_reverse_iterator
+ {
+ friend class VmaList<T, AllocatorT>;
+ public:
+ const_reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
+ const_reverse_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
+ const_reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
+
+ reverse_iterator drop_const() { return { const_cast<VmaRawList<T>*>(m_pList), const_cast<VmaListItem<T>*>(m_pItem) }; }
+
+ const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
+ const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
+
+ bool operator==(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
+ bool operator!=(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
+
+ const_reverse_iterator operator++(int) { const_reverse_iterator result = *this; ++* this; return result; }
+ const_reverse_iterator operator--(int) { const_reverse_iterator result = *this; --* this; return result; }
+
+ const_reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; }
+ const_reverse_iterator& operator--();
+
+ private:
+ const VmaRawList<T>* m_pList;
+ const VmaListItem<T>* m_pItem;
+
+ const_reverse_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) : m_pList(pList), m_pItem(pItem) {}
+ };
+
+ VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) {}
+
+ bool empty() const { return m_RawList.IsEmpty(); }
+ size_t size() const { return m_RawList.GetCount(); }
+
+ iterator begin() { return iterator(&m_RawList, m_RawList.Front()); }
+ iterator end() { return iterator(&m_RawList, VMA_NULL); }
+
+ const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); }
+ const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); }
+
+ const_iterator begin() const { return cbegin(); }
+ const_iterator end() const { return cend(); }
+
+ reverse_iterator rbegin() { return reverse_iterator(&m_RawList, m_RawList.Back()); }
+ reverse_iterator rend() { return reverse_iterator(&m_RawList, VMA_NULL); }
+
+ const_reverse_iterator crbegin() const { return const_reverse_iterator(&m_RawList, m_RawList.Back()); }
+ const_reverse_iterator crend() const { return const_reverse_iterator(&m_RawList, VMA_NULL); }
+
+ const_reverse_iterator rbegin() const { return crbegin(); }
+ const_reverse_iterator rend() const { return crend(); }
+
+ void push_back(const T& value) { m_RawList.PushBack(value); }
+ iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); }
+
+ void clear() { m_RawList.Clear(); }
+ void erase(iterator it) { m_RawList.Remove(it.m_pItem); }
+
+private:
+ VmaRawList<T> m_RawList;
+};
+
+#ifndef _VMA_LIST_FUNCTIONS
+template<typename T, typename AllocatorT>
+typename VmaList<T, AllocatorT>::iterator& VmaList<T, AllocatorT>::iterator::operator--()
+{
+ if (m_pItem != VMA_NULL)
+ {
+ m_pItem = m_pItem->pPrev;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
+ m_pItem = m_pList->Back();
+ }
+ return *this;
+}
+
+template<typename T, typename AllocatorT>
+typename VmaList<T, AllocatorT>::reverse_iterator& VmaList<T, AllocatorT>::reverse_iterator::operator--()
+{
+ if (m_pItem != VMA_NULL)
+ {
+ m_pItem = m_pItem->pNext;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
+ m_pItem = m_pList->Front();
+ }
+ return *this;
+}
+
+template<typename T, typename AllocatorT>
+typename VmaList<T, AllocatorT>::const_iterator& VmaList<T, AllocatorT>::const_iterator::operator--()
+{
+ if (m_pItem != VMA_NULL)
+ {
+ m_pItem = m_pItem->pPrev;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
+ m_pItem = m_pList->Back();
+ }
+ return *this;
+}
+
+template<typename T, typename AllocatorT>
+typename VmaList<T, AllocatorT>::const_reverse_iterator& VmaList<T, AllocatorT>::const_reverse_iterator::operator--()
+{
+ if (m_pItem != VMA_NULL)
+ {
+ m_pItem = m_pItem->pNext;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
+ m_pItem = m_pList->Back();
+ }
+ return *this;
+}
+#endif // _VMA_LIST_FUNCTIONS
+#endif // _VMA_LIST
+
+#ifndef _VMA_INTRUSIVE_LINKED_LIST
+/*
+Expected interface of ItemTypeTraits:
+struct MyItemTypeTraits
+{
+ typedef MyItem ItemType;
+ static ItemType* GetPrev(const ItemType* item) { return item->myPrevPtr; }
+ static ItemType* GetNext(const ItemType* item) { return item->myNextPtr; }
+ static ItemType*& AccessPrev(ItemType* item) { return item->myPrevPtr; }
+ static ItemType*& AccessNext(ItemType* item) { return item->myNextPtr; }
+};
+*/
+template<typename ItemTypeTraits>
+class VmaIntrusiveLinkedList
+{
+public:
+ typedef typename ItemTypeTraits::ItemType ItemType;
+ static ItemType* GetPrev(const ItemType* item) { return ItemTypeTraits::GetPrev(item); }
+ static ItemType* GetNext(const ItemType* item) { return ItemTypeTraits::GetNext(item); }
+
+ // Movable, not copyable.
+ VmaIntrusiveLinkedList() = default;
+ VmaIntrusiveLinkedList(VmaIntrusiveLinkedList && src);
+ VmaIntrusiveLinkedList(const VmaIntrusiveLinkedList&) = delete;
+ VmaIntrusiveLinkedList& operator=(VmaIntrusiveLinkedList&& src);
+ VmaIntrusiveLinkedList& operator=(const VmaIntrusiveLinkedList&) = delete;
+ ~VmaIntrusiveLinkedList() { VMA_HEAVY_ASSERT(IsEmpty()); }
+
+ size_t GetCount() const { return m_Count; }
+ bool IsEmpty() const { return m_Count == 0; }
+ ItemType* Front() { return m_Front; }
+ ItemType* Back() { return m_Back; }
+ const ItemType* Front() const { return m_Front; }
+ const ItemType* Back() const { return m_Back; }
+
+ void PushBack(ItemType* item);
+ void PushFront(ItemType* item);
+ ItemType* PopBack();
+ ItemType* PopFront();
+
+ // MyItem can be null - it means PushBack.
+ void InsertBefore(ItemType* existingItem, ItemType* newItem);
+ // MyItem can be null - it means PushFront.
+ void InsertAfter(ItemType* existingItem, ItemType* newItem);
+ void Remove(ItemType* item);
+ void RemoveAll();
+
+private:
+ ItemType* m_Front = VMA_NULL;
+ ItemType* m_Back = VMA_NULL;
+ size_t m_Count = 0;
+};
+
+#ifndef _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS
+template<typename ItemTypeTraits>
+VmaIntrusiveLinkedList<ItemTypeTraits>::VmaIntrusiveLinkedList(VmaIntrusiveLinkedList&& src)
+ : m_Front(src.m_Front), m_Back(src.m_Back), m_Count(src.m_Count)
+{
+ src.m_Front = src.m_Back = VMA_NULL;
+ src.m_Count = 0;
+}
+
+template<typename ItemTypeTraits>
+VmaIntrusiveLinkedList<ItemTypeTraits>& VmaIntrusiveLinkedList<ItemTypeTraits>::operator=(VmaIntrusiveLinkedList&& src)
+{
+ if (&src != this)
+ {
+ VMA_HEAVY_ASSERT(IsEmpty());
+ m_Front = src.m_Front;
+ m_Back = src.m_Back;
+ m_Count = src.m_Count;
+ src.m_Front = src.m_Back = VMA_NULL;
+ src.m_Count = 0;
+ }
+ return *this;
+}
+
+template<typename ItemTypeTraits>
+void VmaIntrusiveLinkedList<ItemTypeTraits>::PushBack(ItemType* item)
+{
+ VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL);
+ if (IsEmpty())
+ {
+ m_Front = item;
+ m_Back = item;
+ m_Count = 1;
+ }
+ else
+ {
+ ItemTypeTraits::AccessPrev(item) = m_Back;
+ ItemTypeTraits::AccessNext(m_Back) = item;
+ m_Back = item;
+ ++m_Count;
+ }
+}
+
+template<typename ItemTypeTraits>
+void VmaIntrusiveLinkedList<ItemTypeTraits>::PushFront(ItemType* item)
+{
+ VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL);
+ if (IsEmpty())
+ {
+ m_Front = item;
+ m_Back = item;
+ m_Count = 1;
+ }
+ else
+ {
+ ItemTypeTraits::AccessNext(item) = m_Front;
+ ItemTypeTraits::AccessPrev(m_Front) = item;
+ m_Front = item;
+ ++m_Count;
+ }
+}
+
+template<typename ItemTypeTraits>
+typename VmaIntrusiveLinkedList<ItemTypeTraits>::ItemType* VmaIntrusiveLinkedList<ItemTypeTraits>::PopBack()
+{
+ VMA_HEAVY_ASSERT(m_Count > 0);
+ ItemType* const backItem = m_Back;
+ ItemType* const prevItem = ItemTypeTraits::GetPrev(backItem);
+ if (prevItem != VMA_NULL)
+ {
+ ItemTypeTraits::AccessNext(prevItem) = VMA_NULL;
+ }
+ m_Back = prevItem;
+ --m_Count;
+ ItemTypeTraits::AccessPrev(backItem) = VMA_NULL;
+ ItemTypeTraits::AccessNext(backItem) = VMA_NULL;
+ return backItem;
+}
+
+template<typename ItemTypeTraits>
+typename VmaIntrusiveLinkedList<ItemTypeTraits>::ItemType* VmaIntrusiveLinkedList<ItemTypeTraits>::PopFront()
+{
+ VMA_HEAVY_ASSERT(m_Count > 0);
+ ItemType* const frontItem = m_Front;
+ ItemType* const nextItem = ItemTypeTraits::GetNext(frontItem);
+ if (nextItem != VMA_NULL)
+ {
+ ItemTypeTraits::AccessPrev(nextItem) = VMA_NULL;
+ }
+ m_Front = nextItem;
+ --m_Count;
+ ItemTypeTraits::AccessPrev(frontItem) = VMA_NULL;
+ ItemTypeTraits::AccessNext(frontItem) = VMA_NULL;
+ return frontItem;
+}
+
+template<typename ItemTypeTraits>
+void VmaIntrusiveLinkedList<ItemTypeTraits>::InsertBefore(ItemType* existingItem, ItemType* newItem)
+{
+ VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL);
+ if (existingItem != VMA_NULL)
+ {
+ ItemType* const prevItem = ItemTypeTraits::GetPrev(existingItem);
+ ItemTypeTraits::AccessPrev(newItem) = prevItem;
+ ItemTypeTraits::AccessNext(newItem) = existingItem;
+ ItemTypeTraits::AccessPrev(existingItem) = newItem;
+ if (prevItem != VMA_NULL)
+ {
+ ItemTypeTraits::AccessNext(prevItem) = newItem;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(m_Front == existingItem);
+ m_Front = newItem;
+ }
+ ++m_Count;
+ }
+ else
+ PushBack(newItem);
+}
+
+template<typename ItemTypeTraits>
+void VmaIntrusiveLinkedList<ItemTypeTraits>::InsertAfter(ItemType* existingItem, ItemType* newItem)
+{
+ VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL);
+ if (existingItem != VMA_NULL)
+ {
+ ItemType* const nextItem = ItemTypeTraits::GetNext(existingItem);
+ ItemTypeTraits::AccessNext(newItem) = nextItem;
+ ItemTypeTraits::AccessPrev(newItem) = existingItem;
+ ItemTypeTraits::AccessNext(existingItem) = newItem;
+ if (nextItem != VMA_NULL)
+ {
+ ItemTypeTraits::AccessPrev(nextItem) = newItem;
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(m_Back == existingItem);
+ m_Back = newItem;
+ }
+ ++m_Count;
+ }
+ else
+ return PushFront(newItem);
+}
+
+template<typename ItemTypeTraits>
+void VmaIntrusiveLinkedList<ItemTypeTraits>::Remove(ItemType* item)
+{
+ VMA_HEAVY_ASSERT(item != VMA_NULL && m_Count > 0);
+ if (ItemTypeTraits::GetPrev(item) != VMA_NULL)
+ {
+ ItemTypeTraits::AccessNext(ItemTypeTraits::AccessPrev(item)) = ItemTypeTraits::GetNext(item);
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(m_Front == item);
+ m_Front = ItemTypeTraits::GetNext(item);
+ }
+
+ if (ItemTypeTraits::GetNext(item) != VMA_NULL)
+ {
+ ItemTypeTraits::AccessPrev(ItemTypeTraits::AccessNext(item)) = ItemTypeTraits::GetPrev(item);
+ }
+ else
+ {
+ VMA_HEAVY_ASSERT(m_Back == item);
+ m_Back = ItemTypeTraits::GetPrev(item);
+ }
+ ItemTypeTraits::AccessPrev(item) = VMA_NULL;
+ ItemTypeTraits::AccessNext(item) = VMA_NULL;
+ --m_Count;
+}
+
+template<typename ItemTypeTraits>
+void VmaIntrusiveLinkedList<ItemTypeTraits>::RemoveAll()
+{
+ if (!IsEmpty())
+ {
+ ItemType* item = m_Back;
+ while (item != VMA_NULL)
+ {
+ ItemType* const prevItem = ItemTypeTraits::AccessPrev(item);
+ ItemTypeTraits::AccessPrev(item) = VMA_NULL;
+ ItemTypeTraits::AccessNext(item) = VMA_NULL;
+ item = prevItem;
+ }
+ m_Front = VMA_NULL;
+ m_Back = VMA_NULL;
+ m_Count = 0;
+ }
+}
+#endif // _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS
+#endif // _VMA_INTRUSIVE_LINKED_LIST
+
+#if !defined(_VMA_STRING_BUILDER) && VMA_STATS_STRING_ENABLED
+class VmaStringBuilder
+{
+public:
+ VmaStringBuilder(const VkAllocationCallbacks* allocationCallbacks) : m_Data(VmaStlAllocator<char>(allocationCallbacks)) {}
+ ~VmaStringBuilder() = default;
+
+ size_t GetLength() const { return m_Data.size(); }
+ const char* GetData() const { return m_Data.data(); }
+ void AddNewLine() { Add('\n'); }
+ void Add(char ch) { m_Data.push_back(ch); }
+
+ void Add(const char* pStr);
+ void AddNumber(uint32_t num);
+ void AddNumber(uint64_t num);
+ void AddPointer(const void* ptr);
+
+private:
+ VmaVector<char, VmaStlAllocator<char>> m_Data;
+};
+
+#ifndef _VMA_STRING_BUILDER_FUNCTIONS
+void VmaStringBuilder::Add(const char* pStr)
+{
+ const size_t strLen = strlen(pStr);
+ if (strLen > 0)
+ {
+ const size_t oldCount = m_Data.size();
+ m_Data.resize(oldCount + strLen);
+ memcpy(m_Data.data() + oldCount, pStr, strLen);
+ }
+}
+
+void VmaStringBuilder::AddNumber(uint32_t num)
+{
+ char buf[11];
+ buf[10] = '\0';
+ char* p = &buf[10];
+ do
+ {
+ *--p = '0' + (char)(num % 10);
+ num /= 10;
+ } while (num);
+ Add(p);
+}
+
+void VmaStringBuilder::AddNumber(uint64_t num)
+{
+ char buf[21];
+ buf[20] = '\0';
+ char* p = &buf[20];
+ do
+ {
+ *--p = '0' + (char)(num % 10);
+ num /= 10;
+ } while (num);
+ Add(p);
+}
+
+void VmaStringBuilder::AddPointer(const void* ptr)
+{
+ char buf[21];
+ VmaPtrToStr(buf, sizeof(buf), ptr);
+ Add(buf);
+}
+#endif //_VMA_STRING_BUILDER_FUNCTIONS
+#endif // _VMA_STRING_BUILDER
+
+#if !defined(_VMA_JSON_WRITER) && VMA_STATS_STRING_ENABLED
+/*
+Allows to conveniently build a correct JSON document to be written to the
+VmaStringBuilder passed to the constructor.
+*/
+class VmaJsonWriter
+{
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaJsonWriter)
+public:
+ // sb - string builder to write the document to. Must remain alive for the whole lifetime of this object.
+ VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb);
+ ~VmaJsonWriter();
+
+ // Begins object by writing "{".
+ // Inside an object, you must call pairs of WriteString and a value, e.g.:
+ // j.BeginObject(true); j.WriteString("A"); j.WriteNumber(1); j.WriteString("B"); j.WriteNumber(2); j.EndObject();
+ // Will write: { "A": 1, "B": 2 }
+ void BeginObject(bool singleLine = false);
+ // Ends object by writing "}".
+ void EndObject();
+
+ // Begins array by writing "[".
+ // Inside an array, you can write a sequence of any values.
+ void BeginArray(bool singleLine = false);
+ // Ends array by writing "[".
+ void EndArray();
+
+ // Writes a string value inside "".
+ // pStr can contain any ANSI characters, including '"', new line etc. - they will be properly escaped.
+ void WriteString(const char* pStr);
+
+ // Begins writing a string value.
+ // Call BeginString, ContinueString, ContinueString, ..., EndString instead of
+ // WriteString to conveniently build the string content incrementally, made of
+ // parts including numbers.
+ void BeginString(const char* pStr = VMA_NULL);
+ // Posts next part of an open string.
+ void ContinueString(const char* pStr);
+ // Posts next part of an open string. The number is converted to decimal characters.
+ void ContinueString(uint32_t n);
+ void ContinueString(uint64_t n);
+ // Posts next part of an open string. Pointer value is converted to characters
+ // using "%p" formatting - shown as hexadecimal number, e.g.: 000000081276Ad00
+ void ContinueString_Pointer(const void* ptr);
+ // Ends writing a string value by writing '"'.
+ void EndString(const char* pStr = VMA_NULL);
+
+ // Writes a number value.
+ void WriteNumber(uint32_t n);
+ void WriteNumber(uint64_t n);
+ // Writes a boolean value - false or true.
+ void WriteBool(bool b);
+ // Writes a null value.
+ void WriteNull();
+
+private:
+ enum COLLECTION_TYPE
+ {
+ COLLECTION_TYPE_OBJECT,
+ COLLECTION_TYPE_ARRAY,
+ };
+ struct StackItem
+ {
+ COLLECTION_TYPE type;
+ uint32_t valueCount;
+ bool singleLineMode;
+ };
+
+ static const char* const INDENT;
+
+ VmaStringBuilder& m_SB;
+ VmaVector< StackItem, VmaStlAllocator<StackItem> > m_Stack;
+ bool m_InsideString;
+
+ void BeginValue(bool isString);
+ void WriteIndent(bool oneLess = false);
+};
+const char* const VmaJsonWriter::INDENT = " ";
+
+#ifndef _VMA_JSON_WRITER_FUNCTIONS
+VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb)
+ : m_SB(sb),
+ m_Stack(VmaStlAllocator<StackItem>(pAllocationCallbacks)),
+ m_InsideString(false) {}
+
+VmaJsonWriter::~VmaJsonWriter()
+{
+ VMA_ASSERT(!m_InsideString);
+ VMA_ASSERT(m_Stack.empty());
+}
+
+void VmaJsonWriter::BeginObject(bool singleLine)
+{
+ VMA_ASSERT(!m_InsideString);
+
+ BeginValue(false);
+ m_SB.Add('{');
+
+ StackItem item;
+ item.type = COLLECTION_TYPE_OBJECT;
+ item.valueCount = 0;
+ item.singleLineMode = singleLine;
+ m_Stack.push_back(item);
+}
+
+void VmaJsonWriter::EndObject()
+{
+ VMA_ASSERT(!m_InsideString);
+
+ WriteIndent(true);
+ m_SB.Add('}');
+
+ VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT);
+ m_Stack.pop_back();
+}
+
+void VmaJsonWriter::BeginArray(bool singleLine)
+{
+ VMA_ASSERT(!m_InsideString);
+
+ BeginValue(false);
+ m_SB.Add('[');
+
+ StackItem item;
+ item.type = COLLECTION_TYPE_ARRAY;
+ item.valueCount = 0;
+ item.singleLineMode = singleLine;
+ m_Stack.push_back(item);
+}
+
+void VmaJsonWriter::EndArray()
+{
+ VMA_ASSERT(!m_InsideString);
+
+ WriteIndent(true);
+ m_SB.Add(']');
+
+ VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY);
+ m_Stack.pop_back();
+}
+
+void VmaJsonWriter::WriteString(const char* pStr)
+{
+ BeginString(pStr);
+ EndString();
+}
+
+void VmaJsonWriter::BeginString(const char* pStr)
+{
+ VMA_ASSERT(!m_InsideString);
+
+ BeginValue(true);
+ m_SB.Add('"');
+ m_InsideString = true;
+ if (pStr != VMA_NULL && pStr[0] != '\0')
+ {
+ ContinueString(pStr);
+ }
+}
+
+void VmaJsonWriter::ContinueString(const char* pStr)
+{
+ VMA_ASSERT(m_InsideString);
+
+ const size_t strLen = strlen(pStr);
+ for (size_t i = 0; i < strLen; ++i)
+ {
+ char ch = pStr[i];
+ if (ch == '\\')
+ {
+ m_SB.Add("\\\\");
+ }
+ else if (ch == '"')
+ {
+ m_SB.Add("\\\"");
+ }
+ else if ((uint8_t)ch >= 32)
+ {
+ m_SB.Add(ch);
+ }
+ else switch (ch)
+ {
+ case '\b':
+ m_SB.Add("\\b");
+ break;
+ case '\f':
+ m_SB.Add("\\f");
+ break;
+ case '\n':
+ m_SB.Add("\\n");
+ break;
+ case '\r':
+ m_SB.Add("\\r");
+ break;
+ case '\t':
+ m_SB.Add("\\t");
+ break;
+ default:
+ VMA_ASSERT(0 && "Character not currently supported.");
+ }
+ }
+}
+
+void VmaJsonWriter::ContinueString(uint32_t n)
+{
+ VMA_ASSERT(m_InsideString);
+ m_SB.AddNumber(n);
+}
+
+void VmaJsonWriter::ContinueString(uint64_t n)
+{
+ VMA_ASSERT(m_InsideString);
+ m_SB.AddNumber(n);
+}
+
+void VmaJsonWriter::ContinueString_Pointer(const void* ptr)
+{
+ VMA_ASSERT(m_InsideString);
+ m_SB.AddPointer(ptr);
+}
+
+void VmaJsonWriter::EndString(const char* pStr)
+{
+ VMA_ASSERT(m_InsideString);
+ if (pStr != VMA_NULL && pStr[0] != '\0')
+ {
+ ContinueString(pStr);
+ }
+ m_SB.Add('"');
+ m_InsideString = false;
+}
+
+void VmaJsonWriter::WriteNumber(uint32_t n)
+{
+ VMA_ASSERT(!m_InsideString);
+ BeginValue(false);
+ m_SB.AddNumber(n);
+}
+
+void VmaJsonWriter::WriteNumber(uint64_t n)
+{
+ VMA_ASSERT(!m_InsideString);
+ BeginValue(false);
+ m_SB.AddNumber(n);
+}
+
+void VmaJsonWriter::WriteBool(bool b)
+{
+ VMA_ASSERT(!m_InsideString);
+ BeginValue(false);
+ m_SB.Add(b ? "true" : "false");
+}
+
+void VmaJsonWriter::WriteNull()
+{
+ VMA_ASSERT(!m_InsideString);
+ BeginValue(false);
+ m_SB.Add("null");
+}
+
+void VmaJsonWriter::BeginValue(bool isString)
+{
+ if (!m_Stack.empty())
+ {
+ StackItem& currItem = m_Stack.back();
+ if (currItem.type == COLLECTION_TYPE_OBJECT &&
+ currItem.valueCount % 2 == 0)
+ {
+ VMA_ASSERT(isString);
+ }
+
+ if (currItem.type == COLLECTION_TYPE_OBJECT &&
+ currItem.valueCount % 2 != 0)
+ {
+ m_SB.Add(": ");
+ }
+ else if (currItem.valueCount > 0)
+ {
+ m_SB.Add(", ");
+ WriteIndent();
+ }
+ else
+ {
+ WriteIndent();
+ }
+ ++currItem.valueCount;
+ }
+}
+
+void VmaJsonWriter::WriteIndent(bool oneLess)
+{
+ if (!m_Stack.empty() && !m_Stack.back().singleLineMode)
+ {
+ m_SB.AddNewLine();
+
+ size_t count = m_Stack.size();
+ if (count > 0 && oneLess)
+ {
+ --count;
+ }
+ for (size_t i = 0; i < count; ++i)
+ {
+ m_SB.Add(INDENT);
+ }
+ }
+}
+#endif // _VMA_JSON_WRITER_FUNCTIONS
+
+static void VmaPrintDetailedStatistics(VmaJsonWriter& json, const VmaDetailedStatistics& stat)
+{
+ json.BeginObject();
+
+ json.WriteString("BlockCount");
+ json.WriteNumber(stat.statistics.blockCount);
+ json.WriteString("BlockBytes");
+ json.WriteNumber(stat.statistics.blockBytes);
+ json.WriteString("AllocationCount");
+ json.WriteNumber(stat.statistics.allocationCount);
+ json.WriteString("AllocationBytes");
+ json.WriteNumber(stat.statistics.allocationBytes);
+ json.WriteString("UnusedRangeCount");
+ json.WriteNumber(stat.unusedRangeCount);
+
+ if (stat.statistics.allocationCount > 1)
+ {
+ json.WriteString("AllocationSizeMin");
+ json.WriteNumber(stat.allocationSizeMin);
+ json.WriteString("AllocationSizeMax");
+ json.WriteNumber(stat.allocationSizeMax);
+ }
+ if (stat.unusedRangeCount > 1)
+ {
+ json.WriteString("UnusedRangeSizeMin");
+ json.WriteNumber(stat.unusedRangeSizeMin);
+ json.WriteString("UnusedRangeSizeMax");
+ json.WriteNumber(stat.unusedRangeSizeMax);
+ }
+ json.EndObject();
+}
+#endif // _VMA_JSON_WRITER
+
+#ifndef _VMA_MAPPING_HYSTERESIS
+
+class VmaMappingHysteresis
+{
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaMappingHysteresis)
+public:
+ VmaMappingHysteresis() = default;
+
+ uint32_t GetExtraMapping() const { return m_ExtraMapping; }
+
+ // Call when Map was called.
+ // Returns true if switched to extra +1 mapping reference count.
+ bool PostMap()
+ {
+#if VMA_MAPPING_HYSTERESIS_ENABLED
+ if(m_ExtraMapping == 0)
+ {
+ ++m_MajorCounter;
+ if(m_MajorCounter >= COUNTER_MIN_EXTRA_MAPPING)
+ {
+ m_ExtraMapping = 1;
+ m_MajorCounter = 0;
+ m_MinorCounter = 0;
+ return true;
+ }
+ }
+ else // m_ExtraMapping == 1
+ PostMinorCounter();
+#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED
+ return false;
+ }
+
+ // Call when Unmap was called.
+ void PostUnmap()
+ {
+#if VMA_MAPPING_HYSTERESIS_ENABLED
+ if(m_ExtraMapping == 0)
+ ++m_MajorCounter;
+ else // m_ExtraMapping == 1
+ PostMinorCounter();
+#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED
+ }
+
+ // Call when allocation was made from the memory block.
+ void PostAlloc()
+ {
+#if VMA_MAPPING_HYSTERESIS_ENABLED
+ if(m_ExtraMapping == 1)
+ ++m_MajorCounter;
+ else // m_ExtraMapping == 0
+ PostMinorCounter();
+#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED
+ }
+
+ // Call when allocation was freed from the memory block.
+ // Returns true if switched to extra -1 mapping reference count.
+ bool PostFree()
+ {
+#if VMA_MAPPING_HYSTERESIS_ENABLED
+ if(m_ExtraMapping == 1)
+ {
+ ++m_MajorCounter;
+ if(m_MajorCounter >= COUNTER_MIN_EXTRA_MAPPING &&
+ m_MajorCounter > m_MinorCounter + 1)
+ {
+ m_ExtraMapping = 0;
+ m_MajorCounter = 0;
+ m_MinorCounter = 0;
+ return true;
+ }
+ }
+ else // m_ExtraMapping == 0
+ PostMinorCounter();
+#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED
+ return false;
+ }
+
+private:
+ static const int32_t COUNTER_MIN_EXTRA_MAPPING = 7;
+
+ uint32_t m_MinorCounter = 0;
+ uint32_t m_MajorCounter = 0;
+ uint32_t m_ExtraMapping = 0; // 0 or 1.
+
+ void PostMinorCounter()
+ {
+ if(m_MinorCounter < m_MajorCounter)
+ {
+ ++m_MinorCounter;
+ }
+ else if(m_MajorCounter > 0)
+ {
+ --m_MajorCounter;
+ --m_MinorCounter;
+ }
+ }
+};
+
+#endif // _VMA_MAPPING_HYSTERESIS
+
+#ifndef _VMA_DEVICE_MEMORY_BLOCK
+/*
+Represents a single block of device memory (`VkDeviceMemory`) with all the
+data about its regions (aka suballocations, #VmaAllocation), assigned and free.
+
+Thread-safety:
+- Access to m_pMetadata must be externally synchronized.
+- Map, Unmap, Bind* are synchronized internally.
+*/
+class VmaDeviceMemoryBlock
+{
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaDeviceMemoryBlock)
+public:
+ VmaBlockMetadata* m_pMetadata;
+
+ VmaDeviceMemoryBlock(VmaAllocator hAllocator);
+ ~VmaDeviceMemoryBlock();
+
+ // Always call after construction.
+ void Init(
+ VmaAllocator hAllocator,
+ VmaPool hParentPool,
+ uint32_t newMemoryTypeIndex,
+ VkDeviceMemory newMemory,
+ VkDeviceSize newSize,
+ uint32_t id,
+ uint32_t algorithm,
+ VkDeviceSize bufferImageGranularity);
+ // Always call before destruction.
+ void Destroy(VmaAllocator allocator);
+
+ VmaPool GetParentPool() const { return m_hParentPool; }
+ VkDeviceMemory GetDeviceMemory() const { return m_hMemory; }
+ uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
+ uint32_t GetId() const { return m_Id; }
+ void* GetMappedData() const { return m_pMappedData; }
+ uint32_t GetMapRefCount() const { return m_MapCount; }
+
+ // Call when allocation/free was made from m_pMetadata.
+ // Used for m_MappingHysteresis.
+ void PostAlloc(VmaAllocator hAllocator);
+ void PostFree(VmaAllocator hAllocator);
+
+ // Validates all data structures inside this object. If not valid, returns false.
+ bool Validate() const;
+ VkResult CheckCorruption(VmaAllocator hAllocator);
+
+ // ppData can be null.
+ VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData);
+ void Unmap(VmaAllocator hAllocator, uint32_t count);
+
+ VkResult WriteMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);
+ VkResult ValidateMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);
+
+ VkResult BindBufferMemory(
+ const VmaAllocator hAllocator,
+ const VmaAllocation hAllocation,
+ VkDeviceSize allocationLocalOffset,
+ VkBuffer hBuffer,
+ const void* pNext);
+ VkResult BindImageMemory(
+ const VmaAllocator hAllocator,
+ const VmaAllocation hAllocation,
+ VkDeviceSize allocationLocalOffset,
+ VkImage hImage,
+ const void* pNext);
+
+private:
+ VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool.
+ uint32_t m_MemoryTypeIndex;
+ uint32_t m_Id;
+ VkDeviceMemory m_hMemory;
+
+ /*
+ Protects access to m_hMemory so it is not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory.
+ Also protects m_MapCount, m_pMappedData.
+ Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex.
+ */
+ VMA_MUTEX m_MapAndBindMutex;
+ VmaMappingHysteresis m_MappingHysteresis;
+ uint32_t m_MapCount;
+ void* m_pMappedData;
+};
+#endif // _VMA_DEVICE_MEMORY_BLOCK
+
+#ifndef _VMA_ALLOCATION_T
+struct VmaAllocation_T
+{
+ friend struct VmaDedicatedAllocationListItemTraits;
+
+ enum FLAGS
+ {
+ FLAG_PERSISTENT_MAP = 0x01,
+ FLAG_MAPPING_ALLOWED = 0x02,
+ };
+
+public:
+ enum ALLOCATION_TYPE
+ {
+ ALLOCATION_TYPE_NONE,
+ ALLOCATION_TYPE_BLOCK,
+ ALLOCATION_TYPE_DEDICATED,
+ };
+
+ // This struct is allocated using VmaPoolAllocator.
+ VmaAllocation_T(bool mappingAllowed);
+ ~VmaAllocation_T();
+
+ void InitBlockAllocation(
+ VmaDeviceMemoryBlock* block,
+ VmaAllocHandle allocHandle,
+ VkDeviceSize alignment,
+ VkDeviceSize size,
+ uint32_t memoryTypeIndex,
+ VmaSuballocationType suballocationType,
+ bool mapped);
+ // pMappedData not null means allocation is created with MAPPED flag.
+ void InitDedicatedAllocation(
+ VmaPool hParentPool,
+ uint32_t memoryTypeIndex,
+ VkDeviceMemory hMemory,
+ VmaSuballocationType suballocationType,
+ void* pMappedData,
+ VkDeviceSize size);
+
+ ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; }
+ VkDeviceSize GetAlignment() const { return m_Alignment; }
+ VkDeviceSize GetSize() const { return m_Size; }
+ void* GetUserData() const { return m_pUserData; }
+ const char* GetName() const { return m_pName; }
+ VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; }
+
+ VmaDeviceMemoryBlock* GetBlock() const { VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); return m_BlockAllocation.m_Block; }
+ uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
+ bool IsPersistentMap() const { return (m_Flags & FLAG_PERSISTENT_MAP) != 0; }
+ bool IsMappingAllowed() const { return (m_Flags & FLAG_MAPPING_ALLOWED) != 0; }
+
+ void SetUserData(VmaAllocator hAllocator, void* pUserData) { m_pUserData = pUserData; }
+ void SetName(VmaAllocator hAllocator, const char* pName);
+ void FreeName(VmaAllocator hAllocator);
+ uint8_t SwapBlockAllocation(VmaAllocator hAllocator, VmaAllocation allocation);
+ VmaAllocHandle GetAllocHandle() const;
+ VkDeviceSize GetOffset() const;
+ VmaPool GetParentPool() const;
+ VkDeviceMemory GetMemory() const;
+ void* GetMappedData() const;
+
+ void BlockAllocMap();
+ void BlockAllocUnmap();
+ VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData);
+ void DedicatedAllocUnmap(VmaAllocator hAllocator);
+
+#if VMA_STATS_STRING_ENABLED
+ VmaBufferImageUsage GetBufferImageUsage() const { return m_BufferImageUsage; }
+ void InitBufferUsage(const VkBufferCreateInfo &createInfo, bool useKhrMaintenance5)
+ {
+ VMA_ASSERT(m_BufferImageUsage == VmaBufferImageUsage::UNKNOWN);
+ m_BufferImageUsage = VmaBufferImageUsage(createInfo, useKhrMaintenance5);
+ }
+ void InitImageUsage(const VkImageCreateInfo &createInfo)
+ {
+ VMA_ASSERT(m_BufferImageUsage == VmaBufferImageUsage::UNKNOWN);
+ m_BufferImageUsage = VmaBufferImageUsage(createInfo);
+ }
+ void PrintParameters(class VmaJsonWriter& json) const;
+#endif
+
+private:
+ // Allocation out of VmaDeviceMemoryBlock.
+ struct BlockAllocation
+ {
+ VmaDeviceMemoryBlock* m_Block;
+ VmaAllocHandle m_AllocHandle;
+ };
+ // Allocation for an object that has its own private VkDeviceMemory.
+ struct DedicatedAllocation
+ {
+ VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool.
+ VkDeviceMemory m_hMemory;
+ void* m_pMappedData; // Not null means memory is mapped.
+ VmaAllocation_T* m_Prev;
+ VmaAllocation_T* m_Next;
+ };
+ union
+ {
+ // Allocation out of VmaDeviceMemoryBlock.
+ BlockAllocation m_BlockAllocation;
+ // Allocation for an object that has its own private VkDeviceMemory.
+ DedicatedAllocation m_DedicatedAllocation;
+ };
+
+ VkDeviceSize m_Alignment;
+ VkDeviceSize m_Size;
+ void* m_pUserData;
+ char* m_pName;
+ uint32_t m_MemoryTypeIndex;
+ uint8_t m_Type; // ALLOCATION_TYPE
+ uint8_t m_SuballocationType; // VmaSuballocationType
+ // Reference counter for vmaMapMemory()/vmaUnmapMemory().
+ uint8_t m_MapCount;
+ uint8_t m_Flags; // enum FLAGS
+#if VMA_STATS_STRING_ENABLED
+ VmaBufferImageUsage m_BufferImageUsage; // 0 if unknown.
+#endif
+};
+#endif // _VMA_ALLOCATION_T
+
+#ifndef _VMA_DEDICATED_ALLOCATION_LIST_ITEM_TRAITS
+struct VmaDedicatedAllocationListItemTraits
+{
+ typedef VmaAllocation_T ItemType;
+
+ static ItemType* GetPrev(const ItemType* item)
+ {
+ VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
+ return item->m_DedicatedAllocation.m_Prev;
+ }
+ static ItemType* GetNext(const ItemType* item)
+ {
+ VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
+ return item->m_DedicatedAllocation.m_Next;
+ }
+ static ItemType*& AccessPrev(ItemType* item)
+ {
+ VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
+ return item->m_DedicatedAllocation.m_Prev;
+ }
+ static ItemType*& AccessNext(ItemType* item)
+ {
+ VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
+ return item->m_DedicatedAllocation.m_Next;
+ }
+};
+#endif // _VMA_DEDICATED_ALLOCATION_LIST_ITEM_TRAITS
+
+#ifndef _VMA_DEDICATED_ALLOCATION_LIST
+/*
+Stores linked list of VmaAllocation_T objects.
+Thread-safe, synchronized internally.
+*/
+class VmaDedicatedAllocationList
+{
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaDedicatedAllocationList)
+public:
+ VmaDedicatedAllocationList() {}
+ ~VmaDedicatedAllocationList();
+
+ void Init(bool useMutex) { m_UseMutex = useMutex; }
+ bool Validate();
+
+ void AddDetailedStatistics(VmaDetailedStatistics& inoutStats);
+ void AddStatistics(VmaStatistics& inoutStats);
+#if VMA_STATS_STRING_ENABLED
+ // Writes JSON array with the list of allocations.
+ void BuildStatsString(VmaJsonWriter& json);
+#endif
+
+ bool IsEmpty();
+ void Register(VmaAllocation alloc);
+ void Unregister(VmaAllocation alloc);
+
+private:
+ typedef VmaIntrusiveLinkedList<VmaDedicatedAllocationListItemTraits> DedicatedAllocationLinkedList;
+
+ bool m_UseMutex = true;
+ VMA_RW_MUTEX m_Mutex;
+ DedicatedAllocationLinkedList m_AllocationList;
+};
+
+#ifndef _VMA_DEDICATED_ALLOCATION_LIST_FUNCTIONS
+
+VmaDedicatedAllocationList::~VmaDedicatedAllocationList()
+{
+ VMA_HEAVY_ASSERT(Validate());
+
+ if (!m_AllocationList.IsEmpty())
+ {
+ VMA_ASSERT_LEAK(false && "Unfreed dedicated allocations found!");
+ }
+}
+
+bool VmaDedicatedAllocationList::Validate()
+{
+ const size_t declaredCount = m_AllocationList.GetCount();
+ size_t actualCount = 0;
+ VmaMutexLockRead lock(m_Mutex, m_UseMutex);
+ for (VmaAllocation alloc = m_AllocationList.Front();
+ alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc))
+ {
+ ++actualCount;
+ }
+ VMA_VALIDATE(actualCount == declaredCount);
+
+ return true;
+}
+
+void VmaDedicatedAllocationList::AddDetailedStatistics(VmaDetailedStatistics& inoutStats)
+{
+ for(auto* item = m_AllocationList.Front(); item != VMA_NULL; item = DedicatedAllocationLinkedList::GetNext(item))
+ {
+ const VkDeviceSize size = item->GetSize();
+ inoutStats.statistics.blockCount++;
+ inoutStats.statistics.blockBytes += size;
+ VmaAddDetailedStatisticsAllocation(inoutStats, item->GetSize());
+ }
+}
+
+void VmaDedicatedAllocationList::AddStatistics(VmaStatistics& inoutStats)
+{
+ VmaMutexLockRead lock(m_Mutex, m_UseMutex);
+
+ const uint32_t allocCount = (uint32_t)m_AllocationList.GetCount();
+ inoutStats.blockCount += allocCount;
+ inoutStats.allocationCount += allocCount;
+
+ for(auto* item = m_AllocationList.Front(); item != VMA_NULL; item = DedicatedAllocationLinkedList::GetNext(item))
+ {
+ const VkDeviceSize size = item->GetSize();
+ inoutStats.blockBytes += size;
+ inoutStats.allocationBytes += size;
+ }
+}
+
+#if VMA_STATS_STRING_ENABLED
+void VmaDedicatedAllocationList::BuildStatsString(VmaJsonWriter& json)
+{
+ VmaMutexLockRead lock(m_Mutex, m_UseMutex);
+ json.BeginArray();
+ for (VmaAllocation alloc = m_AllocationList.Front();
+ alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc))
+ {
+ json.BeginObject(true);
+ alloc->PrintParameters(json);
+ json.EndObject();
+ }
+ json.EndArray();
+}
+#endif // VMA_STATS_STRING_ENABLED
+
+bool VmaDedicatedAllocationList::IsEmpty()
+{
+ VmaMutexLockRead lock(m_Mutex, m_UseMutex);
+ return m_AllocationList.IsEmpty();
+}
+
+void VmaDedicatedAllocationList::Register(VmaAllocation alloc)
+{
+ VmaMutexLockWrite lock(m_Mutex, m_UseMutex);
+ m_AllocationList.PushBack(alloc);
+}
+
+void VmaDedicatedAllocationList::Unregister(VmaAllocation alloc)
+{
+ VmaMutexLockWrite lock(m_Mutex, m_UseMutex);
+ m_AllocationList.Remove(alloc);
+}
+#endif // _VMA_DEDICATED_ALLOCATION_LIST_FUNCTIONS
+#endif // _VMA_DEDICATED_ALLOCATION_LIST
+
+#ifndef _VMA_SUBALLOCATION
+/*
+Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as
+allocated memory block or free.
+*/
+struct VmaSuballocation
+{
+ VkDeviceSize offset;
+ VkDeviceSize size;
+ void* userData;
+ VmaSuballocationType type;
+};
+
+// Comparator for offsets.
+struct VmaSuballocationOffsetLess
+{
+ bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const
+ {
+ return lhs.offset < rhs.offset;
+ }
+};
+
+struct VmaSuballocationOffsetGreater
+{
+ bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const
+ {
+ return lhs.offset > rhs.offset;
+ }
+};
+
+struct VmaSuballocationItemSizeLess
+{
+ bool operator()(const VmaSuballocationList::iterator lhs,
+ const VmaSuballocationList::iterator rhs) const
+ {
+ return lhs->size < rhs->size;
+ }
+
+ bool operator()(const VmaSuballocationList::iterator lhs,
+ VkDeviceSize rhsSize) const
+ {
+ return lhs->size < rhsSize;
+ }
+};
+#endif // _VMA_SUBALLOCATION
+
+#ifndef _VMA_ALLOCATION_REQUEST
+/*
+Parameters of planned allocation inside a VmaDeviceMemoryBlock.
+item points to a FREE suballocation.
+*/
+struct VmaAllocationRequest
+{
+ VmaAllocHandle allocHandle;
+ VkDeviceSize size;
+ VmaSuballocationList::iterator item;
+ void* customData;
+ uint64_t algorithmData;
+ VmaAllocationRequestType type;
+};
+#endif // _VMA_ALLOCATION_REQUEST
+
+#ifndef _VMA_BLOCK_METADATA
+/*
+Data structure used for bookkeeping of allocations and unused ranges of memory
+in a single VkDeviceMemory block.
+*/
+class VmaBlockMetadata
+{
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockMetadata)
+public:
+ // pAllocationCallbacks, if not null, must be owned externally - alive and unchanged for the whole lifetime of this object.
+ VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks,
+ VkDeviceSize bufferImageGranularity, bool isVirtual);
+ virtual ~VmaBlockMetadata() = default;
+
+ virtual void Init(VkDeviceSize size) { m_Size = size; }
+ bool IsVirtual() const { return m_IsVirtual; }
+ VkDeviceSize GetSize() const { return m_Size; }
+
+ // Validates all data structures inside this object. If not valid, returns false.
+ virtual bool Validate() const = 0;
+ virtual size_t GetAllocationCount() const = 0;
+ virtual size_t GetFreeRegionsCount() const = 0;
+ virtual VkDeviceSize GetSumFreeSize() const = 0;
+ // Returns true if this block is empty - contains only single free suballocation.
+ virtual bool IsEmpty() const = 0;
+ virtual void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) = 0;
+ virtual VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const = 0;
+ virtual void* GetAllocationUserData(VmaAllocHandle allocHandle) const = 0;
+
+ virtual VmaAllocHandle GetAllocationListBegin() const = 0;
+ virtual VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const = 0;
+ virtual VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const = 0;
+
+ // Shouldn't modify blockCount.
+ virtual void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const = 0;
+ virtual void AddStatistics(VmaStatistics& inoutStats) const = 0;
+
+#if VMA_STATS_STRING_ENABLED
+ virtual void PrintDetailedMap(class VmaJsonWriter& json) const = 0;
+#endif
+
+ // Tries to find a place for suballocation with given parameters inside this block.
+ // If succeeded, fills pAllocationRequest and returns true.
+ // If failed, returns false.
+ virtual bool CreateAllocationRequest(
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ bool upperAddress,
+ VmaSuballocationType allocType,
+ // Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags.
+ uint32_t strategy,
+ VmaAllocationRequest* pAllocationRequest) = 0;
+
+ virtual VkResult CheckCorruption(const void* pBlockData) = 0;
+
+ // Makes actual allocation based on request. Request must already be checked and valid.
+ virtual void Alloc(
+ const VmaAllocationRequest& request,
+ VmaSuballocationType type,
+ void* userData) = 0;
+
+ // Frees suballocation assigned to given memory region.
+ virtual void Free(VmaAllocHandle allocHandle) = 0;
+
+ // Frees all allocations.
+ // Careful! Don't call it if there are VmaAllocation objects owned by userData of cleared allocations!
+ virtual void Clear() = 0;
+
+ virtual void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) = 0;
+ virtual void DebugLogAllAllocations() const = 0;
+
+protected:
+ const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_pAllocationCallbacks; }
+ VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }
+ VkDeviceSize GetDebugMargin() const { return VkDeviceSize(IsVirtual() ? 0 : VMA_DEBUG_MARGIN); }
+
+ void DebugLogAllocation(VkDeviceSize offset, VkDeviceSize size, void* userData) const;
+#if VMA_STATS_STRING_ENABLED
+ // mapRefCount == UINT32_MAX means unspecified.
+ void PrintDetailedMap_Begin(class VmaJsonWriter& json,
+ VkDeviceSize unusedBytes,
+ size_t allocationCount,
+ size_t unusedRangeCount) const;
+ void PrintDetailedMap_Allocation(class VmaJsonWriter& json,
+ VkDeviceSize offset, VkDeviceSize size, void* userData) const;
+ void PrintDetailedMap_UnusedRange(class VmaJsonWriter& json,
+ VkDeviceSize offset,
+ VkDeviceSize size) const;
+ void PrintDetailedMap_End(class VmaJsonWriter& json) const;
+#endif
+
+private:
+ VkDeviceSize m_Size;
+ const VkAllocationCallbacks* m_pAllocationCallbacks;
+ const VkDeviceSize m_BufferImageGranularity;
+ const bool m_IsVirtual;
+};
+
+#ifndef _VMA_BLOCK_METADATA_FUNCTIONS
+VmaBlockMetadata::VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks,
+ VkDeviceSize bufferImageGranularity, bool isVirtual)
+ : m_Size(0),
+ m_pAllocationCallbacks(pAllocationCallbacks),
+ m_BufferImageGranularity(bufferImageGranularity),
+ m_IsVirtual(isVirtual) {}
+
+void VmaBlockMetadata::DebugLogAllocation(VkDeviceSize offset, VkDeviceSize size, void* userData) const
+{
+ if (IsVirtual())
+ {
+ VMA_LEAK_LOG_FORMAT("UNFREED VIRTUAL ALLOCATION; Offset: %" PRIu64 "; Size: %" PRIu64 "; UserData: %p", offset, size, userData);
+ }
+ else
+ {
+ VMA_ASSERT(userData != VMA_NULL);
+ VmaAllocation allocation = reinterpret_cast<VmaAllocation>(userData);
+
+ userData = allocation->GetUserData();
+ const char* name = allocation->GetName();
+
+#if VMA_STATS_STRING_ENABLED
+ VMA_LEAK_LOG_FORMAT("UNFREED ALLOCATION; Offset: %" PRIu64 "; Size: %" PRIu64 "; UserData: %p; Name: %s; Type: %s; Usage: %" PRIu64,
+ offset, size, userData, name ? name : "vma_empty",
+ VMA_SUBALLOCATION_TYPE_NAMES[allocation->GetSuballocationType()],
+ (uint64_t)allocation->GetBufferImageUsage().Value);
+#else
+ VMA_LEAK_LOG_FORMAT("UNFREED ALLOCATION; Offset: %" PRIu64 "; Size: %" PRIu64 "; UserData: %p; Name: %s; Type: %u",
+ offset, size, userData, name ? name : "vma_empty",
+ (unsigned)allocation->GetSuballocationType());
+#endif // VMA_STATS_STRING_ENABLED
+ }
+
+}
+
+#if VMA_STATS_STRING_ENABLED
+void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter& json,
+ VkDeviceSize unusedBytes, size_t allocationCount, size_t unusedRangeCount) const
+{
+ json.WriteString("TotalBytes");
+ json.WriteNumber(GetSize());
+
+ json.WriteString("UnusedBytes");
+ json.WriteNumber(unusedBytes);
+
+ json.WriteString("Allocations");
+ json.WriteNumber((uint64_t)allocationCount);
+
+ json.WriteString("UnusedRanges");
+ json.WriteNumber((uint64_t)unusedRangeCount);
+
+ json.WriteString("Suballocations");
+ json.BeginArray();
+}
+
+void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter& json,
+ VkDeviceSize offset, VkDeviceSize size, void* userData) const
+{
+ json.BeginObject(true);
+
+ json.WriteString("Offset");
+ json.WriteNumber(offset);
+
+ if (IsVirtual())
+ {
+ json.WriteString("Size");
+ json.WriteNumber(size);
+ if (userData)
+ {
+ json.WriteString("CustomData");
+ json.BeginString();
+ json.ContinueString_Pointer(userData);
+ json.EndString();
+ }
+ }
+ else
+ {
+ ((VmaAllocation)userData)->PrintParameters(json);
+ }
+
+ json.EndObject();
+}
+
+void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter& json,
+ VkDeviceSize offset, VkDeviceSize size) const
+{
+ json.BeginObject(true);
+
+ json.WriteString("Offset");
+ json.WriteNumber(offset);
+
+ json.WriteString("Type");
+ json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]);
+
+ json.WriteString("Size");
+ json.WriteNumber(size);
+
+ json.EndObject();
+}
+
+void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter& json) const
+{
+ json.EndArray();
+}
+#endif // VMA_STATS_STRING_ENABLED
+#endif // _VMA_BLOCK_METADATA_FUNCTIONS
+#endif // _VMA_BLOCK_METADATA
+
+#ifndef _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY
+// Before deleting object of this class remember to call 'Destroy()'
+class VmaBlockBufferImageGranularity final
+{
+public:
+ struct ValidationContext
+ {
+ const VkAllocationCallbacks* allocCallbacks;
+ uint16_t* pageAllocs;
+ };
+
+ VmaBlockBufferImageGranularity(VkDeviceSize bufferImageGranularity);
+ ~VmaBlockBufferImageGranularity();
+
+ bool IsEnabled() const { return m_BufferImageGranularity > MAX_LOW_BUFFER_IMAGE_GRANULARITY; }
+
+ void Init(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize size);
+ // Before destroying object you must call free it's memory
+ void Destroy(const VkAllocationCallbacks* pAllocationCallbacks);
+
+ void RoundupAllocRequest(VmaSuballocationType allocType,
+ VkDeviceSize& inOutAllocSize,
+ VkDeviceSize& inOutAllocAlignment) const;
+
+ bool CheckConflictAndAlignUp(VkDeviceSize& inOutAllocOffset,
+ VkDeviceSize allocSize,
+ VkDeviceSize blockOffset,
+ VkDeviceSize blockSize,
+ VmaSuballocationType allocType) const;
+
+ void AllocPages(uint8_t allocType, VkDeviceSize offset, VkDeviceSize size);
+ void FreePages(VkDeviceSize offset, VkDeviceSize size);
+ void Clear();
+
+ ValidationContext StartValidation(const VkAllocationCallbacks* pAllocationCallbacks,
+ bool isVirutal) const;
+ bool Validate(ValidationContext& ctx, VkDeviceSize offset, VkDeviceSize size) const;
+ bool FinishValidation(ValidationContext& ctx) const;
+
+private:
+ static const uint16_t MAX_LOW_BUFFER_IMAGE_GRANULARITY = 256;
+
+ struct RegionInfo
+ {
+ uint8_t allocType;
+ uint16_t allocCount;
+ };
+
+ VkDeviceSize m_BufferImageGranularity;
+ uint32_t m_RegionCount;
+ RegionInfo* m_RegionInfo;
+
+ uint32_t GetStartPage(VkDeviceSize offset) const { return OffsetToPageIndex(offset & ~(m_BufferImageGranularity - 1)); }
+ uint32_t GetEndPage(VkDeviceSize offset, VkDeviceSize size) const { return OffsetToPageIndex((offset + size - 1) & ~(m_BufferImageGranularity - 1)); }
+
+ uint32_t OffsetToPageIndex(VkDeviceSize offset) const;
+ void AllocPage(RegionInfo& page, uint8_t allocType);
+};
+
+#ifndef _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY_FUNCTIONS
+VmaBlockBufferImageGranularity::VmaBlockBufferImageGranularity(VkDeviceSize bufferImageGranularity)
+ : m_BufferImageGranularity(bufferImageGranularity),
+ m_RegionCount(0),
+ m_RegionInfo(VMA_NULL) {}
+
+VmaBlockBufferImageGranularity::~VmaBlockBufferImageGranularity()
+{
+ VMA_ASSERT(m_RegionInfo == VMA_NULL && "Free not called before destroying object!");
+}
+
+void VmaBlockBufferImageGranularity::Init(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize size)
+{
+ if (IsEnabled())
+ {
+ m_RegionCount = static_cast<uint32_t>(VmaDivideRoundingUp(size, m_BufferImageGranularity));
+ m_RegionInfo = vma_new_array(pAllocationCallbacks, RegionInfo, m_RegionCount);
+ memset(m_RegionInfo, 0, m_RegionCount * sizeof(RegionInfo));
+ }
+}
+
+void VmaBlockBufferImageGranularity::Destroy(const VkAllocationCallbacks* pAllocationCallbacks)
+{
+ if (m_RegionInfo)
+ {
+ vma_delete_array(pAllocationCallbacks, m_RegionInfo, m_RegionCount);
+ m_RegionInfo = VMA_NULL;
+ }
+}
+
+void VmaBlockBufferImageGranularity::RoundupAllocRequest(VmaSuballocationType allocType,
+ VkDeviceSize& inOutAllocSize,
+ VkDeviceSize& inOutAllocAlignment) const
+{
+ if (m_BufferImageGranularity > 1 &&
+ m_BufferImageGranularity <= MAX_LOW_BUFFER_IMAGE_GRANULARITY)
+ {
+ if (allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN ||
+ allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
+ allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL)
+ {
+ inOutAllocAlignment = VMA_MAX(inOutAllocAlignment, m_BufferImageGranularity);
+ inOutAllocSize = VmaAlignUp(inOutAllocSize, m_BufferImageGranularity);
+ }
+ }
+}
+
+bool VmaBlockBufferImageGranularity::CheckConflictAndAlignUp(VkDeviceSize& inOutAllocOffset,
+ VkDeviceSize allocSize,
+ VkDeviceSize blockOffset,
+ VkDeviceSize blockSize,
+ VmaSuballocationType allocType) const
+{
+ if (IsEnabled())
+ {
+ uint32_t startPage = GetStartPage(inOutAllocOffset);
+ if (m_RegionInfo[startPage].allocCount > 0 &&
+ VmaIsBufferImageGranularityConflict(static_cast<VmaSuballocationType>(m_RegionInfo[startPage].allocType), allocType))
+ {
+ inOutAllocOffset = VmaAlignUp(inOutAllocOffset, m_BufferImageGranularity);
+ if (blockSize < allocSize + inOutAllocOffset - blockOffset)
+ return true;
+ ++startPage;
+ }
+ uint32_t endPage = GetEndPage(inOutAllocOffset, allocSize);
+ if (endPage != startPage &&
+ m_RegionInfo[endPage].allocCount > 0 &&
+ VmaIsBufferImageGranularityConflict(static_cast<VmaSuballocationType>(m_RegionInfo[endPage].allocType), allocType))
+ {
+ return true;
+ }
+ }
+ return false;
+}
+
+void VmaBlockBufferImageGranularity::AllocPages(uint8_t allocType, VkDeviceSize offset, VkDeviceSize size)
+{
+ if (IsEnabled())
+ {
+ uint32_t startPage = GetStartPage(offset);
+ AllocPage(m_RegionInfo[startPage], allocType);
+
+ uint32_t endPage = GetEndPage(offset, size);
+ if (startPage != endPage)
+ AllocPage(m_RegionInfo[endPage], allocType);
+ }
+}
+
+void VmaBlockBufferImageGranularity::FreePages(VkDeviceSize offset, VkDeviceSize size)
+{
+ if (IsEnabled())
+ {
+ uint32_t startPage = GetStartPage(offset);
+ --m_RegionInfo[startPage].allocCount;
+ if (m_RegionInfo[startPage].allocCount == 0)
+ m_RegionInfo[startPage].allocType = VMA_SUBALLOCATION_TYPE_FREE;
+ uint32_t endPage = GetEndPage(offset, size);
+ if (startPage != endPage)
+ {
+ --m_RegionInfo[endPage].allocCount;
+ if (m_RegionInfo[endPage].allocCount == 0)
+ m_RegionInfo[endPage].allocType = VMA_SUBALLOCATION_TYPE_FREE;
+ }
+ }
+}
+
+void VmaBlockBufferImageGranularity::Clear()
+{
+ if (m_RegionInfo)
+ memset(m_RegionInfo, 0, m_RegionCount * sizeof(RegionInfo));
+}
+
+VmaBlockBufferImageGranularity::ValidationContext VmaBlockBufferImageGranularity::StartValidation(
+ const VkAllocationCallbacks* pAllocationCallbacks, bool isVirutal) const
+{
+ ValidationContext ctx{ pAllocationCallbacks, VMA_NULL };
+ if (!isVirutal && IsEnabled())
+ {
+ ctx.pageAllocs = vma_new_array(pAllocationCallbacks, uint16_t, m_RegionCount);
+ memset(ctx.pageAllocs, 0, m_RegionCount * sizeof(uint16_t));
+ }
+ return ctx;
+}
+
+bool VmaBlockBufferImageGranularity::Validate(ValidationContext& ctx,
+ VkDeviceSize offset, VkDeviceSize size) const
+{
+ if (IsEnabled())
+ {
+ uint32_t start = GetStartPage(offset);
+ ++ctx.pageAllocs[start];
+ VMA_VALIDATE(m_RegionInfo[start].allocCount > 0);
+
+ uint32_t end = GetEndPage(offset, size);
+ if (start != end)
+ {
+ ++ctx.pageAllocs[end];
+ VMA_VALIDATE(m_RegionInfo[end].allocCount > 0);
+ }
+ }
+ return true;
+}
+
+bool VmaBlockBufferImageGranularity::FinishValidation(ValidationContext& ctx) const
+{
+ // Check proper page structure
+ if (IsEnabled())
+ {
+ VMA_ASSERT(ctx.pageAllocs != VMA_NULL && "Validation context not initialized!");
+
+ for (uint32_t page = 0; page < m_RegionCount; ++page)
+ {
+ VMA_VALIDATE(ctx.pageAllocs[page] == m_RegionInfo[page].allocCount);
+ }
+ vma_delete_array(ctx.allocCallbacks, ctx.pageAllocs, m_RegionCount);
+ ctx.pageAllocs = VMA_NULL;
+ }
+ return true;
+}
+
+uint32_t VmaBlockBufferImageGranularity::OffsetToPageIndex(VkDeviceSize offset) const
+{
+ return static_cast<uint32_t>(offset >> VMA_BITSCAN_MSB(m_BufferImageGranularity));
+}
+
+void VmaBlockBufferImageGranularity::AllocPage(RegionInfo& page, uint8_t allocType)
+{
+ // When current alloc type is free then it can be overridden by new type
+ if (page.allocCount == 0 || (page.allocCount > 0 && page.allocType == VMA_SUBALLOCATION_TYPE_FREE))
+ page.allocType = allocType;
+
+ ++page.allocCount;
+}
+#endif // _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY_FUNCTIONS
+#endif // _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY
+
+#ifndef _VMA_BLOCK_METADATA_LINEAR
+/*
+Allocations and their references in internal data structure look like this:
+
+if(m_2ndVectorMode == SECOND_VECTOR_EMPTY):
+
+ 0 +-------+
+ | |
+ | |
+ | |
+ +-------+
+ | Alloc | 1st[m_1stNullItemsBeginCount]
+ +-------+
+ | Alloc | 1st[m_1stNullItemsBeginCount + 1]
+ +-------+
+ | ... |
+ +-------+
+ | Alloc | 1st[1st.size() - 1]
+ +-------+
+ | |
+ | |
+ | |
+GetSize() +-------+
+
+if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER):
+
+ 0 +-------+
+ | Alloc | 2nd[0]
+ +-------+
+ | Alloc | 2nd[1]
+ +-------+
+ | ... |
+ +-------+
+ | Alloc | 2nd[2nd.size() - 1]
+ +-------+
+ | |
+ | |
+ | |
+ +-------+
+ | Alloc | 1st[m_1stNullItemsBeginCount]
+ +-------+
+ | Alloc | 1st[m_1stNullItemsBeginCount + 1]
+ +-------+
+ | ... |
+ +-------+
+ | Alloc | 1st[1st.size() - 1]
+ +-------+
+ | |
+GetSize() +-------+
+
+if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK):
+
+ 0 +-------+
+ | |
+ | |
+ | |
+ +-------+
+ | Alloc | 1st[m_1stNullItemsBeginCount]
+ +-------+
+ | Alloc | 1st[m_1stNullItemsBeginCount + 1]
+ +-------+
+ | ... |
+ +-------+
+ | Alloc | 1st[1st.size() - 1]
+ +-------+
+ | |
+ | |
+ | |
+ +-------+
+ | Alloc | 2nd[2nd.size() - 1]
+ +-------+
+ | ... |
+ +-------+
+ | Alloc | 2nd[1]
+ +-------+
+ | Alloc | 2nd[0]
+GetSize() +-------+
+
+*/
+class VmaBlockMetadata_Linear : public VmaBlockMetadata
+{
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockMetadata_Linear)
+public:
+ VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks,
+ VkDeviceSize bufferImageGranularity, bool isVirtual);
+ virtual ~VmaBlockMetadata_Linear() = default;
+
+ VkDeviceSize GetSumFreeSize() const override { return m_SumFreeSize; }
+ bool IsEmpty() const override { return GetAllocationCount() == 0; }
+ VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return (VkDeviceSize)allocHandle - 1; }
+
+ void Init(VkDeviceSize size) override;
+ bool Validate() const override;
+ size_t GetAllocationCount() const override;
+ size_t GetFreeRegionsCount() const override;
+
+ void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override;
+ void AddStatistics(VmaStatistics& inoutStats) const override;
+
+#if VMA_STATS_STRING_ENABLED
+ void PrintDetailedMap(class VmaJsonWriter& json) const override;
+#endif
+
+ bool CreateAllocationRequest(
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ bool upperAddress,
+ VmaSuballocationType allocType,
+ uint32_t strategy,
+ VmaAllocationRequest* pAllocationRequest) override;
+
+ VkResult CheckCorruption(const void* pBlockData) override;
+
+ void Alloc(
+ const VmaAllocationRequest& request,
+ VmaSuballocationType type,
+ void* userData) override;
+
+ void Free(VmaAllocHandle allocHandle) override;
+ void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override;
+ void* GetAllocationUserData(VmaAllocHandle allocHandle) const override;
+ VmaAllocHandle GetAllocationListBegin() const override;
+ VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override;
+ VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const override;
+ void Clear() override;
+ void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override;
+ void DebugLogAllAllocations() const override;
+
+private:
+ /*
+ There are two suballocation vectors, used in ping-pong way.
+ The one with index m_1stVectorIndex is called 1st.
+ The one with index (m_1stVectorIndex ^ 1) is called 2nd.
+ 2nd can be non-empty only when 1st is not empty.
+ When 2nd is not empty, m_2ndVectorMode indicates its mode of operation.
+ */
+ typedef VmaVector<VmaSuballocation, VmaStlAllocator<VmaSuballocation>> SuballocationVectorType;
+
+ enum SECOND_VECTOR_MODE
+ {
+ SECOND_VECTOR_EMPTY,
+ /*
+ Suballocations in 2nd vector are created later than the ones in 1st, but they
+ all have smaller offset.
+ */
+ SECOND_VECTOR_RING_BUFFER,
+ /*
+ Suballocations in 2nd vector are upper side of double stack.
+ They all have offsets higher than those in 1st vector.
+ Top of this stack means smaller offsets, but higher indices in this vector.
+ */
+ SECOND_VECTOR_DOUBLE_STACK,
+ };
+
+ VkDeviceSize m_SumFreeSize;
+ SuballocationVectorType m_Suballocations0, m_Suballocations1;
+ uint32_t m_1stVectorIndex;
+ SECOND_VECTOR_MODE m_2ndVectorMode;
+ // Number of items in 1st vector with hAllocation = null at the beginning.
+ size_t m_1stNullItemsBeginCount;
+ // Number of other items in 1st vector with hAllocation = null somewhere in the middle.
+ size_t m_1stNullItemsMiddleCount;
+ // Number of items in 2nd vector with hAllocation = null.
+ size_t m_2ndNullItemsCount;
+
+ SuballocationVectorType& AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }
+ SuballocationVectorType& AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }
+ const SuballocationVectorType& AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }
+ const SuballocationVectorType& AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }
+
+ VmaSuballocation& FindSuballocation(VkDeviceSize offset) const;
+ bool ShouldCompact1st() const;
+ void CleanupAfterFree();
+
+ bool CreateAllocationRequest_LowerAddress(
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ VmaSuballocationType allocType,
+ uint32_t strategy,
+ VmaAllocationRequest* pAllocationRequest);
+ bool CreateAllocationRequest_UpperAddress(
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ VmaSuballocationType allocType,
+ uint32_t strategy,
+ VmaAllocationRequest* pAllocationRequest);
+};
+
+#ifndef _VMA_BLOCK_METADATA_LINEAR_FUNCTIONS
+VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks,
+ VkDeviceSize bufferImageGranularity, bool isVirtual)
+ : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual),
+ m_SumFreeSize(0),
+ m_Suballocations0(VmaStlAllocator<VmaSuballocation>(pAllocationCallbacks)),
+ m_Suballocations1(VmaStlAllocator<VmaSuballocation>(pAllocationCallbacks)),
+ m_1stVectorIndex(0),
+ m_2ndVectorMode(SECOND_VECTOR_EMPTY),
+ m_1stNullItemsBeginCount(0),
+ m_1stNullItemsMiddleCount(0),
+ m_2ndNullItemsCount(0) {}
+
+void VmaBlockMetadata_Linear::Init(VkDeviceSize size)
+{
+ VmaBlockMetadata::Init(size);
+ m_SumFreeSize = size;
+}
+
+bool VmaBlockMetadata_Linear::Validate() const
+{
+ const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+
+ VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY));
+ VMA_VALIDATE(!suballocations1st.empty() ||
+ suballocations2nd.empty() ||
+ m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER);
+
+ if (!suballocations1st.empty())
+ {
+ // Null item at the beginning should be accounted into m_1stNullItemsBeginCount.
+ VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].type != VMA_SUBALLOCATION_TYPE_FREE);
+ // Null item at the end should be just pop_back().
+ VMA_VALIDATE(suballocations1st.back().type != VMA_SUBALLOCATION_TYPE_FREE);
+ }
+ if (!suballocations2nd.empty())
+ {
+ // Null item at the end should be just pop_back().
+ VMA_VALIDATE(suballocations2nd.back().type != VMA_SUBALLOCATION_TYPE_FREE);
+ }
+
+ VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size());
+ VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size());
+
+ VkDeviceSize sumUsedSize = 0;
+ const size_t suballoc1stCount = suballocations1st.size();
+ const VkDeviceSize debugMargin = GetDebugMargin();
+ VkDeviceSize offset = 0;
+
+ if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+ {
+ const size_t suballoc2ndCount = suballocations2nd.size();
+ size_t nullItem2ndCount = 0;
+ for (size_t i = 0; i < suballoc2ndCount; ++i)
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[i];
+ const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
+
+ VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
+ if (!IsVirtual())
+ {
+ VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
+ }
+ VMA_VALIDATE(suballoc.offset >= offset);
+
+ if (!currFree)
+ {
+ if (!IsVirtual())
+ {
+ VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1);
+ VMA_VALIDATE(alloc->GetSize() == suballoc.size);
+ }
+ sumUsedSize += suballoc.size;
+ }
+ else
+ {
+ ++nullItem2ndCount;
+ }
+
+ offset = suballoc.offset + suballoc.size + debugMargin;
+ }
+
+ VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);
+ }
+
+ for (size_t i = 0; i < m_1stNullItemsBeginCount; ++i)
+ {
+ const VmaSuballocation& suballoc = suballocations1st[i];
+ VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE &&
+ suballoc.userData == VMA_NULL);
+ }
+
+ size_t nullItem1stCount = m_1stNullItemsBeginCount;
+
+ for (size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i)
+ {
+ const VmaSuballocation& suballoc = suballocations1st[i];
+ const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
+
+ VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
+ if (!IsVirtual())
+ {
+ VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
+ }
+ VMA_VALIDATE(suballoc.offset >= offset);
+ VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree);
+
+ if (!currFree)
+ {
+ if (!IsVirtual())
+ {
+ VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1);
+ VMA_VALIDATE(alloc->GetSize() == suballoc.size);
+ }
+ sumUsedSize += suballoc.size;
+ }
+ else
+ {
+ ++nullItem1stCount;
+ }
+
+ offset = suballoc.offset + suballoc.size + debugMargin;
+ }
+ VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount);
+
+ if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+ {
+ const size_t suballoc2ndCount = suballocations2nd.size();
+ size_t nullItem2ndCount = 0;
+ for (size_t i = suballoc2ndCount; i--; )
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[i];
+ const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
+
+ VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
+ if (!IsVirtual())
+ {
+ VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
+ }
+ VMA_VALIDATE(suballoc.offset >= offset);
+
+ if (!currFree)
+ {
+ if (!IsVirtual())
+ {
+ VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1);
+ VMA_VALIDATE(alloc->GetSize() == suballoc.size);
+ }
+ sumUsedSize += suballoc.size;
+ }
+ else
+ {
+ ++nullItem2ndCount;
+ }
+
+ offset = suballoc.offset + suballoc.size + debugMargin;
+ }
+
+ VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);
+ }
+
+ VMA_VALIDATE(offset <= GetSize());
+ VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize);
+
+ return true;
+}
+
+size_t VmaBlockMetadata_Linear::GetAllocationCount() const
+{
+ return AccessSuballocations1st().size() - m_1stNullItemsBeginCount - m_1stNullItemsMiddleCount +
+ AccessSuballocations2nd().size() - m_2ndNullItemsCount;
+}
+
+size_t VmaBlockMetadata_Linear::GetFreeRegionsCount() const
+{
+ // Function only used for defragmentation, which is disabled for this algorithm
+ VMA_ASSERT(0);
+ return SIZE_MAX;
+}
+
+void VmaBlockMetadata_Linear::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const
+{
+ const VkDeviceSize size = GetSize();
+ const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+ const size_t suballoc1stCount = suballocations1st.size();
+ const size_t suballoc2ndCount = suballocations2nd.size();
+
+ inoutStats.statistics.blockCount++;
+ inoutStats.statistics.blockBytes += size;
+
+ VkDeviceSize lastOffset = 0;
+
+ if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+ {
+ const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
+ size_t nextAlloc2ndIndex = 0;
+ while (lastOffset < freeSpace2ndTo1stEnd)
+ {
+ // Find next non-null allocation or move nextAllocIndex to the end.
+ while (nextAlloc2ndIndex < suballoc2ndCount &&
+ suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
+ {
+ ++nextAlloc2ndIndex;
+ }
+
+ // Found non-null allocation.
+ if (nextAlloc2ndIndex < suballoc2ndCount)
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+
+ // 1. Process free space before this allocation.
+ if (lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+ VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size);
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ ++nextAlloc2ndIndex;
+ }
+ // We are at the end.
+ else
+ {
+ // There is free space from lastOffset to freeSpace2ndTo1stEnd.
+ if (lastOffset < freeSpace2ndTo1stEnd)
+ {
+ const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
+ VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
+ }
+
+ // End of loop.
+ lastOffset = freeSpace2ndTo1stEnd;
+ }
+ }
+ }
+
+ size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
+ const VkDeviceSize freeSpace1stTo2ndEnd =
+ m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
+ while (lastOffset < freeSpace1stTo2ndEnd)
+ {
+ // Find next non-null allocation or move nextAllocIndex to the end.
+ while (nextAlloc1stIndex < suballoc1stCount &&
+ suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
+ {
+ ++nextAlloc1stIndex;
+ }
+
+ // Found non-null allocation.
+ if (nextAlloc1stIndex < suballoc1stCount)
+ {
+ const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
+
+ // 1. Process free space before this allocation.
+ if (lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+ VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size);
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ ++nextAlloc1stIndex;
+ }
+ // We are at the end.
+ else
+ {
+ // There is free space from lastOffset to freeSpace1stTo2ndEnd.
+ if (lastOffset < freeSpace1stTo2ndEnd)
+ {
+ const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
+ VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
+ }
+
+ // End of loop.
+ lastOffset = freeSpace1stTo2ndEnd;
+ }
+ }
+
+ if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+ {
+ size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
+ while (lastOffset < size)
+ {
+ // Find next non-null allocation or move nextAllocIndex to the end.
+ while (nextAlloc2ndIndex != SIZE_MAX &&
+ suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
+ {
+ --nextAlloc2ndIndex;
+ }
+
+ // Found non-null allocation.
+ if (nextAlloc2ndIndex != SIZE_MAX)
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+
+ // 1. Process free space before this allocation.
+ if (lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+ VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size);
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ --nextAlloc2ndIndex;
+ }
+ // We are at the end.
+ else
+ {
+ // There is free space from lastOffset to size.
+ if (lastOffset < size)
+ {
+ const VkDeviceSize unusedRangeSize = size - lastOffset;
+ VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
+ }
+
+ // End of loop.
+ lastOffset = size;
+ }
+ }
+ }
+}
+
+void VmaBlockMetadata_Linear::AddStatistics(VmaStatistics& inoutStats) const
+{
+ const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+ const VkDeviceSize size = GetSize();
+ const size_t suballoc1stCount = suballocations1st.size();
+ const size_t suballoc2ndCount = suballocations2nd.size();
+
+ inoutStats.blockCount++;
+ inoutStats.blockBytes += size;
+ inoutStats.allocationBytes += size - m_SumFreeSize;
+
+ VkDeviceSize lastOffset = 0;
+
+ if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+ {
+ const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
+ size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount;
+ while (lastOffset < freeSpace2ndTo1stEnd)
+ {
+ // Find next non-null allocation or move nextAlloc2ndIndex to the end.
+ while (nextAlloc2ndIndex < suballoc2ndCount &&
+ suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
+ {
+ ++nextAlloc2ndIndex;
+ }
+
+ // Found non-null allocation.
+ if (nextAlloc2ndIndex < suballoc2ndCount)
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+
+ // Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ ++inoutStats.allocationCount;
+
+ // Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ ++nextAlloc2ndIndex;
+ }
+ // We are at the end.
+ else
+ {
+ // End of loop.
+ lastOffset = freeSpace2ndTo1stEnd;
+ }
+ }
+ }
+
+ size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
+ const VkDeviceSize freeSpace1stTo2ndEnd =
+ m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
+ while (lastOffset < freeSpace1stTo2ndEnd)
+ {
+ // Find next non-null allocation or move nextAllocIndex to the end.
+ while (nextAlloc1stIndex < suballoc1stCount &&
+ suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
+ {
+ ++nextAlloc1stIndex;
+ }
+
+ // Found non-null allocation.
+ if (nextAlloc1stIndex < suballoc1stCount)
+ {
+ const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
+
+ // Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ ++inoutStats.allocationCount;
+
+ // Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ ++nextAlloc1stIndex;
+ }
+ // We are at the end.
+ else
+ {
+ // End of loop.
+ lastOffset = freeSpace1stTo2ndEnd;
+ }
+ }
+
+ if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+ {
+ size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
+ while (lastOffset < size)
+ {
+ // Find next non-null allocation or move nextAlloc2ndIndex to the end.
+ while (nextAlloc2ndIndex != SIZE_MAX &&
+ suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
+ {
+ --nextAlloc2ndIndex;
+ }
+
+ // Found non-null allocation.
+ if (nextAlloc2ndIndex != SIZE_MAX)
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+
+ // Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ ++inoutStats.allocationCount;
+
+ // Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ --nextAlloc2ndIndex;
+ }
+ // We are at the end.
+ else
+ {
+ // End of loop.
+ lastOffset = size;
+ }
+ }
+ }
+}
+
+#if VMA_STATS_STRING_ENABLED
+void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter& json) const
+{
+ const VkDeviceSize size = GetSize();
+ const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+ const size_t suballoc1stCount = suballocations1st.size();
+ const size_t suballoc2ndCount = suballocations2nd.size();
+
+ // FIRST PASS
+
+ size_t unusedRangeCount = 0;
+ VkDeviceSize usedBytes = 0;
+
+ VkDeviceSize lastOffset = 0;
+
+ size_t alloc2ndCount = 0;
+ if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+ {
+ const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
+ size_t nextAlloc2ndIndex = 0;
+ while (lastOffset < freeSpace2ndTo1stEnd)
+ {
+ // Find next non-null allocation or move nextAlloc2ndIndex to the end.
+ while (nextAlloc2ndIndex < suballoc2ndCount &&
+ suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
+ {
+ ++nextAlloc2ndIndex;
+ }
+
+ // Found non-null allocation.
+ if (nextAlloc2ndIndex < suballoc2ndCount)
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+
+ // 1. Process free space before this allocation.
+ if (lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ ++unusedRangeCount;
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ ++alloc2ndCount;
+ usedBytes += suballoc.size;
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ ++nextAlloc2ndIndex;
+ }
+ // We are at the end.
+ else
+ {
+ if (lastOffset < freeSpace2ndTo1stEnd)
+ {
+ // There is free space from lastOffset to freeSpace2ndTo1stEnd.
+ ++unusedRangeCount;
+ }
+
+ // End of loop.
+ lastOffset = freeSpace2ndTo1stEnd;
+ }
+ }
+ }
+
+ size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
+ size_t alloc1stCount = 0;
+ const VkDeviceSize freeSpace1stTo2ndEnd =
+ m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
+ while (lastOffset < freeSpace1stTo2ndEnd)
+ {
+ // Find next non-null allocation or move nextAllocIndex to the end.
+ while (nextAlloc1stIndex < suballoc1stCount &&
+ suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
+ {
+ ++nextAlloc1stIndex;
+ }
+
+ // Found non-null allocation.
+ if (nextAlloc1stIndex < suballoc1stCount)
+ {
+ const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
+
+ // 1. Process free space before this allocation.
+ if (lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ ++unusedRangeCount;
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ ++alloc1stCount;
+ usedBytes += suballoc.size;
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ ++nextAlloc1stIndex;
+ }
+ // We are at the end.
+ else
+ {
+ if (lastOffset < freeSpace1stTo2ndEnd)
+ {
+ // There is free space from lastOffset to freeSpace1stTo2ndEnd.
+ ++unusedRangeCount;
+ }
+
+ // End of loop.
+ lastOffset = freeSpace1stTo2ndEnd;
+ }
+ }
+
+ if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+ {
+ size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
+ while (lastOffset < size)
+ {
+ // Find next non-null allocation or move nextAlloc2ndIndex to the end.
+ while (nextAlloc2ndIndex != SIZE_MAX &&
+ suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
+ {
+ --nextAlloc2ndIndex;
+ }
+
+ // Found non-null allocation.
+ if (nextAlloc2ndIndex != SIZE_MAX)
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+
+ // 1. Process free space before this allocation.
+ if (lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ ++unusedRangeCount;
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ ++alloc2ndCount;
+ usedBytes += suballoc.size;
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ --nextAlloc2ndIndex;
+ }
+ // We are at the end.
+ else
+ {
+ if (lastOffset < size)
+ {
+ // There is free space from lastOffset to size.
+ ++unusedRangeCount;
+ }
+
+ // End of loop.
+ lastOffset = size;
+ }
+ }
+ }
+
+ const VkDeviceSize unusedBytes = size - usedBytes;
+ PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount);
+
+ // SECOND PASS
+ lastOffset = 0;
+
+ if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+ {
+ const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
+ size_t nextAlloc2ndIndex = 0;
+ while (lastOffset < freeSpace2ndTo1stEnd)
+ {
+ // Find next non-null allocation or move nextAlloc2ndIndex to the end.
+ while (nextAlloc2ndIndex < suballoc2ndCount &&
+ suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
+ {
+ ++nextAlloc2ndIndex;
+ }
+
+ // Found non-null allocation.
+ if (nextAlloc2ndIndex < suballoc2ndCount)
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+
+ // 1. Process free space before this allocation.
+ if (lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+ PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ ++nextAlloc2ndIndex;
+ }
+ // We are at the end.
+ else
+ {
+ if (lastOffset < freeSpace2ndTo1stEnd)
+ {
+ // There is free space from lastOffset to freeSpace2ndTo1stEnd.
+ const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
+ PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
+ }
+
+ // End of loop.
+ lastOffset = freeSpace2ndTo1stEnd;
+ }
+ }
+ }
+
+ nextAlloc1stIndex = m_1stNullItemsBeginCount;
+ while (lastOffset < freeSpace1stTo2ndEnd)
+ {
+ // Find next non-null allocation or move nextAllocIndex to the end.
+ while (nextAlloc1stIndex < suballoc1stCount &&
+ suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
+ {
+ ++nextAlloc1stIndex;
+ }
+
+ // Found non-null allocation.
+ if (nextAlloc1stIndex < suballoc1stCount)
+ {
+ const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
+
+ // 1. Process free space before this allocation.
+ if (lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+ PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ ++nextAlloc1stIndex;
+ }
+ // We are at the end.
+ else
+ {
+ if (lastOffset < freeSpace1stTo2ndEnd)
+ {
+ // There is free space from lastOffset to freeSpace1stTo2ndEnd.
+ const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
+ PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
+ }
+
+ // End of loop.
+ lastOffset = freeSpace1stTo2ndEnd;
+ }
+ }
+
+ if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+ {
+ size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
+ while (lastOffset < size)
+ {
+ // Find next non-null allocation or move nextAlloc2ndIndex to the end.
+ while (nextAlloc2ndIndex != SIZE_MAX &&
+ suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
+ {
+ --nextAlloc2ndIndex;
+ }
+
+ // Found non-null allocation.
+ if (nextAlloc2ndIndex != SIZE_MAX)
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
+
+ // 1. Process free space before this allocation.
+ if (lastOffset < suballoc.offset)
+ {
+ // There is free space from lastOffset to suballoc.offset.
+ const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
+ PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
+ }
+
+ // 2. Process this allocation.
+ // There is allocation with suballoc.offset, suballoc.size.
+ PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
+
+ // 3. Prepare for next iteration.
+ lastOffset = suballoc.offset + suballoc.size;
+ --nextAlloc2ndIndex;
+ }
+ // We are at the end.
+ else
+ {
+ if (lastOffset < size)
+ {
+ // There is free space from lastOffset to size.
+ const VkDeviceSize unusedRangeSize = size - lastOffset;
+ PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
+ }
+
+ // End of loop.
+ lastOffset = size;
+ }
+ }
+ }
+
+ PrintDetailedMap_End(json);
+}
+#endif // VMA_STATS_STRING_ENABLED
+
+bool VmaBlockMetadata_Linear::CreateAllocationRequest(
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ bool upperAddress,
+ VmaSuballocationType allocType,
+ uint32_t strategy,
+ VmaAllocationRequest* pAllocationRequest)
+{
+ VMA_ASSERT(allocSize > 0);
+ VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
+ VMA_ASSERT(pAllocationRequest != VMA_NULL);
+ VMA_HEAVY_ASSERT(Validate());
+
+ if(allocSize > GetSize())
+ return false;
+
+ pAllocationRequest->size = allocSize;
+ return upperAddress ?
+ CreateAllocationRequest_UpperAddress(
+ allocSize, allocAlignment, allocType, strategy, pAllocationRequest) :
+ CreateAllocationRequest_LowerAddress(
+ allocSize, allocAlignment, allocType, strategy, pAllocationRequest);
+}
+
+VkResult VmaBlockMetadata_Linear::CheckCorruption(const void* pBlockData)
+{
+ VMA_ASSERT(!IsVirtual());
+ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ for (size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i)
+ {
+ const VmaSuballocation& suballoc = suballocations1st[i];
+ if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
+ {
+ VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
+ return VK_ERROR_UNKNOWN_COPY;
+ }
+ }
+ }
+
+ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+ for (size_t i = 0, count = suballocations2nd.size(); i < count; ++i)
+ {
+ const VmaSuballocation& suballoc = suballocations2nd[i];
+ if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
+ {
+ VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
+ return VK_ERROR_UNKNOWN_COPY;
+ }
+ }
+ }
+
+ return VK_SUCCESS;
+}
+
+void VmaBlockMetadata_Linear::Alloc(
+ const VmaAllocationRequest& request,
+ VmaSuballocationType type,
+ void* userData)
+{
+ const VkDeviceSize offset = (VkDeviceSize)request.allocHandle - 1;
+ const VmaSuballocation newSuballoc = { offset, request.size, userData, type };
+
+ switch (request.type)
+ {
+ case VmaAllocationRequestType::UpperAddress:
+ {
+ VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER &&
+ "CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer.");
+ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+ suballocations2nd.push_back(newSuballoc);
+ m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK;
+ }
+ break;
+ case VmaAllocationRequestType::EndOf1st:
+ {
+ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+
+ VMA_ASSERT(suballocations1st.empty() ||
+ offset >= suballocations1st.back().offset + suballocations1st.back().size);
+ // Check if it fits before the end of the block.
+ VMA_ASSERT(offset + request.size <= GetSize());
+
+ suballocations1st.push_back(newSuballoc);
+ }
+ break;
+ case VmaAllocationRequestType::EndOf2nd:
+ {
+ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ // New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector.
+ VMA_ASSERT(!suballocations1st.empty() &&
+ offset + request.size <= suballocations1st[m_1stNullItemsBeginCount].offset);
+ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+
+ switch (m_2ndVectorMode)
+ {
+ case SECOND_VECTOR_EMPTY:
+ // First allocation from second part ring buffer.
+ VMA_ASSERT(suballocations2nd.empty());
+ m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER;
+ break;
+ case SECOND_VECTOR_RING_BUFFER:
+ // 2-part ring buffer is already started.
+ VMA_ASSERT(!suballocations2nd.empty());
+ break;
+ case SECOND_VECTOR_DOUBLE_STACK:
+ VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack.");
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+
+ suballocations2nd.push_back(newSuballoc);
+ }
+ break;
+ default:
+ VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR.");
+ }
+
+ m_SumFreeSize -= newSuballoc.size;
+}
+
+void VmaBlockMetadata_Linear::Free(VmaAllocHandle allocHandle)
+{
+ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+ VkDeviceSize offset = (VkDeviceSize)allocHandle - 1;
+
+ if (!suballocations1st.empty())
+ {
+ // First allocation: Mark it as next empty at the beginning.
+ VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount];
+ if (firstSuballoc.offset == offset)
+ {
+ firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
+ firstSuballoc.userData = VMA_NULL;
+ m_SumFreeSize += firstSuballoc.size;
+ ++m_1stNullItemsBeginCount;
+ CleanupAfterFree();
+ return;
+ }
+ }
+
+ // Last allocation in 2-part ring buffer or top of upper stack (same logic).
+ if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ||
+ m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+ {
+ VmaSuballocation& lastSuballoc = suballocations2nd.back();
+ if (lastSuballoc.offset == offset)
+ {
+ m_SumFreeSize += lastSuballoc.size;
+ suballocations2nd.pop_back();
+ CleanupAfterFree();
+ return;
+ }
+ }
+ // Last allocation in 1st vector.
+ else if (m_2ndVectorMode == SECOND_VECTOR_EMPTY)
+ {
+ VmaSuballocation& lastSuballoc = suballocations1st.back();
+ if (lastSuballoc.offset == offset)
+ {
+ m_SumFreeSize += lastSuballoc.size;
+ suballocations1st.pop_back();
+ CleanupAfterFree();
+ return;
+ }
+ }
+
+ VmaSuballocation refSuballoc;
+ refSuballoc.offset = offset;
+ // Rest of members stays uninitialized intentionally for better performance.
+
+ // Item from the middle of 1st vector.
+ {
+ const SuballocationVectorType::iterator it = VmaBinaryFindSorted(
+ suballocations1st.begin() + m_1stNullItemsBeginCount,
+ suballocations1st.end(),
+ refSuballoc,
+ VmaSuballocationOffsetLess());
+ if (it != suballocations1st.end())
+ {
+ it->type = VMA_SUBALLOCATION_TYPE_FREE;
+ it->userData = VMA_NULL;
+ ++m_1stNullItemsMiddleCount;
+ m_SumFreeSize += it->size;
+ CleanupAfterFree();
+ return;
+ }
+ }
+
+ if (m_2ndVectorMode != SECOND_VECTOR_EMPTY)
+ {
+ // Item from the middle of 2nd vector.
+ const SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ?
+ VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) :
+ VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater());
+ if (it != suballocations2nd.end())
+ {
+ it->type = VMA_SUBALLOCATION_TYPE_FREE;
+ it->userData = VMA_NULL;
+ ++m_2ndNullItemsCount;
+ m_SumFreeSize += it->size;
+ CleanupAfterFree();
+ return;
+ }
+ }
+
+ VMA_ASSERT(0 && "Allocation to free not found in linear allocator!");
+}
+
+void VmaBlockMetadata_Linear::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo)
+{
+ outInfo.offset = (VkDeviceSize)allocHandle - 1;
+ VmaSuballocation& suballoc = FindSuballocation(outInfo.offset);
+ outInfo.size = suballoc.size;
+ outInfo.pUserData = suballoc.userData;
+}
+
+void* VmaBlockMetadata_Linear::GetAllocationUserData(VmaAllocHandle allocHandle) const
+{
+ return FindSuballocation((VkDeviceSize)allocHandle - 1).userData;
+}
+
+VmaAllocHandle VmaBlockMetadata_Linear::GetAllocationListBegin() const
+{
+ // Function only used for defragmentation, which is disabled for this algorithm
+ VMA_ASSERT(0);
+ return VK_NULL_HANDLE;
+}
+
+VmaAllocHandle VmaBlockMetadata_Linear::GetNextAllocation(VmaAllocHandle prevAlloc) const
+{
+ // Function only used for defragmentation, which is disabled for this algorithm
+ VMA_ASSERT(0);
+ return VK_NULL_HANDLE;
+}
+
+VkDeviceSize VmaBlockMetadata_Linear::GetNextFreeRegionSize(VmaAllocHandle alloc) const
+{
+ // Function only used for defragmentation, which is disabled for this algorithm
+ VMA_ASSERT(0);
+ return 0;
+}
+
+void VmaBlockMetadata_Linear::Clear()
+{
+ m_SumFreeSize = GetSize();
+ m_Suballocations0.clear();
+ m_Suballocations1.clear();
+ // Leaving m_1stVectorIndex unchanged - it doesn't matter.
+ m_2ndVectorMode = SECOND_VECTOR_EMPTY;
+ m_1stNullItemsBeginCount = 0;
+ m_1stNullItemsMiddleCount = 0;
+ m_2ndNullItemsCount = 0;
+}
+
+void VmaBlockMetadata_Linear::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData)
+{
+ VmaSuballocation& suballoc = FindSuballocation((VkDeviceSize)allocHandle - 1);
+ suballoc.userData = userData;
+}
+
+void VmaBlockMetadata_Linear::DebugLogAllAllocations() const
+{
+ const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ for (auto it = suballocations1st.begin() + m_1stNullItemsBeginCount; it != suballocations1st.end(); ++it)
+ if (it->type != VMA_SUBALLOCATION_TYPE_FREE)
+ DebugLogAllocation(it->offset, it->size, it->userData);
+
+ const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+ for (auto it = suballocations2nd.begin(); it != suballocations2nd.end(); ++it)
+ if (it->type != VMA_SUBALLOCATION_TYPE_FREE)
+ DebugLogAllocation(it->offset, it->size, it->userData);
+}
+
+VmaSuballocation& VmaBlockMetadata_Linear::FindSuballocation(VkDeviceSize offset) const
+{
+ const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+
+ VmaSuballocation refSuballoc;
+ refSuballoc.offset = offset;
+ // Rest of members stays uninitialized intentionally for better performance.
+
+ // Item from the 1st vector.
+ {
+ SuballocationVectorType::const_iterator it = VmaBinaryFindSorted(
+ suballocations1st.begin() + m_1stNullItemsBeginCount,
+ suballocations1st.end(),
+ refSuballoc,
+ VmaSuballocationOffsetLess());
+ if (it != suballocations1st.end())
+ {
+ return const_cast<VmaSuballocation&>(*it);
+ }
+ }
+
+ if (m_2ndVectorMode != SECOND_VECTOR_EMPTY)
+ {
+ // Rest of members stays uninitialized intentionally for better performance.
+ SuballocationVectorType::const_iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ?
+ VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) :
+ VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater());
+ if (it != suballocations2nd.end())
+ {
+ return const_cast<VmaSuballocation&>(*it);
+ }
+ }
+
+ VMA_ASSERT(0 && "Allocation not found in linear allocator!");
+ return const_cast<VmaSuballocation&>(suballocations1st.back()); // Should never occur.
+}
+
+bool VmaBlockMetadata_Linear::ShouldCompact1st() const
+{
+ const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;
+ const size_t suballocCount = AccessSuballocations1st().size();
+ return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3;
+}
+
+void VmaBlockMetadata_Linear::CleanupAfterFree()
+{
+ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+
+ if (IsEmpty())
+ {
+ suballocations1st.clear();
+ suballocations2nd.clear();
+ m_1stNullItemsBeginCount = 0;
+ m_1stNullItemsMiddleCount = 0;
+ m_2ndNullItemsCount = 0;
+ m_2ndVectorMode = SECOND_VECTOR_EMPTY;
+ }
+ else
+ {
+ const size_t suballoc1stCount = suballocations1st.size();
+ const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;
+ VMA_ASSERT(nullItem1stCount <= suballoc1stCount);
+
+ // Find more null items at the beginning of 1st vector.
+ while (m_1stNullItemsBeginCount < suballoc1stCount &&
+ suballocations1st[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ ++m_1stNullItemsBeginCount;
+ --m_1stNullItemsMiddleCount;
+ }
+
+ // Find more null items at the end of 1st vector.
+ while (m_1stNullItemsMiddleCount > 0 &&
+ suballocations1st.back().type == VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ --m_1stNullItemsMiddleCount;
+ suballocations1st.pop_back();
+ }
+
+ // Find more null items at the end of 2nd vector.
+ while (m_2ndNullItemsCount > 0 &&
+ suballocations2nd.back().type == VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ --m_2ndNullItemsCount;
+ suballocations2nd.pop_back();
+ }
+
+ // Find more null items at the beginning of 2nd vector.
+ while (m_2ndNullItemsCount > 0 &&
+ suballocations2nd[0].type == VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ --m_2ndNullItemsCount;
+ VmaVectorRemove(suballocations2nd, 0);
+ }
+
+ if (ShouldCompact1st())
+ {
+ const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount;
+ size_t srcIndex = m_1stNullItemsBeginCount;
+ for (size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex)
+ {
+ while (suballocations1st[srcIndex].type == VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ ++srcIndex;
+ }
+ if (dstIndex != srcIndex)
+ {
+ suballocations1st[dstIndex] = suballocations1st[srcIndex];
+ }
+ ++srcIndex;
+ }
+ suballocations1st.resize(nonNullItemCount);
+ m_1stNullItemsBeginCount = 0;
+ m_1stNullItemsMiddleCount = 0;
+ }
+
+ // 2nd vector became empty.
+ if (suballocations2nd.empty())
+ {
+ m_2ndVectorMode = SECOND_VECTOR_EMPTY;
+ }
+
+ // 1st vector became empty.
+ if (suballocations1st.size() - m_1stNullItemsBeginCount == 0)
+ {
+ suballocations1st.clear();
+ m_1stNullItemsBeginCount = 0;
+
+ if (!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+ {
+ // Swap 1st with 2nd. Now 2nd is empty.
+ m_2ndVectorMode = SECOND_VECTOR_EMPTY;
+ m_1stNullItemsMiddleCount = m_2ndNullItemsCount;
+ while (m_1stNullItemsBeginCount < suballocations2nd.size() &&
+ suballocations2nd[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE)
+ {
+ ++m_1stNullItemsBeginCount;
+ --m_1stNullItemsMiddleCount;
+ }
+ m_2ndNullItemsCount = 0;
+ m_1stVectorIndex ^= 1;
+ }
+ }
+ }
+
+ VMA_HEAVY_ASSERT(Validate());
+}
+
+bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress(
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ VmaSuballocationType allocType,
+ uint32_t strategy,
+ VmaAllocationRequest* pAllocationRequest)
+{
+ const VkDeviceSize blockSize = GetSize();
+ const VkDeviceSize debugMargin = GetDebugMargin();
+ const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity();
+ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+
+ if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+ {
+ // Try to allocate at the end of 1st vector.
+
+ VkDeviceSize resultBaseOffset = 0;
+ if (!suballocations1st.empty())
+ {
+ const VmaSuballocation& lastSuballoc = suballocations1st.back();
+ resultBaseOffset = lastSuballoc.offset + lastSuballoc.size + debugMargin;
+ }
+
+ // Start from offset equal to beginning of free space.
+ VkDeviceSize resultOffset = resultBaseOffset;
+
+ // Apply alignment.
+ resultOffset = VmaAlignUp(resultOffset, allocAlignment);
+
+ // Check previous suballocations for BufferImageGranularity conflicts.
+ // Make bigger alignment if necessary.
+ if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations1st.empty())
+ {
+ bool bufferImageGranularityConflict = false;
+ for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; )
+ {
+ const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex];
+ if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
+ {
+ if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
+ {
+ bufferImageGranularityConflict = true;
+ break;
+ }
+ }
+ else
+ // Already on previous page.
+ break;
+ }
+ if (bufferImageGranularityConflict)
+ {
+ resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);
+ }
+ }
+
+ const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ?
+ suballocations2nd.back().offset : blockSize;
+
+ // There is enough free space at the end after alignment.
+ if (resultOffset + allocSize + debugMargin <= freeSpaceEnd)
+ {
+ // Check next suballocations for BufferImageGranularity conflicts.
+ // If conflict exists, allocation cannot be made here.
+ if ((allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity) && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
+ {
+ for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; )
+ {
+ const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex];
+ if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
+ {
+ if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
+ {
+ return false;
+ }
+ }
+ else
+ {
+ // Already on previous page.
+ break;
+ }
+ }
+ }
+
+ // All tests passed: Success.
+ pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1);
+ // pAllocationRequest->item, customData unused.
+ pAllocationRequest->type = VmaAllocationRequestType::EndOf1st;
+ return true;
+ }
+ }
+
+ // Wrap-around to end of 2nd vector. Try to allocate there, watching for the
+ // beginning of 1st vector as the end of free space.
+ if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+ {
+ VMA_ASSERT(!suballocations1st.empty());
+
+ VkDeviceSize resultBaseOffset = 0;
+ if (!suballocations2nd.empty())
+ {
+ const VmaSuballocation& lastSuballoc = suballocations2nd.back();
+ resultBaseOffset = lastSuballoc.offset + lastSuballoc.size + debugMargin;
+ }
+
+ // Start from offset equal to beginning of free space.
+ VkDeviceSize resultOffset = resultBaseOffset;
+
+ // Apply alignment.
+ resultOffset = VmaAlignUp(resultOffset, allocAlignment);
+
+ // Check previous suballocations for BufferImageGranularity conflicts.
+ // Make bigger alignment if necessary.
+ if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty())
+ {
+ bool bufferImageGranularityConflict = false;
+ for (size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--; )
+ {
+ const VmaSuballocation& prevSuballoc = suballocations2nd[prevSuballocIndex];
+ if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
+ {
+ if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
+ {
+ bufferImageGranularityConflict = true;
+ break;
+ }
+ }
+ else
+ // Already on previous page.
+ break;
+ }
+ if (bufferImageGranularityConflict)
+ {
+ resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);
+ }
+ }
+
+ size_t index1st = m_1stNullItemsBeginCount;
+
+ // There is enough free space at the end after alignment.
+ if ((index1st == suballocations1st.size() && resultOffset + allocSize + debugMargin <= blockSize) ||
+ (index1st < suballocations1st.size() && resultOffset + allocSize + debugMargin <= suballocations1st[index1st].offset))
+ {
+ // Check next suballocations for BufferImageGranularity conflicts.
+ // If conflict exists, allocation cannot be made here.
+ if (allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity)
+ {
+ for (size_t nextSuballocIndex = index1st;
+ nextSuballocIndex < suballocations1st.size();
+ nextSuballocIndex++)
+ {
+ const VmaSuballocation& nextSuballoc = suballocations1st[nextSuballocIndex];
+ if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
+ {
+ if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
+ {
+ return false;
+ }
+ }
+ else
+ {
+ // Already on next page.
+ break;
+ }
+ }
+ }
+
+ // All tests passed: Success.
+ pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1);
+ pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd;
+ // pAllocationRequest->item, customData unused.
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress(
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ VmaSuballocationType allocType,
+ uint32_t strategy,
+ VmaAllocationRequest* pAllocationRequest)
+{
+ const VkDeviceSize blockSize = GetSize();
+ const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity();
+ SuballocationVectorType& suballocations1st = AccessSuballocations1st();
+ SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
+
+ if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
+ {
+ VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer.");
+ return false;
+ }
+
+ // Try to allocate before 2nd.back(), or end of block if 2nd.empty().
+ if (allocSize > blockSize)
+ {
+ return false;
+ }
+ VkDeviceSize resultBaseOffset = blockSize - allocSize;
+ if (!suballocations2nd.empty())
+ {
+ const VmaSuballocation& lastSuballoc = suballocations2nd.back();
+ resultBaseOffset = lastSuballoc.offset - allocSize;
+ if (allocSize > lastSuballoc.offset)
+ {
+ return false;
+ }
+ }
+
+ // Start from offset equal to end of free space.
+ VkDeviceSize resultOffset = resultBaseOffset;
+
+ const VkDeviceSize debugMargin = GetDebugMargin();
+
+ // Apply debugMargin at the end.
+ if (debugMargin > 0)
+ {
+ if (resultOffset < debugMargin)
+ {
+ return false;
+ }
+ resultOffset -= debugMargin;
+ }
+
+ // Apply alignment.
+ resultOffset = VmaAlignDown(resultOffset, allocAlignment);
+
+ // Check next suballocations from 2nd for BufferImageGranularity conflicts.
+ // Make bigger alignment if necessary.
+ if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty())
+ {
+ bool bufferImageGranularityConflict = false;
+ for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; )
+ {
+ const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex];
+ if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
+ {
+ if (VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType))
+ {
+ bufferImageGranularityConflict = true;
+ break;
+ }
+ }
+ else
+ // Already on previous page.
+ break;
+ }
+ if (bufferImageGranularityConflict)
+ {
+ resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity);
+ }
+ }
+
+ // There is enough free space.
+ const VkDeviceSize endOf1st = !suballocations1st.empty() ?
+ suballocations1st.back().offset + suballocations1st.back().size :
+ 0;
+ if (endOf1st + debugMargin <= resultOffset)
+ {
+ // Check previous suballocations for BufferImageGranularity conflicts.
+ // If conflict exists, allocation cannot be made here.
+ if (bufferImageGranularity > 1)
+ {
+ for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; )
+ {
+ const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex];
+ if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
+ {
+ if (VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type))
+ {
+ return false;
+ }
+ }
+ else
+ {
+ // Already on next page.
+ break;
+ }
+ }
+ }
+
+ // All tests passed: Success.
+ pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1);
+ // pAllocationRequest->item unused.
+ pAllocationRequest->type = VmaAllocationRequestType::UpperAddress;
+ return true;
+ }
+
+ return false;
+}
+#endif // _VMA_BLOCK_METADATA_LINEAR_FUNCTIONS
+#endif // _VMA_BLOCK_METADATA_LINEAR
+
+#ifndef _VMA_BLOCK_METADATA_TLSF
+// To not search current larger region if first allocation won't succeed and skip to smaller range
+// use with VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT as strategy in CreateAllocationRequest().
+// When fragmentation and reusal of previous blocks doesn't matter then use with
+// VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT for fastest alloc time possible.
+class VmaBlockMetadata_TLSF : public VmaBlockMetadata
+{
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockMetadata_TLSF)
+public:
+ VmaBlockMetadata_TLSF(const VkAllocationCallbacks* pAllocationCallbacks,
+ VkDeviceSize bufferImageGranularity, bool isVirtual);
+ virtual ~VmaBlockMetadata_TLSF();
+
+ size_t GetAllocationCount() const override { return m_AllocCount; }
+ size_t GetFreeRegionsCount() const override { return m_BlocksFreeCount + 1; }
+ VkDeviceSize GetSumFreeSize() const override { return m_BlocksFreeSize + m_NullBlock->size; }
+ bool IsEmpty() const override { return m_NullBlock->offset == 0; }
+ VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return ((Block*)allocHandle)->offset; }
+
+ void Init(VkDeviceSize size) override;
+ bool Validate() const override;
+
+ void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override;
+ void AddStatistics(VmaStatistics& inoutStats) const override;
+
+#if VMA_STATS_STRING_ENABLED
+ void PrintDetailedMap(class VmaJsonWriter& json) const override;
+#endif
+
+ bool CreateAllocationRequest(
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ bool upperAddress,
+ VmaSuballocationType allocType,
+ uint32_t strategy,
+ VmaAllocationRequest* pAllocationRequest) override;
+
+ VkResult CheckCorruption(const void* pBlockData) override;
+ void Alloc(
+ const VmaAllocationRequest& request,
+ VmaSuballocationType type,
+ void* userData) override;
+
+ void Free(VmaAllocHandle allocHandle) override;
+ void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override;
+ void* GetAllocationUserData(VmaAllocHandle allocHandle) const override;
+ VmaAllocHandle GetAllocationListBegin() const override;
+ VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override;
+ VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const override;
+ void Clear() override;
+ void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override;
+ void DebugLogAllAllocations() const override;
+
+private:
+ // According to original paper it should be preferable 4 or 5:
+ // M. Masmano, I. Ripoll, A. Crespo, and J. Real "TLSF: a New Dynamic Memory Allocator for Real-Time Systems"
+ // http://www.gii.upv.es/tlsf/files/ecrts04_tlsf.pdf
+ static const uint8_t SECOND_LEVEL_INDEX = 5;
+ static const uint16_t SMALL_BUFFER_SIZE = 256;
+ static const uint32_t INITIAL_BLOCK_ALLOC_COUNT = 16;
+ static const uint8_t MEMORY_CLASS_SHIFT = 7;
+ static const uint8_t MAX_MEMORY_CLASSES = 65 - MEMORY_CLASS_SHIFT;
+
+ class Block
+ {
+ public:
+ VkDeviceSize offset;
+ VkDeviceSize size;
+ Block* prevPhysical;
+ Block* nextPhysical;
+
+ void MarkFree() { prevFree = VMA_NULL; }
+ void MarkTaken() { prevFree = this; }
+ bool IsFree() const { return prevFree != this; }
+ void*& UserData() { VMA_HEAVY_ASSERT(!IsFree()); return userData; }
+ Block*& PrevFree() { return prevFree; }
+ Block*& NextFree() { VMA_HEAVY_ASSERT(IsFree()); return nextFree; }
+
+ private:
+ Block* prevFree; // Address of the same block here indicates that block is taken
+ union
+ {
+ Block* nextFree;
+ void* userData;
+ };
+ };
+
+ size_t m_AllocCount;
+ // Total number of free blocks besides null block
+ size_t m_BlocksFreeCount;
+ // Total size of free blocks excluding null block
+ VkDeviceSize m_BlocksFreeSize;
+ uint32_t m_IsFreeBitmap;
+ uint8_t m_MemoryClasses;
+ uint32_t m_InnerIsFreeBitmap[MAX_MEMORY_CLASSES];
+ uint32_t m_ListsCount;
+ /*
+ * 0: 0-3 lists for small buffers
+ * 1+: 0-(2^SLI-1) lists for normal buffers
+ */
+ Block** m_FreeList;
+ VmaPoolAllocator<Block> m_BlockAllocator;
+ Block* m_NullBlock;
+ VmaBlockBufferImageGranularity m_GranularityHandler;
+
+ uint8_t SizeToMemoryClass(VkDeviceSize size) const;
+ uint16_t SizeToSecondIndex(VkDeviceSize size, uint8_t memoryClass) const;
+ uint32_t GetListIndex(uint8_t memoryClass, uint16_t secondIndex) const;
+ uint32_t GetListIndex(VkDeviceSize size) const;
+
+ void RemoveFreeBlock(Block* block);
+ void InsertFreeBlock(Block* block);
+ void MergeBlock(Block* block, Block* prev);
+
+ Block* FindFreeBlock(VkDeviceSize size, uint32_t& listIndex) const;
+ bool CheckBlock(
+ Block& block,
+ uint32_t listIndex,
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ VmaSuballocationType allocType,
+ VmaAllocationRequest* pAllocationRequest);
+};
+
+#ifndef _VMA_BLOCK_METADATA_TLSF_FUNCTIONS
+VmaBlockMetadata_TLSF::VmaBlockMetadata_TLSF(const VkAllocationCallbacks* pAllocationCallbacks,
+ VkDeviceSize bufferImageGranularity, bool isVirtual)
+ : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual),
+ m_AllocCount(0),
+ m_BlocksFreeCount(0),
+ m_BlocksFreeSize(0),
+ m_IsFreeBitmap(0),
+ m_MemoryClasses(0),
+ m_ListsCount(0),
+ m_FreeList(VMA_NULL),
+ m_BlockAllocator(pAllocationCallbacks, INITIAL_BLOCK_ALLOC_COUNT),
+ m_NullBlock(VMA_NULL),
+ m_GranularityHandler(bufferImageGranularity) {}
+
+VmaBlockMetadata_TLSF::~VmaBlockMetadata_TLSF()
+{
+ if (m_FreeList)
+ vma_delete_array(GetAllocationCallbacks(), m_FreeList, m_ListsCount);
+ m_GranularityHandler.Destroy(GetAllocationCallbacks());
+}
+
+void VmaBlockMetadata_TLSF::Init(VkDeviceSize size)
+{
+ VmaBlockMetadata::Init(size);
+
+ if (!IsVirtual())
+ m_GranularityHandler.Init(GetAllocationCallbacks(), size);
+
+ m_NullBlock = m_BlockAllocator.Alloc();
+ m_NullBlock->size = size;
+ m_NullBlock->offset = 0;
+ m_NullBlock->prevPhysical = VMA_NULL;
+ m_NullBlock->nextPhysical = VMA_NULL;
+ m_NullBlock->MarkFree();
+ m_NullBlock->NextFree() = VMA_NULL;
+ m_NullBlock->PrevFree() = VMA_NULL;
+ uint8_t memoryClass = SizeToMemoryClass(size);
+ uint16_t sli = SizeToSecondIndex(size, memoryClass);
+ m_ListsCount = (memoryClass == 0 ? 0 : (memoryClass - 1) * (1UL << SECOND_LEVEL_INDEX) + sli) + 1;
+ if (IsVirtual())
+ m_ListsCount += 1UL << SECOND_LEVEL_INDEX;
+ else
+ m_ListsCount += 4;
+
+ m_MemoryClasses = memoryClass + uint8_t(2);
+ memset(m_InnerIsFreeBitmap, 0, MAX_MEMORY_CLASSES * sizeof(uint32_t));
+
+ m_FreeList = vma_new_array(GetAllocationCallbacks(), Block*, m_ListsCount);
+ memset(m_FreeList, 0, m_ListsCount * sizeof(Block*));
+}
+
+bool VmaBlockMetadata_TLSF::Validate() const
+{
+ VMA_VALIDATE(GetSumFreeSize() <= GetSize());
+
+ VkDeviceSize calculatedSize = m_NullBlock->size;
+ VkDeviceSize calculatedFreeSize = m_NullBlock->size;
+ size_t allocCount = 0;
+ size_t freeCount = 0;
+
+ // Check integrity of free lists
+ for (uint32_t list = 0; list < m_ListsCount; ++list)
+ {
+ Block* block = m_FreeList[list];
+ if (block != VMA_NULL)
+ {
+ VMA_VALIDATE(block->IsFree());
+ VMA_VALIDATE(block->PrevFree() == VMA_NULL);
+ while (block->NextFree())
+ {
+ VMA_VALIDATE(block->NextFree()->IsFree());
+ VMA_VALIDATE(block->NextFree()->PrevFree() == block);
+ block = block->NextFree();
+ }
+ }
+ }
+
+ VkDeviceSize nextOffset = m_NullBlock->offset;
+ auto validateCtx = m_GranularityHandler.StartValidation(GetAllocationCallbacks(), IsVirtual());
+
+ VMA_VALIDATE(m_NullBlock->nextPhysical == VMA_NULL);
+ if (m_NullBlock->prevPhysical)
+ {
+ VMA_VALIDATE(m_NullBlock->prevPhysical->nextPhysical == m_NullBlock);
+ }
+ // Check all blocks
+ for (Block* prev = m_NullBlock->prevPhysical; prev != VMA_NULL; prev = prev->prevPhysical)
+ {
+ VMA_VALIDATE(prev->offset + prev->size == nextOffset);
+ nextOffset = prev->offset;
+ calculatedSize += prev->size;
+
+ uint32_t listIndex = GetListIndex(prev->size);
+ if (prev->IsFree())
+ {
+ ++freeCount;
+ // Check if free block belongs to free list
+ Block* freeBlock = m_FreeList[listIndex];
+ VMA_VALIDATE(freeBlock != VMA_NULL);
+
+ bool found = false;
+ do
+ {
+ if (freeBlock == prev)
+ found = true;
+
+ freeBlock = freeBlock->NextFree();
+ } while (!found && freeBlock != VMA_NULL);
+
+ VMA_VALIDATE(found);
+ calculatedFreeSize += prev->size;
+ }
+ else
+ {
+ ++allocCount;
+ // Check if taken block is not on a free list
+ Block* freeBlock = m_FreeList[listIndex];
+ while (freeBlock)
+ {
+ VMA_VALIDATE(freeBlock != prev);
+ freeBlock = freeBlock->NextFree();
+ }
+
+ if (!IsVirtual())
+ {
+ VMA_VALIDATE(m_GranularityHandler.Validate(validateCtx, prev->offset, prev->size));
+ }
+ }
+
+ if (prev->prevPhysical)
+ {
+ VMA_VALIDATE(prev->prevPhysical->nextPhysical == prev);
+ }
+ }
+
+ if (!IsVirtual())
+ {
+ VMA_VALIDATE(m_GranularityHandler.FinishValidation(validateCtx));
+ }
+
+ VMA_VALIDATE(nextOffset == 0);
+ VMA_VALIDATE(calculatedSize == GetSize());
+ VMA_VALIDATE(calculatedFreeSize == GetSumFreeSize());
+ VMA_VALIDATE(allocCount == m_AllocCount);
+ VMA_VALIDATE(freeCount == m_BlocksFreeCount);
+
+ return true;
+}
+
+void VmaBlockMetadata_TLSF::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const
+{
+ inoutStats.statistics.blockCount++;
+ inoutStats.statistics.blockBytes += GetSize();
+ if (m_NullBlock->size > 0)
+ VmaAddDetailedStatisticsUnusedRange(inoutStats, m_NullBlock->size);
+
+ for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
+ {
+ if (block->IsFree())
+ VmaAddDetailedStatisticsUnusedRange(inoutStats, block->size);
+ else
+ VmaAddDetailedStatisticsAllocation(inoutStats, block->size);
+ }
+}
+
+void VmaBlockMetadata_TLSF::AddStatistics(VmaStatistics& inoutStats) const
+{
+ inoutStats.blockCount++;
+ inoutStats.allocationCount += (uint32_t)m_AllocCount;
+ inoutStats.blockBytes += GetSize();
+ inoutStats.allocationBytes += GetSize() - GetSumFreeSize();
+}
+
+#if VMA_STATS_STRING_ENABLED
+void VmaBlockMetadata_TLSF::PrintDetailedMap(class VmaJsonWriter& json) const
+{
+ size_t blockCount = m_AllocCount + m_BlocksFreeCount;
+ VmaStlAllocator<Block*> allocator(GetAllocationCallbacks());
+ VmaVector<Block*, VmaStlAllocator<Block*>> blockList(blockCount, allocator);
+
+ size_t i = blockCount;
+ for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
+ {
+ blockList[--i] = block;
+ }
+ VMA_ASSERT(i == 0);
+
+ VmaDetailedStatistics stats;
+ VmaClearDetailedStatistics(stats);
+ AddDetailedStatistics(stats);
+
+ PrintDetailedMap_Begin(json,
+ stats.statistics.blockBytes - stats.statistics.allocationBytes,
+ stats.statistics.allocationCount,
+ stats.unusedRangeCount);
+
+ for (; i < blockCount; ++i)
+ {
+ Block* block = blockList[i];
+ if (block->IsFree())
+ PrintDetailedMap_UnusedRange(json, block->offset, block->size);
+ else
+ PrintDetailedMap_Allocation(json, block->offset, block->size, block->UserData());
+ }
+ if (m_NullBlock->size > 0)
+ PrintDetailedMap_UnusedRange(json, m_NullBlock->offset, m_NullBlock->size);
+
+ PrintDetailedMap_End(json);
+}
+#endif
+
+bool VmaBlockMetadata_TLSF::CreateAllocationRequest(
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ bool upperAddress,
+ VmaSuballocationType allocType,
+ uint32_t strategy,
+ VmaAllocationRequest* pAllocationRequest)
+{
+ VMA_ASSERT(allocSize > 0 && "Cannot allocate empty block!");
+ VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm.");
+
+ // For small granularity round up
+ if (!IsVirtual())
+ m_GranularityHandler.RoundupAllocRequest(allocType, allocSize, allocAlignment);
+
+ allocSize += GetDebugMargin();
+ // Quick check for too small pool
+ if (allocSize > GetSumFreeSize())
+ return false;
+
+ // If no free blocks in pool then check only null block
+ if (m_BlocksFreeCount == 0)
+ return CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest);
+
+ // Round up to the next block
+ VkDeviceSize sizeForNextList = allocSize;
+ VkDeviceSize smallSizeStep = VkDeviceSize(SMALL_BUFFER_SIZE / (IsVirtual() ? 1 << SECOND_LEVEL_INDEX : 4));
+ if (allocSize > SMALL_BUFFER_SIZE)
+ {
+ sizeForNextList += (1ULL << (VMA_BITSCAN_MSB(allocSize) - SECOND_LEVEL_INDEX));
+ }
+ else if (allocSize > SMALL_BUFFER_SIZE - smallSizeStep)
+ sizeForNextList = SMALL_BUFFER_SIZE + 1;
+ else
+ sizeForNextList += smallSizeStep;
+
+ uint32_t nextListIndex = m_ListsCount;
+ uint32_t prevListIndex = m_ListsCount;
+ Block* nextListBlock = VMA_NULL;
+ Block* prevListBlock = VMA_NULL;
+
+ // Check blocks according to strategies
+ if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT)
+ {
+ // Quick check for larger block first
+ nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex);
+ if (nextListBlock != VMA_NULL && CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
+ return true;
+
+ // If not fitted then null block
+ if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest))
+ return true;
+
+ // Null block failed, search larger bucket
+ while (nextListBlock)
+ {
+ if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
+ return true;
+ nextListBlock = nextListBlock->NextFree();
+ }
+
+ // Failed again, check best fit bucket
+ prevListBlock = FindFreeBlock(allocSize, prevListIndex);
+ while (prevListBlock)
+ {
+ if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
+ return true;
+ prevListBlock = prevListBlock->NextFree();
+ }
+ }
+ else if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT)
+ {
+ // Check best fit bucket
+ prevListBlock = FindFreeBlock(allocSize, prevListIndex);
+ while (prevListBlock)
+ {
+ if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
+ return true;
+ prevListBlock = prevListBlock->NextFree();
+ }
+
+ // If failed check null block
+ if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest))
+ return true;
+
+ // Check larger bucket
+ nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex);
+ while (nextListBlock)
+ {
+ if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
+ return true;
+ nextListBlock = nextListBlock->NextFree();
+ }
+ }
+ else if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT )
+ {
+ // Perform search from the start
+ VmaStlAllocator<Block*> allocator(GetAllocationCallbacks());
+ VmaVector<Block*, VmaStlAllocator<Block*>> blockList(m_BlocksFreeCount, allocator);
+
+ size_t i = m_BlocksFreeCount;
+ for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
+ {
+ if (block->IsFree() && block->size >= allocSize)
+ blockList[--i] = block;
+ }
+
+ for (; i < m_BlocksFreeCount; ++i)
+ {
+ Block& block = *blockList[i];
+ if (CheckBlock(block, GetListIndex(block.size), allocSize, allocAlignment, allocType, pAllocationRequest))
+ return true;
+ }
+
+ // If failed check null block
+ if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest))
+ return true;
+
+ // Whole range searched, no more memory
+ return false;
+ }
+ else
+ {
+ // Check larger bucket
+ nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex);
+ while (nextListBlock)
+ {
+ if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
+ return true;
+ nextListBlock = nextListBlock->NextFree();
+ }
+
+ // If failed check null block
+ if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest))
+ return true;
+
+ // Check best fit bucket
+ prevListBlock = FindFreeBlock(allocSize, prevListIndex);
+ while (prevListBlock)
+ {
+ if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
+ return true;
+ prevListBlock = prevListBlock->NextFree();
+ }
+ }
+
+ // Worst case, full search has to be done
+ while (++nextListIndex < m_ListsCount)
+ {
+ nextListBlock = m_FreeList[nextListIndex];
+ while (nextListBlock)
+ {
+ if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
+ return true;
+ nextListBlock = nextListBlock->NextFree();
+ }
+ }
+
+ // No more memory sadly
+ return false;
+}
+
+VkResult VmaBlockMetadata_TLSF::CheckCorruption(const void* pBlockData)
+{
+ for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
+ {
+ if (!block->IsFree())
+ {
+ if (!VmaValidateMagicValue(pBlockData, block->offset + block->size))
+ {
+ VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
+ return VK_ERROR_UNKNOWN_COPY;
+ }
+ }
+ }
+
+ return VK_SUCCESS;
+}
+
+void VmaBlockMetadata_TLSF::Alloc(
+ const VmaAllocationRequest& request,
+ VmaSuballocationType type,
+ void* userData)
+{
+ VMA_ASSERT(request.type == VmaAllocationRequestType::TLSF);
+
+ // Get block and pop it from the free list
+ Block* currentBlock = (Block*)request.allocHandle;
+ VkDeviceSize offset = request.algorithmData;
+ VMA_ASSERT(currentBlock != VMA_NULL);
+ VMA_ASSERT(currentBlock->offset <= offset);
+
+ if (currentBlock != m_NullBlock)
+ RemoveFreeBlock(currentBlock);
+
+ VkDeviceSize debugMargin = GetDebugMargin();
+ VkDeviceSize misssingAlignment = offset - currentBlock->offset;
+
+ // Append missing alignment to prev block or create new one
+ if (misssingAlignment)
+ {
+ Block* prevBlock = currentBlock->prevPhysical;
+ VMA_ASSERT(prevBlock != VMA_NULL && "There should be no missing alignment at offset 0!");
+
+ if (prevBlock->IsFree() && prevBlock->size != debugMargin)
+ {
+ uint32_t oldList = GetListIndex(prevBlock->size);
+ prevBlock->size += misssingAlignment;
+ // Check if new size crosses list bucket
+ if (oldList != GetListIndex(prevBlock->size))
+ {
+ prevBlock->size -= misssingAlignment;
+ RemoveFreeBlock(prevBlock);
+ prevBlock->size += misssingAlignment;
+ InsertFreeBlock(prevBlock);
+ }
+ else
+ m_BlocksFreeSize += misssingAlignment;
+ }
+ else
+ {
+ Block* newBlock = m_BlockAllocator.Alloc();
+ currentBlock->prevPhysical = newBlock;
+ prevBlock->nextPhysical = newBlock;
+ newBlock->prevPhysical = prevBlock;
+ newBlock->nextPhysical = currentBlock;
+ newBlock->size = misssingAlignment;
+ newBlock->offset = currentBlock->offset;
+ newBlock->MarkTaken();
+
+ InsertFreeBlock(newBlock);
+ }
+
+ currentBlock->size -= misssingAlignment;
+ currentBlock->offset += misssingAlignment;
+ }
+
+ VkDeviceSize size = request.size + debugMargin;
+ if (currentBlock->size == size)
+ {
+ if (currentBlock == m_NullBlock)
+ {
+ // Setup new null block
+ m_NullBlock = m_BlockAllocator.Alloc();
+ m_NullBlock->size = 0;
+ m_NullBlock->offset = currentBlock->offset + size;
+ m_NullBlock->prevPhysical = currentBlock;
+ m_NullBlock->nextPhysical = VMA_NULL;
+ m_NullBlock->MarkFree();
+ m_NullBlock->PrevFree() = VMA_NULL;
+ m_NullBlock->NextFree() = VMA_NULL;
+ currentBlock->nextPhysical = m_NullBlock;
+ currentBlock->MarkTaken();
+ }
+ }
+ else
+ {
+ VMA_ASSERT(currentBlock->size > size && "Proper block already found, shouldn't find smaller one!");
+
+ // Create new free block
+ Block* newBlock = m_BlockAllocator.Alloc();
+ newBlock->size = currentBlock->size - size;
+ newBlock->offset = currentBlock->offset + size;
+ newBlock->prevPhysical = currentBlock;
+ newBlock->nextPhysical = currentBlock->nextPhysical;
+ currentBlock->nextPhysical = newBlock;
+ currentBlock->size = size;
+
+ if (currentBlock == m_NullBlock)
+ {
+ m_NullBlock = newBlock;
+ m_NullBlock->MarkFree();
+ m_NullBlock->NextFree() = VMA_NULL;
+ m_NullBlock->PrevFree() = VMA_NULL;
+ currentBlock->MarkTaken();
+ }
+ else
+ {
+ newBlock->nextPhysical->prevPhysical = newBlock;
+ newBlock->MarkTaken();
+ InsertFreeBlock(newBlock);
+ }
+ }
+ currentBlock->UserData() = userData;
+
+ if (debugMargin > 0)
+ {
+ currentBlock->size -= debugMargin;
+ Block* newBlock = m_BlockAllocator.Alloc();
+ newBlock->size = debugMargin;
+ newBlock->offset = currentBlock->offset + currentBlock->size;
+ newBlock->prevPhysical = currentBlock;
+ newBlock->nextPhysical = currentBlock->nextPhysical;
+ newBlock->MarkTaken();
+ currentBlock->nextPhysical->prevPhysical = newBlock;
+ currentBlock->nextPhysical = newBlock;
+ InsertFreeBlock(newBlock);
+ }
+
+ if (!IsVirtual())
+ m_GranularityHandler.AllocPages((uint8_t)(uintptr_t)request.customData,
+ currentBlock->offset, currentBlock->size);
+ ++m_AllocCount;
+}
+
+void VmaBlockMetadata_TLSF::Free(VmaAllocHandle allocHandle)
+{
+ Block* block = (Block*)allocHandle;
+ Block* next = block->nextPhysical;
+ VMA_ASSERT(!block->IsFree() && "Block is already free!");
+
+ if (!IsVirtual())
+ m_GranularityHandler.FreePages(block->offset, block->size);
+ --m_AllocCount;
+
+ VkDeviceSize debugMargin = GetDebugMargin();
+ if (debugMargin > 0)
+ {
+ RemoveFreeBlock(next);
+ MergeBlock(next, block);
+ block = next;
+ next = next->nextPhysical;
+ }
+
+ // Try merging
+ Block* prev = block->prevPhysical;
+ if (prev != VMA_NULL && prev->IsFree() && prev->size != debugMargin)
+ {
+ RemoveFreeBlock(prev);
+ MergeBlock(block, prev);
+ }
+
+ if (!next->IsFree())
+ InsertFreeBlock(block);
+ else if (next == m_NullBlock)
+ MergeBlock(m_NullBlock, block);
+ else
+ {
+ RemoveFreeBlock(next);
+ MergeBlock(next, block);
+ InsertFreeBlock(next);
+ }
+}
+
+void VmaBlockMetadata_TLSF::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo)
+{
+ Block* block = (Block*)allocHandle;
+ VMA_ASSERT(!block->IsFree() && "Cannot get allocation info for free block!");
+ outInfo.offset = block->offset;
+ outInfo.size = block->size;
+ outInfo.pUserData = block->UserData();
+}
+
+void* VmaBlockMetadata_TLSF::GetAllocationUserData(VmaAllocHandle allocHandle) const
+{
+ Block* block = (Block*)allocHandle;
+ VMA_ASSERT(!block->IsFree() && "Cannot get user data for free block!");
+ return block->UserData();
+}
+
+VmaAllocHandle VmaBlockMetadata_TLSF::GetAllocationListBegin() const
+{
+ if (m_AllocCount == 0)
+ return VK_NULL_HANDLE;
+
+ for (Block* block = m_NullBlock->prevPhysical; block; block = block->prevPhysical)
+ {
+ if (!block->IsFree())
+ return (VmaAllocHandle)block;
+ }
+ VMA_ASSERT(false && "If m_AllocCount > 0 then should find any allocation!");
+ return VK_NULL_HANDLE;
+}
+
+VmaAllocHandle VmaBlockMetadata_TLSF::GetNextAllocation(VmaAllocHandle prevAlloc) const
+{
+ Block* startBlock = (Block*)prevAlloc;
+ VMA_ASSERT(!startBlock->IsFree() && "Incorrect block!");
+
+ for (Block* block = startBlock->prevPhysical; block; block = block->prevPhysical)
+ {
+ if (!block->IsFree())
+ return (VmaAllocHandle)block;
+ }
+ return VK_NULL_HANDLE;
+}
+
+VkDeviceSize VmaBlockMetadata_TLSF::GetNextFreeRegionSize(VmaAllocHandle alloc) const
+{
+ Block* block = (Block*)alloc;
+ VMA_ASSERT(!block->IsFree() && "Incorrect block!");
+
+ if (block->prevPhysical)
+ return block->prevPhysical->IsFree() ? block->prevPhysical->size : 0;
+ return 0;
+}
+
+void VmaBlockMetadata_TLSF::Clear()
+{
+ m_AllocCount = 0;
+ m_BlocksFreeCount = 0;
+ m_BlocksFreeSize = 0;
+ m_IsFreeBitmap = 0;
+ m_NullBlock->offset = 0;
+ m_NullBlock->size = GetSize();
+ Block* block = m_NullBlock->prevPhysical;
+ m_NullBlock->prevPhysical = VMA_NULL;
+ while (block)
+ {
+ Block* prev = block->prevPhysical;
+ m_BlockAllocator.Free(block);
+ block = prev;
+ }
+ memset(m_FreeList, 0, m_ListsCount * sizeof(Block*));
+ memset(m_InnerIsFreeBitmap, 0, m_MemoryClasses * sizeof(uint32_t));
+ m_GranularityHandler.Clear();
+}
+
+void VmaBlockMetadata_TLSF::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData)
+{
+ Block* block = (Block*)allocHandle;
+ VMA_ASSERT(!block->IsFree() && "Trying to set user data for not allocated block!");
+ block->UserData() = userData;
+}
+
+void VmaBlockMetadata_TLSF::DebugLogAllAllocations() const
+{
+ for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
+ if (!block->IsFree())
+ DebugLogAllocation(block->offset, block->size, block->UserData());
+}
+
+uint8_t VmaBlockMetadata_TLSF::SizeToMemoryClass(VkDeviceSize size) const
+{
+ if (size > SMALL_BUFFER_SIZE)
+ return uint8_t(VMA_BITSCAN_MSB(size) - MEMORY_CLASS_SHIFT);
+ return 0;
+}
+
+uint16_t VmaBlockMetadata_TLSF::SizeToSecondIndex(VkDeviceSize size, uint8_t memoryClass) const
+{
+ if (memoryClass == 0)
+ {
+ if (IsVirtual())
+ return static_cast<uint16_t>((size - 1) / 8);
+ else
+ return static_cast<uint16_t>((size - 1) / 64);
+ }
+ return static_cast<uint16_t>((size >> (memoryClass + MEMORY_CLASS_SHIFT - SECOND_LEVEL_INDEX)) ^ (1U << SECOND_LEVEL_INDEX));
+}
+
+uint32_t VmaBlockMetadata_TLSF::GetListIndex(uint8_t memoryClass, uint16_t secondIndex) const
+{
+ if (memoryClass == 0)
+ return secondIndex;
+
+ const uint32_t index = static_cast<uint32_t>(memoryClass - 1) * (1 << SECOND_LEVEL_INDEX) + secondIndex;
+ if (IsVirtual())
+ return index + (1 << SECOND_LEVEL_INDEX);
+ else
+ return index + 4;
+}
+
+uint32_t VmaBlockMetadata_TLSF::GetListIndex(VkDeviceSize size) const
+{
+ uint8_t memoryClass = SizeToMemoryClass(size);
+ return GetListIndex(memoryClass, SizeToSecondIndex(size, memoryClass));
+}
+
+void VmaBlockMetadata_TLSF::RemoveFreeBlock(Block* block)
+{
+ VMA_ASSERT(block != m_NullBlock);
+ VMA_ASSERT(block->IsFree());
+
+ if (block->NextFree() != VMA_NULL)
+ block->NextFree()->PrevFree() = block->PrevFree();
+ if (block->PrevFree() != VMA_NULL)
+ block->PrevFree()->NextFree() = block->NextFree();
+ else
+ {
+ uint8_t memClass = SizeToMemoryClass(block->size);
+ uint16_t secondIndex = SizeToSecondIndex(block->size, memClass);
+ uint32_t index = GetListIndex(memClass, secondIndex);
+ VMA_ASSERT(m_FreeList[index] == block);
+ m_FreeList[index] = block->NextFree();
+ if (block->NextFree() == VMA_NULL)
+ {
+ m_InnerIsFreeBitmap[memClass] &= ~(1U << secondIndex);
+ if (m_InnerIsFreeBitmap[memClass] == 0)
+ m_IsFreeBitmap &= ~(1UL << memClass);
+ }
+ }
+ block->MarkTaken();
+ block->UserData() = VMA_NULL;
+ --m_BlocksFreeCount;
+ m_BlocksFreeSize -= block->size;
+}
+
+void VmaBlockMetadata_TLSF::InsertFreeBlock(Block* block)
+{
+ VMA_ASSERT(block != m_NullBlock);
+ VMA_ASSERT(!block->IsFree() && "Cannot insert block twice!");
+
+ uint8_t memClass = SizeToMemoryClass(block->size);
+ uint16_t secondIndex = SizeToSecondIndex(block->size, memClass);
+ uint32_t index = GetListIndex(memClass, secondIndex);
+ VMA_ASSERT(index < m_ListsCount);
+ block->PrevFree() = VMA_NULL;
+ block->NextFree() = m_FreeList[index];
+ m_FreeList[index] = block;
+ if (block->NextFree() != VMA_NULL)
+ block->NextFree()->PrevFree() = block;
+ else
+ {
+ m_InnerIsFreeBitmap[memClass] |= 1U << secondIndex;
+ m_IsFreeBitmap |= 1UL << memClass;
+ }
+ ++m_BlocksFreeCount;
+ m_BlocksFreeSize += block->size;
+}
+
+void VmaBlockMetadata_TLSF::MergeBlock(Block* block, Block* prev)
+{
+ VMA_ASSERT(block->prevPhysical == prev && "Cannot merge separate physical regions!");
+ VMA_ASSERT(!prev->IsFree() && "Cannot merge block that belongs to free list!");
+
+ block->offset = prev->offset;
+ block->size += prev->size;
+ block->prevPhysical = prev->prevPhysical;
+ if (block->prevPhysical)
+ block->prevPhysical->nextPhysical = block;
+ m_BlockAllocator.Free(prev);
+}
+
+VmaBlockMetadata_TLSF::Block* VmaBlockMetadata_TLSF::FindFreeBlock(VkDeviceSize size, uint32_t& listIndex) const
+{
+ uint8_t memoryClass = SizeToMemoryClass(size);
+ uint32_t innerFreeMap = m_InnerIsFreeBitmap[memoryClass] & (~0U << SizeToSecondIndex(size, memoryClass));
+ if (!innerFreeMap)
+ {
+ // Check higher levels for available blocks
+ uint32_t freeMap = m_IsFreeBitmap & (~0UL << (memoryClass + 1));
+ if (!freeMap)
+ return VMA_NULL; // No more memory available
+
+ // Find lowest free region
+ memoryClass = VMA_BITSCAN_LSB(freeMap);
+ innerFreeMap = m_InnerIsFreeBitmap[memoryClass];
+ VMA_ASSERT(innerFreeMap != 0);
+ }
+ // Find lowest free subregion
+ listIndex = GetListIndex(memoryClass, VMA_BITSCAN_LSB(innerFreeMap));
+ VMA_ASSERT(m_FreeList[listIndex]);
+ return m_FreeList[listIndex];
+}
+
+bool VmaBlockMetadata_TLSF::CheckBlock(
+ Block& block,
+ uint32_t listIndex,
+ VkDeviceSize allocSize,
+ VkDeviceSize allocAlignment,
+ VmaSuballocationType allocType,
+ VmaAllocationRequest* pAllocationRequest)
+{
+ VMA_ASSERT(block.IsFree() && "Block is already taken!");
+
+ VkDeviceSize alignedOffset = VmaAlignUp(block.offset, allocAlignment);
+ if (block.size < allocSize + alignedOffset - block.offset)
+ return false;
+
+ // Check for granularity conflicts
+ if (!IsVirtual() &&
+ m_GranularityHandler.CheckConflictAndAlignUp(alignedOffset, allocSize, block.offset, block.size, allocType))
+ return false;
+
+ // Alloc successful
+ pAllocationRequest->type = VmaAllocationRequestType::TLSF;
+ pAllocationRequest->allocHandle = (VmaAllocHandle)&block;
+ pAllocationRequest->size = allocSize - GetDebugMargin();
+ pAllocationRequest->customData = (void*)allocType;
+ pAllocationRequest->algorithmData = alignedOffset;
+
+ // Place block at the start of list if it's normal block
+ if (listIndex != m_ListsCount && block.PrevFree())
+ {
+ block.PrevFree()->NextFree() = block.NextFree();
+ if (block.NextFree())
+ block.NextFree()->PrevFree() = block.PrevFree();
+ block.PrevFree() = VMA_NULL;
+ block.NextFree() = m_FreeList[listIndex];
+ m_FreeList[listIndex] = &block;
+ if (block.NextFree())
+ block.NextFree()->PrevFree() = &block;
+ }
+
+ return true;
+}
+#endif // _VMA_BLOCK_METADATA_TLSF_FUNCTIONS
+#endif // _VMA_BLOCK_METADATA_TLSF
+
+#ifndef _VMA_BLOCK_VECTOR
+/*
+Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific
+Vulkan memory type.
+
+Synchronized internally with a mutex.
+*/
+class VmaBlockVector
+{
+ friend struct VmaDefragmentationContext_T;
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockVector)
+public:
+ VmaBlockVector(
+ VmaAllocator hAllocator,
+ VmaPool hParentPool,
+ uint32_t memoryTypeIndex,
+ VkDeviceSize preferredBlockSize,
+ size_t minBlockCount,
+ size_t maxBlockCount,
+ VkDeviceSize bufferImageGranularity,
+ bool explicitBlockSize,
+ uint32_t algorithm,
+ float priority,
+ VkDeviceSize minAllocationAlignment,
+ void* pMemoryAllocateNext);
+ ~VmaBlockVector();
+
+ VmaAllocator GetAllocator() const { return m_hAllocator; }
+ VmaPool GetParentPool() const { return m_hParentPool; }
+ bool IsCustomPool() const { return m_hParentPool != VMA_NULL; }
+ uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
+ VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; }
+ VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }
+ uint32_t GetAlgorithm() const { return m_Algorithm; }
+ bool HasExplicitBlockSize() const { return m_ExplicitBlockSize; }
+ float GetPriority() const { return m_Priority; }
+ const void* GetAllocationNextPtr() const { return m_pMemoryAllocateNext; }
+ // To be used only while the m_Mutex is locked. Used during defragmentation.
+ size_t GetBlockCount() const { return m_Blocks.size(); }
+ // To be used only while the m_Mutex is locked. Used during defragmentation.
+ VmaDeviceMemoryBlock* GetBlock(size_t index) const { return m_Blocks[index]; }
+ VMA_RW_MUTEX &GetMutex() { return m_Mutex; }
+
+ VkResult CreateMinBlocks();
+ void AddStatistics(VmaStatistics& inoutStats);
+ void AddDetailedStatistics(VmaDetailedStatistics& inoutStats);
+ bool IsEmpty();
+ bool IsCorruptionDetectionEnabled() const;
+
+ VkResult Allocate(
+ VkDeviceSize size,
+ VkDeviceSize alignment,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaSuballocationType suballocType,
+ size_t allocationCount,
+ VmaAllocation* pAllocations);
+
+ void Free(const VmaAllocation hAllocation);
+
+#if VMA_STATS_STRING_ENABLED
+ void PrintDetailedMap(class VmaJsonWriter& json);
+#endif
+
+ VkResult CheckCorruption();
+
+private:
+ const VmaAllocator m_hAllocator;
+ const VmaPool m_hParentPool;
+ const uint32_t m_MemoryTypeIndex;
+ const VkDeviceSize m_PreferredBlockSize;
+ const size_t m_MinBlockCount;
+ const size_t m_MaxBlockCount;
+ const VkDeviceSize m_BufferImageGranularity;
+ const bool m_ExplicitBlockSize;
+ const uint32_t m_Algorithm;
+ const float m_Priority;
+ const VkDeviceSize m_MinAllocationAlignment;
+
+ void* const m_pMemoryAllocateNext;
+ VMA_RW_MUTEX m_Mutex;
+ // Incrementally sorted by sumFreeSize, ascending.
+ VmaVector<VmaDeviceMemoryBlock*, VmaStlAllocator<VmaDeviceMemoryBlock*>> m_Blocks;
+ uint32_t m_NextBlockId;
+ bool m_IncrementalSort = true;
+
+ void SetIncrementalSort(bool val) { m_IncrementalSort = val; }
+
+ VkDeviceSize CalcMaxBlockSize() const;
+ // Finds and removes given block from vector.
+ void Remove(VmaDeviceMemoryBlock* pBlock);
+ // Performs single step in sorting m_Blocks. They may not be fully sorted
+ // after this call.
+ void IncrementallySortBlocks();
+ void SortByFreeSize();
+
+ VkResult AllocatePage(
+ VkDeviceSize size,
+ VkDeviceSize alignment,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaSuballocationType suballocType,
+ VmaAllocation* pAllocation);
+
+ VkResult AllocateFromBlock(
+ VmaDeviceMemoryBlock* pBlock,
+ VkDeviceSize size,
+ VkDeviceSize alignment,
+ VmaAllocationCreateFlags allocFlags,
+ void* pUserData,
+ VmaSuballocationType suballocType,
+ uint32_t strategy,
+ VmaAllocation* pAllocation);
+
+ VkResult CommitAllocationRequest(
+ VmaAllocationRequest& allocRequest,
+ VmaDeviceMemoryBlock* pBlock,
+ VkDeviceSize alignment,
+ VmaAllocationCreateFlags allocFlags,
+ void* pUserData,
+ VmaSuballocationType suballocType,
+ VmaAllocation* pAllocation);
+
+ VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex);
+ bool HasEmptyBlock();
+};
+#endif // _VMA_BLOCK_VECTOR
+
+#ifndef _VMA_DEFRAGMENTATION_CONTEXT
+struct VmaDefragmentationContext_T
+{
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaDefragmentationContext_T)
+public:
+ VmaDefragmentationContext_T(
+ VmaAllocator hAllocator,
+ const VmaDefragmentationInfo& info);
+ ~VmaDefragmentationContext_T();
+
+ void GetStats(VmaDefragmentationStats& outStats) { outStats = m_GlobalStats; }
+
+ VkResult DefragmentPassBegin(VmaDefragmentationPassMoveInfo& moveInfo);
+ VkResult DefragmentPassEnd(VmaDefragmentationPassMoveInfo& moveInfo);
+
+private:
+ // Max number of allocations to ignore due to size constraints before ending single pass
+ static const uint8_t MAX_ALLOCS_TO_IGNORE = 16;
+ enum class CounterStatus { Pass, Ignore, End };
+
+ struct FragmentedBlock
+ {
+ uint32_t data;
+ VmaDeviceMemoryBlock* block;
+ };
+ struct StateBalanced
+ {
+ VkDeviceSize avgFreeSize = 0;
+ VkDeviceSize avgAllocSize = UINT64_MAX;
+ };
+ struct StateExtensive
+ {
+ enum class Operation : uint8_t
+ {
+ FindFreeBlockBuffer, FindFreeBlockTexture, FindFreeBlockAll,
+ MoveBuffers, MoveTextures, MoveAll,
+ Cleanup, Done
+ };
+
+ Operation operation = Operation::FindFreeBlockTexture;
+ size_t firstFreeBlock = SIZE_MAX;
+ };
+ struct MoveAllocationData
+ {
+ VkDeviceSize size;
+ VkDeviceSize alignment;
+ VmaSuballocationType type;
+ VmaAllocationCreateFlags flags;
+ VmaDefragmentationMove move = {};
+ };
+
+ const VkDeviceSize m_MaxPassBytes;
+ const uint32_t m_MaxPassAllocations;
+ const PFN_vmaCheckDefragmentationBreakFunction m_BreakCallback;
+ void* m_BreakCallbackUserData;
+
+ VmaStlAllocator<VmaDefragmentationMove> m_MoveAllocator;
+ VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove>> m_Moves;
+
+ uint8_t m_IgnoredAllocs = 0;
+ uint32_t m_Algorithm;
+ uint32_t m_BlockVectorCount;
+ VmaBlockVector* m_PoolBlockVector;
+ VmaBlockVector** m_pBlockVectors;
+ size_t m_ImmovableBlockCount = 0;
+ VmaDefragmentationStats m_GlobalStats = { 0 };
+ VmaDefragmentationStats m_PassStats = { 0 };
+ void* m_AlgorithmState = VMA_NULL;
+
+ static MoveAllocationData GetMoveData(VmaAllocHandle handle, VmaBlockMetadata* metadata);
+ CounterStatus CheckCounters(VkDeviceSize bytes);
+ bool IncrementCounters(VkDeviceSize bytes);
+ bool ReallocWithinBlock(VmaBlockVector& vector, VmaDeviceMemoryBlock* block);
+ bool AllocInOtherBlock(size_t start, size_t end, MoveAllocationData& data, VmaBlockVector& vector);
+
+ bool ComputeDefragmentation(VmaBlockVector& vector, size_t index);
+ bool ComputeDefragmentation_Fast(VmaBlockVector& vector);
+ bool ComputeDefragmentation_Balanced(VmaBlockVector& vector, size_t index, bool update);
+ bool ComputeDefragmentation_Full(VmaBlockVector& vector);
+ bool ComputeDefragmentation_Extensive(VmaBlockVector& vector, size_t index);
+
+ void UpdateVectorStatistics(VmaBlockVector& vector, StateBalanced& state);
+ bool MoveDataToFreeBlocks(VmaSuballocationType currentType,
+ VmaBlockVector& vector, size_t firstFreeBlock,
+ bool& texturePresent, bool& bufferPresent, bool& otherPresent);
+};
+#endif // _VMA_DEFRAGMENTATION_CONTEXT
+
+#ifndef _VMA_POOL_T
+struct VmaPool_T
+{
+ friend struct VmaPoolListItemTraits;
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaPool_T)
+public:
+ VmaBlockVector m_BlockVector;
+ VmaDedicatedAllocationList m_DedicatedAllocations;
+
+ VmaPool_T(
+ VmaAllocator hAllocator,
+ const VmaPoolCreateInfo& createInfo,
+ VkDeviceSize preferredBlockSize);
+ ~VmaPool_T();
+
+ uint32_t GetId() const { return m_Id; }
+ void SetId(uint32_t id) { VMA_ASSERT(m_Id == 0); m_Id = id; }
+
+ const char* GetName() const { return m_Name; }
+ void SetName(const char* pName);
+
+#if VMA_STATS_STRING_ENABLED
+ //void PrintDetailedMap(class VmaStringBuilder& sb);
+#endif
+
+private:
+ uint32_t m_Id;
+ char* m_Name;
+ VmaPool_T* m_PrevPool = VMA_NULL;
+ VmaPool_T* m_NextPool = VMA_NULL;
+};
+
+struct VmaPoolListItemTraits
+{
+ typedef VmaPool_T ItemType;
+
+ static ItemType* GetPrev(const ItemType* item) { return item->m_PrevPool; }
+ static ItemType* GetNext(const ItemType* item) { return item->m_NextPool; }
+ static ItemType*& AccessPrev(ItemType* item) { return item->m_PrevPool; }
+ static ItemType*& AccessNext(ItemType* item) { return item->m_NextPool; }
+};
+#endif // _VMA_POOL_T
+
+#ifndef _VMA_CURRENT_BUDGET_DATA
+struct VmaCurrentBudgetData
+{
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaCurrentBudgetData)
+public:
+
+ VMA_ATOMIC_UINT32 m_BlockCount[VK_MAX_MEMORY_HEAPS];
+ VMA_ATOMIC_UINT32 m_AllocationCount[VK_MAX_MEMORY_HEAPS];
+ VMA_ATOMIC_UINT64 m_BlockBytes[VK_MAX_MEMORY_HEAPS];
+ VMA_ATOMIC_UINT64 m_AllocationBytes[VK_MAX_MEMORY_HEAPS];
+
+#if VMA_MEMORY_BUDGET
+ VMA_ATOMIC_UINT32 m_OperationsSinceBudgetFetch;
+ VMA_RW_MUTEX m_BudgetMutex;
+ uint64_t m_VulkanUsage[VK_MAX_MEMORY_HEAPS];
+ uint64_t m_VulkanBudget[VK_MAX_MEMORY_HEAPS];
+ uint64_t m_BlockBytesAtBudgetFetch[VK_MAX_MEMORY_HEAPS];
+#endif // VMA_MEMORY_BUDGET
+
+ VmaCurrentBudgetData();
+
+ void AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize);
+ void RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize);
+};
+
+#ifndef _VMA_CURRENT_BUDGET_DATA_FUNCTIONS
+VmaCurrentBudgetData::VmaCurrentBudgetData()
+{
+ for (uint32_t heapIndex = 0; heapIndex < VK_MAX_MEMORY_HEAPS; ++heapIndex)
+ {
+ m_BlockCount[heapIndex] = 0;
+ m_AllocationCount[heapIndex] = 0;
+ m_BlockBytes[heapIndex] = 0;
+ m_AllocationBytes[heapIndex] = 0;
+#if VMA_MEMORY_BUDGET
+ m_VulkanUsage[heapIndex] = 0;
+ m_VulkanBudget[heapIndex] = 0;
+ m_BlockBytesAtBudgetFetch[heapIndex] = 0;
+#endif
+ }
+
+#if VMA_MEMORY_BUDGET
+ m_OperationsSinceBudgetFetch = 0;
+#endif
+}
+
+void VmaCurrentBudgetData::AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize)
+{
+ m_AllocationBytes[heapIndex] += allocationSize;
+ ++m_AllocationCount[heapIndex];
+#if VMA_MEMORY_BUDGET
+ ++m_OperationsSinceBudgetFetch;
+#endif
+}
+
+void VmaCurrentBudgetData::RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize)
+{
+ VMA_ASSERT(m_AllocationBytes[heapIndex] >= allocationSize);
+ m_AllocationBytes[heapIndex] -= allocationSize;
+ VMA_ASSERT(m_AllocationCount[heapIndex] > 0);
+ --m_AllocationCount[heapIndex];
+#if VMA_MEMORY_BUDGET
+ ++m_OperationsSinceBudgetFetch;
+#endif
+}
+#endif // _VMA_CURRENT_BUDGET_DATA_FUNCTIONS
+#endif // _VMA_CURRENT_BUDGET_DATA
+
+#ifndef _VMA_ALLOCATION_OBJECT_ALLOCATOR
+/*
+Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects.
+*/
+class VmaAllocationObjectAllocator
+{
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaAllocationObjectAllocator)
+public:
+ VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks)
+ : m_Allocator(pAllocationCallbacks, 1024) {}
+
+ template<typename... Types> VmaAllocation Allocate(Types&&... args);
+ void Free(VmaAllocation hAlloc);
+
+private:
+ VMA_MUTEX m_Mutex;
+ VmaPoolAllocator<VmaAllocation_T> m_Allocator;
+};
+
+template<typename... Types>
+VmaAllocation VmaAllocationObjectAllocator::Allocate(Types&&... args)
+{
+ VmaMutexLock mutexLock(m_Mutex);
+ return m_Allocator.Alloc<Types...>(std::forward<Types>(args)...);
+}
+
+void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc)
+{
+ VmaMutexLock mutexLock(m_Mutex);
+ m_Allocator.Free(hAlloc);
+}
+#endif // _VMA_ALLOCATION_OBJECT_ALLOCATOR
+
+#ifndef _VMA_VIRTUAL_BLOCK_T
+struct VmaVirtualBlock_T
+{
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaVirtualBlock_T)
+public:
+ const bool m_AllocationCallbacksSpecified;
+ const VkAllocationCallbacks m_AllocationCallbacks;
+
+ VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo);
+ ~VmaVirtualBlock_T();
+
+ VkResult Init() { return VK_SUCCESS; }
+ bool IsEmpty() const { return m_Metadata->IsEmpty(); }
+ void Free(VmaVirtualAllocation allocation) { m_Metadata->Free((VmaAllocHandle)allocation); }
+ void SetAllocationUserData(VmaVirtualAllocation allocation, void* userData) { m_Metadata->SetAllocationUserData((VmaAllocHandle)allocation, userData); }
+ void Clear() { m_Metadata->Clear(); }
+
+ const VkAllocationCallbacks* GetAllocationCallbacks() const;
+ void GetAllocationInfo(VmaVirtualAllocation allocation, VmaVirtualAllocationInfo& outInfo);
+ VkResult Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VmaVirtualAllocation& outAllocation,
+ VkDeviceSize* outOffset);
+ void GetStatistics(VmaStatistics& outStats) const;
+ void CalculateDetailedStatistics(VmaDetailedStatistics& outStats) const;
+#if VMA_STATS_STRING_ENABLED
+ void BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const;
+#endif
+
+private:
+ VmaBlockMetadata* m_Metadata;
+};
+
+#ifndef _VMA_VIRTUAL_BLOCK_T_FUNCTIONS
+VmaVirtualBlock_T::VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo)
+ : m_AllocationCallbacksSpecified(createInfo.pAllocationCallbacks != VMA_NULL),
+ m_AllocationCallbacks(createInfo.pAllocationCallbacks != VMA_NULL ? *createInfo.pAllocationCallbacks : VmaEmptyAllocationCallbacks)
+{
+ const uint32_t algorithm = createInfo.flags & VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK;
+ switch (algorithm)
+ {
+ case 0:
+ m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_TLSF)(VK_NULL_HANDLE, 1, true);
+ break;
+ case VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT:
+ m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_Linear)(VK_NULL_HANDLE, 1, true);
+ break;
+ default:
+ VMA_ASSERT(0);
+ m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_TLSF)(VK_NULL_HANDLE, 1, true);
+ }
+
+ m_Metadata->Init(createInfo.size);
+}
+
+VmaVirtualBlock_T::~VmaVirtualBlock_T()
+{
+ // Define macro VMA_DEBUG_LOG_FORMAT or more specialized VMA_LEAK_LOG_FORMAT
+ // to receive the list of the unfreed allocations.
+ if (!m_Metadata->IsEmpty())
+ m_Metadata->DebugLogAllAllocations();
+ // This is the most important assert in the entire library.
+ // Hitting it means you have some memory leak - unreleased virtual allocations.
+ VMA_ASSERT_LEAK(m_Metadata->IsEmpty() && "Some virtual allocations were not freed before destruction of this virtual block!");
+
+ vma_delete(GetAllocationCallbacks(), m_Metadata);
+}
+
+const VkAllocationCallbacks* VmaVirtualBlock_T::GetAllocationCallbacks() const
+{
+ return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL;
+}
+
+void VmaVirtualBlock_T::GetAllocationInfo(VmaVirtualAllocation allocation, VmaVirtualAllocationInfo& outInfo)
+{
+ m_Metadata->GetAllocationInfo((VmaAllocHandle)allocation, outInfo);
+}
+
+VkResult VmaVirtualBlock_T::Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VmaVirtualAllocation& outAllocation,
+ VkDeviceSize* outOffset)
+{
+ VmaAllocationRequest request = {};
+ if (m_Metadata->CreateAllocationRequest(
+ createInfo.size, // allocSize
+ VMA_MAX(createInfo.alignment, (VkDeviceSize)1), // allocAlignment
+ (createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, // upperAddress
+ VMA_SUBALLOCATION_TYPE_UNKNOWN, // allocType - unimportant
+ createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK, // strategy
+ &request))
+ {
+ m_Metadata->Alloc(request,
+ VMA_SUBALLOCATION_TYPE_UNKNOWN, // type - unimportant
+ createInfo.pUserData);
+ outAllocation = (VmaVirtualAllocation)request.allocHandle;
+ if(outOffset)
+ *outOffset = m_Metadata->GetAllocationOffset(request.allocHandle);
+ return VK_SUCCESS;
+ }
+ outAllocation = (VmaVirtualAllocation)VK_NULL_HANDLE;
+ if (outOffset)
+ *outOffset = UINT64_MAX;
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+}
+
+void VmaVirtualBlock_T::GetStatistics(VmaStatistics& outStats) const
+{
+ VmaClearStatistics(outStats);
+ m_Metadata->AddStatistics(outStats);
+}
+
+void VmaVirtualBlock_T::CalculateDetailedStatistics(VmaDetailedStatistics& outStats) const
+{
+ VmaClearDetailedStatistics(outStats);
+ m_Metadata->AddDetailedStatistics(outStats);
+}
+
+#if VMA_STATS_STRING_ENABLED
+void VmaVirtualBlock_T::BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const
+{
+ VmaJsonWriter json(GetAllocationCallbacks(), sb);
+ json.BeginObject();
+
+ VmaDetailedStatistics stats;
+ CalculateDetailedStatistics(stats);
+
+ json.WriteString("Stats");
+ VmaPrintDetailedStatistics(json, stats);
+
+ if (detailedMap)
+ {
+ json.WriteString("Details");
+ json.BeginObject();
+ m_Metadata->PrintDetailedMap(json);
+ json.EndObject();
+ }
+
+ json.EndObject();
+}
+#endif // VMA_STATS_STRING_ENABLED
+#endif // _VMA_VIRTUAL_BLOCK_T_FUNCTIONS
+#endif // _VMA_VIRTUAL_BLOCK_T
+
+
+// Main allocator object.
+struct VmaAllocator_T
+{
+ VMA_CLASS_NO_COPY_NO_MOVE(VmaAllocator_T)
+public:
+ const bool m_UseMutex;
+ const uint32_t m_VulkanApiVersion;
+ bool m_UseKhrDedicatedAllocation; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0).
+ bool m_UseKhrBindMemory2; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0).
+ bool m_UseExtMemoryBudget;
+ bool m_UseAmdDeviceCoherentMemory;
+ bool m_UseKhrBufferDeviceAddress;
+ bool m_UseExtMemoryPriority;
+ bool m_UseKhrMaintenance4;
+ bool m_UseKhrMaintenance5;
+ const VkDevice m_hDevice;
+ const VkInstance m_hInstance;
+ const bool m_AllocationCallbacksSpecified;
+ const VkAllocationCallbacks m_AllocationCallbacks;
+ VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks;
+ VmaAllocationObjectAllocator m_AllocationObjectAllocator;
+
+ // Each bit (1 << i) is set if HeapSizeLimit is enabled for that heap, so cannot allocate more than the heap size.
+ uint32_t m_HeapSizeLimitMask;
+
+ VkPhysicalDeviceProperties m_PhysicalDeviceProperties;
+ VkPhysicalDeviceMemoryProperties m_MemProps;
+
+ // Default pools.
+ VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES];
+ VmaDedicatedAllocationList m_DedicatedAllocations[VK_MAX_MEMORY_TYPES];
+
+ VmaCurrentBudgetData m_Budget;
+ VMA_ATOMIC_UINT32 m_DeviceMemoryCount; // Total number of VkDeviceMemory objects.
+
+ VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo);
+ VkResult Init(const VmaAllocatorCreateInfo* pCreateInfo);
+ ~VmaAllocator_T();
+
+ const VkAllocationCallbacks* GetAllocationCallbacks() const
+ {
+ return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL;
+ }
+ const VmaVulkanFunctions& GetVulkanFunctions() const
+ {
+ return m_VulkanFunctions;
+ }
+
+ VkPhysicalDevice GetPhysicalDevice() const { return m_PhysicalDevice; }
+
+ VkDeviceSize GetBufferImageGranularity() const
+ {
+ return VMA_MAX(
+ static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY),
+ m_PhysicalDeviceProperties.limits.bufferImageGranularity);
+ }
+
+ uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; }
+ uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; }
+
+ uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const
+ {
+ VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount);
+ return m_MemProps.memoryTypes[memTypeIndex].heapIndex;
+ }
+ // True when specific memory type is HOST_VISIBLE but not HOST_COHERENT.
+ bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const
+ {
+ return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) ==
+ VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+ }
+ // Minimum alignment for all allocations in specific memory type.
+ VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const
+ {
+ return IsMemoryTypeNonCoherent(memTypeIndex) ?
+ VMA_MAX((VkDeviceSize)VMA_MIN_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) :
+ (VkDeviceSize)VMA_MIN_ALIGNMENT;
+ }
+
+ bool IsIntegratedGpu() const
+ {
+ return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU;
+ }
+
+ uint32_t GetGlobalMemoryTypeBits() const { return m_GlobalMemoryTypeBits; }
+
+ void GetBufferMemoryRequirements(
+ VkBuffer hBuffer,
+ VkMemoryRequirements& memReq,
+ bool& requiresDedicatedAllocation,
+ bool& prefersDedicatedAllocation) const;
+ void GetImageMemoryRequirements(
+ VkImage hImage,
+ VkMemoryRequirements& memReq,
+ bool& requiresDedicatedAllocation,
+ bool& prefersDedicatedAllocation) const;
+ VkResult FindMemoryTypeIndex(
+ uint32_t memoryTypeBits,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ VmaBufferImageUsage bufImgUsage,
+ uint32_t* pMemoryTypeIndex) const;
+
+ // Main allocation function.
+ VkResult AllocateMemory(
+ const VkMemoryRequirements& vkMemReq,
+ bool requiresDedicatedAllocation,
+ bool prefersDedicatedAllocation,
+ VkBuffer dedicatedBuffer,
+ VkImage dedicatedImage,
+ VmaBufferImageUsage dedicatedBufferImageUsage,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaSuballocationType suballocType,
+ size_t allocationCount,
+ VmaAllocation* pAllocations);
+
+ // Main deallocation function.
+ void FreeMemory(
+ size_t allocationCount,
+ const VmaAllocation* pAllocations);
+
+ void CalculateStatistics(VmaTotalStatistics* pStats);
+
+ void GetHeapBudgets(
+ VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount);
+
+#if VMA_STATS_STRING_ENABLED
+ void PrintDetailedMap(class VmaJsonWriter& json);
+#endif
+
+ void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo);
+ void GetAllocationInfo2(VmaAllocation hAllocation, VmaAllocationInfo2* pAllocationInfo);
+
+ VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool);
+ void DestroyPool(VmaPool pool);
+ void GetPoolStatistics(VmaPool pool, VmaStatistics* pPoolStats);
+ void CalculatePoolStatistics(VmaPool pool, VmaDetailedStatistics* pPoolStats);
+
+ void SetCurrentFrameIndex(uint32_t frameIndex);
+ uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); }
+
+ VkResult CheckPoolCorruption(VmaPool hPool);
+ VkResult CheckCorruption(uint32_t memoryTypeBits);
+
+ // Call to Vulkan function vkAllocateMemory with accompanying bookkeeping.
+ VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory);
+ // Call to Vulkan function vkFreeMemory with accompanying bookkeeping.
+ void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory);
+ // Call to Vulkan function vkBindBufferMemory or vkBindBufferMemory2KHR.
+ VkResult BindVulkanBuffer(
+ VkDeviceMemory memory,
+ VkDeviceSize memoryOffset,
+ VkBuffer buffer,
+ const void* pNext);
+ // Call to Vulkan function vkBindImageMemory or vkBindImageMemory2KHR.
+ VkResult BindVulkanImage(
+ VkDeviceMemory memory,
+ VkDeviceSize memoryOffset,
+ VkImage image,
+ const void* pNext);
+
+ VkResult Map(VmaAllocation hAllocation, void** ppData);
+ void Unmap(VmaAllocation hAllocation);
+
+ VkResult BindBufferMemory(
+ VmaAllocation hAllocation,
+ VkDeviceSize allocationLocalOffset,
+ VkBuffer hBuffer,
+ const void* pNext);
+ VkResult BindImageMemory(
+ VmaAllocation hAllocation,
+ VkDeviceSize allocationLocalOffset,
+ VkImage hImage,
+ const void* pNext);
+
+ VkResult FlushOrInvalidateAllocation(
+ VmaAllocation hAllocation,
+ VkDeviceSize offset, VkDeviceSize size,
+ VMA_CACHE_OPERATION op);
+ VkResult FlushOrInvalidateAllocations(
+ uint32_t allocationCount,
+ const VmaAllocation* allocations,
+ const VkDeviceSize* offsets, const VkDeviceSize* sizes,
+ VMA_CACHE_OPERATION op);
+
+ VkResult CopyMemoryToAllocation(
+ const void* pSrcHostPointer,
+ VmaAllocation dstAllocation,
+ VkDeviceSize dstAllocationLocalOffset,
+ VkDeviceSize size);
+ VkResult CopyAllocationToMemory(
+ VmaAllocation srcAllocation,
+ VkDeviceSize srcAllocationLocalOffset,
+ void* pDstHostPointer,
+ VkDeviceSize size);
+
+ void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern);
+
+ /*
+ Returns bit mask of memory types that can support defragmentation on GPU as
+ they support creation of required buffer for copy operations.
+ */
+ uint32_t GetGpuDefragmentationMemoryTypeBits();
+
+#if VMA_EXTERNAL_MEMORY
+ VkExternalMemoryHandleTypeFlagsKHR GetExternalMemoryHandleTypeFlags(uint32_t memTypeIndex) const
+ {
+ return m_TypeExternalMemoryHandleTypes[memTypeIndex];
+ }
+#endif // #if VMA_EXTERNAL_MEMORY
+
+private:
+ VkDeviceSize m_PreferredLargeHeapBlockSize;
+
+ VkPhysicalDevice m_PhysicalDevice;
+ VMA_ATOMIC_UINT32 m_CurrentFrameIndex;
+ VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized.
+#if VMA_EXTERNAL_MEMORY
+ VkExternalMemoryHandleTypeFlagsKHR m_TypeExternalMemoryHandleTypes[VK_MAX_MEMORY_TYPES];
+#endif // #if VMA_EXTERNAL_MEMORY
+
+ VMA_RW_MUTEX m_PoolsMutex;
+ typedef VmaIntrusiveLinkedList<VmaPoolListItemTraits> PoolList;
+ // Protected by m_PoolsMutex.
+ PoolList m_Pools;
+ uint32_t m_NextPoolId;
+
+ VmaVulkanFunctions m_VulkanFunctions;
+
+ // Global bit mask AND-ed with any memoryTypeBits to disallow certain memory types.
+ uint32_t m_GlobalMemoryTypeBits;
+
+ void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions);
+
+#if VMA_STATIC_VULKAN_FUNCTIONS == 1
+ void ImportVulkanFunctions_Static();
+#endif
+
+ void ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions);
+
+#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
+ void ImportVulkanFunctions_Dynamic();
+#endif
+
+ void ValidateVulkanFunctions();
+
+ VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex);
+
+ VkResult AllocateMemoryOfType(
+ VmaPool pool,
+ VkDeviceSize size,
+ VkDeviceSize alignment,
+ bool dedicatedPreferred,
+ VkBuffer dedicatedBuffer,
+ VkImage dedicatedImage,
+ VmaBufferImageUsage dedicatedBufferImageUsage,
+ const VmaAllocationCreateInfo& createInfo,
+ uint32_t memTypeIndex,
+ VmaSuballocationType suballocType,
+ VmaDedicatedAllocationList& dedicatedAllocations,
+ VmaBlockVector& blockVector,
+ size_t allocationCount,
+ VmaAllocation* pAllocations);
+
+ // Helper function only to be used inside AllocateDedicatedMemory.
+ VkResult AllocateDedicatedMemoryPage(
+ VmaPool pool,
+ VkDeviceSize size,
+ VmaSuballocationType suballocType,
+ uint32_t memTypeIndex,
+ const VkMemoryAllocateInfo& allocInfo,
+ bool map,
+ bool isUserDataString,
+ bool isMappingAllowed,
+ void* pUserData,
+ VmaAllocation* pAllocation);
+
+ // Allocates and registers new VkDeviceMemory specifically for dedicated allocations.
+ VkResult AllocateDedicatedMemory(
+ VmaPool pool,
+ VkDeviceSize size,
+ VmaSuballocationType suballocType,
+ VmaDedicatedAllocationList& dedicatedAllocations,
+ uint32_t memTypeIndex,
+ bool map,
+ bool isUserDataString,
+ bool isMappingAllowed,
+ bool canAliasMemory,
+ void* pUserData,
+ float priority,
+ VkBuffer dedicatedBuffer,
+ VkImage dedicatedImage,
+ VmaBufferImageUsage dedicatedBufferImageUsage,
+ size_t allocationCount,
+ VmaAllocation* pAllocations,
+ const void* pNextChain = VMA_NULL);
+
+ void FreeDedicatedMemory(const VmaAllocation allocation);
+
+ VkResult CalcMemTypeParams(
+ VmaAllocationCreateInfo& outCreateInfo,
+ uint32_t memTypeIndex,
+ VkDeviceSize size,
+ size_t allocationCount);
+ VkResult CalcAllocationParams(
+ VmaAllocationCreateInfo& outCreateInfo,
+ bool dedicatedRequired,
+ bool dedicatedPreferred);
+
+ /*
+ Calculates and returns bit mask of memory types that can support defragmentation
+ on GPU as they support creation of required buffer for copy operations.
+ */
+ uint32_t CalculateGpuDefragmentationMemoryTypeBits() const;
+ uint32_t CalculateGlobalMemoryTypeBits() const;
+
+ bool GetFlushOrInvalidateRange(
+ VmaAllocation allocation,
+ VkDeviceSize offset, VkDeviceSize size,
+ VkMappedMemoryRange& outRange) const;
+
+#if VMA_MEMORY_BUDGET
+ void UpdateVulkanBudget();
+#endif // #if VMA_MEMORY_BUDGET
+};
+
+
+#ifndef _VMA_MEMORY_FUNCTIONS
+static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment)
+{
+ return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment);
+}
+
+static void VmaFree(VmaAllocator hAllocator, void* ptr)
+{
+ VmaFree(&hAllocator->m_AllocationCallbacks, ptr);
+}
+
+template<typename T>
+static T* VmaAllocate(VmaAllocator hAllocator)
+{
+ return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T));
+}
+
+template<typename T>
+static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count)
+{
+ return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T));
+}
+
+template<typename T>
+static void vma_delete(VmaAllocator hAllocator, T* ptr)
+{
+ if(ptr != VMA_NULL)
+ {
+ ptr->~T();
+ VmaFree(hAllocator, ptr);
+ }
+}
+
+template<typename T>
+static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count)
+{
+ if(ptr != VMA_NULL)
+ {
+ for(size_t i = count; i--; )
+ ptr[i].~T();
+ VmaFree(hAllocator, ptr);
+ }
+}
+#endif // _VMA_MEMORY_FUNCTIONS
+
+#ifndef _VMA_DEVICE_MEMORY_BLOCK_FUNCTIONS
+VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator)
+ : m_pMetadata(VMA_NULL),
+ m_MemoryTypeIndex(UINT32_MAX),
+ m_Id(0),
+ m_hMemory(VK_NULL_HANDLE),
+ m_MapCount(0),
+ m_pMappedData(VMA_NULL) {}
+
+VmaDeviceMemoryBlock::~VmaDeviceMemoryBlock()
+{
+ VMA_ASSERT_LEAK(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped.");
+ VMA_ASSERT_LEAK(m_hMemory == VK_NULL_HANDLE);
+}
+
+void VmaDeviceMemoryBlock::Init(
+ VmaAllocator hAllocator,
+ VmaPool hParentPool,
+ uint32_t newMemoryTypeIndex,
+ VkDeviceMemory newMemory,
+ VkDeviceSize newSize,
+ uint32_t id,
+ uint32_t algorithm,
+ VkDeviceSize bufferImageGranularity)
+{
+ VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
+
+ m_hParentPool = hParentPool;
+ m_MemoryTypeIndex = newMemoryTypeIndex;
+ m_Id = id;
+ m_hMemory = newMemory;
+
+ switch (algorithm)
+ {
+ case 0:
+ m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_TLSF)(hAllocator->GetAllocationCallbacks(),
+ bufferImageGranularity, false); // isVirtual
+ break;
+ case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT:
+ m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator->GetAllocationCallbacks(),
+ bufferImageGranularity, false); // isVirtual
+ break;
+ default:
+ VMA_ASSERT(0);
+ m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_TLSF)(hAllocator->GetAllocationCallbacks(),
+ bufferImageGranularity, false); // isVirtual
+ }
+ m_pMetadata->Init(newSize);
+}
+
+void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator)
+{
+ // Define macro VMA_DEBUG_LOG_FORMAT or more specialized VMA_LEAK_LOG_FORMAT
+ // to receive the list of the unfreed allocations.
+ if (!m_pMetadata->IsEmpty())
+ m_pMetadata->DebugLogAllAllocations();
+ // This is the most important assert in the entire library.
+ // Hitting it means you have some memory leak - unreleased VmaAllocation objects.
+ VMA_ASSERT_LEAK(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!");
+
+ VMA_ASSERT_LEAK(m_hMemory != VK_NULL_HANDLE);
+ allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory);
+ m_hMemory = VK_NULL_HANDLE;
+
+ vma_delete(allocator, m_pMetadata);
+ m_pMetadata = VMA_NULL;
+}
+
+void VmaDeviceMemoryBlock::PostAlloc(VmaAllocator hAllocator)
+{
+ VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
+ m_MappingHysteresis.PostAlloc();
+}
+
+void VmaDeviceMemoryBlock::PostFree(VmaAllocator hAllocator)
+{
+ VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
+ if(m_MappingHysteresis.PostFree())
+ {
+ VMA_ASSERT(m_MappingHysteresis.GetExtraMapping() == 0);
+ if (m_MapCount == 0)
+ {
+ m_pMappedData = VMA_NULL;
+ (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory);
+ }
+ }
+}
+
+bool VmaDeviceMemoryBlock::Validate() const
+{
+ VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) &&
+ (m_pMetadata->GetSize() != 0));
+
+ return m_pMetadata->Validate();
+}
+
+VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator)
+{
+ void* pData = VMA_NULL;
+ VkResult res = Map(hAllocator, 1, &pData);
+ if (res != VK_SUCCESS)
+ {
+ return res;
+ }
+
+ res = m_pMetadata->CheckCorruption(pData);
+
+ Unmap(hAllocator, 1);
+
+ return res;
+}
+
+VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData)
+{
+ if (count == 0)
+ {
+ return VK_SUCCESS;
+ }
+
+ VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
+ const uint32_t oldTotalMapCount = m_MapCount + m_MappingHysteresis.GetExtraMapping();
+ if (oldTotalMapCount != 0)
+ {
+ VMA_ASSERT(m_pMappedData != VMA_NULL);
+ m_MappingHysteresis.PostMap();
+ m_MapCount += count;
+ if (ppData != VMA_NULL)
+ {
+ *ppData = m_pMappedData;
+ }
+ return VK_SUCCESS;
+ }
+ else
+ {
+ VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
+ hAllocator->m_hDevice,
+ m_hMemory,
+ 0, // offset
+ VK_WHOLE_SIZE,
+ 0, // flags
+ &m_pMappedData);
+ if (result == VK_SUCCESS)
+ {
+ VMA_ASSERT(m_pMappedData != VMA_NULL);
+ m_MappingHysteresis.PostMap();
+ m_MapCount = count;
+ if (ppData != VMA_NULL)
+ {
+ *ppData = m_pMappedData;
+ }
+ }
+ return result;
+ }
+}
+
+void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count)
+{
+ if (count == 0)
+ {
+ return;
+ }
+
+ VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
+ if (m_MapCount >= count)
+ {
+ m_MapCount -= count;
+ const uint32_t totalMapCount = m_MapCount + m_MappingHysteresis.GetExtraMapping();
+ if (totalMapCount == 0)
+ {
+ m_pMappedData = VMA_NULL;
+ (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory);
+ }
+ m_MappingHysteresis.PostUnmap();
+ }
+ else
+ {
+ VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped.");
+ }
+}
+
+VkResult VmaDeviceMemoryBlock::WriteMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize)
+{
+ VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);
+
+ void* pData;
+ VkResult res = Map(hAllocator, 1, &pData);
+ if (res != VK_SUCCESS)
+ {
+ return res;
+ }
+
+ VmaWriteMagicValue(pData, allocOffset + allocSize);
+
+ Unmap(hAllocator, 1);
+ return VK_SUCCESS;
+}
+
+VkResult VmaDeviceMemoryBlock::ValidateMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize)
+{
+ VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);
+
+ void* pData;
+ VkResult res = Map(hAllocator, 1, &pData);
+ if (res != VK_SUCCESS)
+ {
+ return res;
+ }
+
+ if (!VmaValidateMagicValue(pData, allocOffset + allocSize))
+ {
+ VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!");
+ }
+
+ Unmap(hAllocator, 1);
+ return VK_SUCCESS;
+}
+
+VkResult VmaDeviceMemoryBlock::BindBufferMemory(
+ const VmaAllocator hAllocator,
+ const VmaAllocation hAllocation,
+ VkDeviceSize allocationLocalOffset,
+ VkBuffer hBuffer,
+ const void* pNext)
+{
+ VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
+ hAllocation->GetBlock() == this);
+ VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() &&
+ "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?");
+ const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset;
+ // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
+ VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
+ return hAllocator->BindVulkanBuffer(m_hMemory, memoryOffset, hBuffer, pNext);
+}
+
+VkResult VmaDeviceMemoryBlock::BindImageMemory(
+ const VmaAllocator hAllocator,
+ const VmaAllocation hAllocation,
+ VkDeviceSize allocationLocalOffset,
+ VkImage hImage,
+ const void* pNext)
+{
+ VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
+ hAllocation->GetBlock() == this);
+ VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() &&
+ "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?");
+ const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset;
+ // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
+ VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
+ return hAllocator->BindVulkanImage(m_hMemory, memoryOffset, hImage, pNext);
+}
+#endif // _VMA_DEVICE_MEMORY_BLOCK_FUNCTIONS
+
+#ifndef _VMA_ALLOCATION_T_FUNCTIONS
+VmaAllocation_T::VmaAllocation_T(bool mappingAllowed)
+ : m_Alignment{ 1 },
+ m_Size{ 0 },
+ m_pUserData{ VMA_NULL },
+ m_pName{ VMA_NULL },
+ m_MemoryTypeIndex{ 0 },
+ m_Type{ (uint8_t)ALLOCATION_TYPE_NONE },
+ m_SuballocationType{ (uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN },
+ m_MapCount{ 0 },
+ m_Flags{ 0 }
+{
+ if(mappingAllowed)
+ m_Flags |= (uint8_t)FLAG_MAPPING_ALLOWED;
+}
+
+VmaAllocation_T::~VmaAllocation_T()
+{
+ VMA_ASSERT_LEAK(m_MapCount == 0 && "Allocation was not unmapped before destruction.");
+
+ // Check if owned string was freed.
+ VMA_ASSERT(m_pName == VMA_NULL);
+}
+
+void VmaAllocation_T::InitBlockAllocation(
+ VmaDeviceMemoryBlock* block,
+ VmaAllocHandle allocHandle,
+ VkDeviceSize alignment,
+ VkDeviceSize size,
+ uint32_t memoryTypeIndex,
+ VmaSuballocationType suballocationType,
+ bool mapped)
+{
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
+ VMA_ASSERT(block != VMA_NULL);
+ m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
+ m_Alignment = alignment;
+ m_Size = size;
+ m_MemoryTypeIndex = memoryTypeIndex;
+ if(mapped)
+ {
+ VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it.");
+ m_Flags |= (uint8_t)FLAG_PERSISTENT_MAP;
+ }
+ m_SuballocationType = (uint8_t)suballocationType;
+ m_BlockAllocation.m_Block = block;
+ m_BlockAllocation.m_AllocHandle = allocHandle;
+}
+
+void VmaAllocation_T::InitDedicatedAllocation(
+ VmaPool hParentPool,
+ uint32_t memoryTypeIndex,
+ VkDeviceMemory hMemory,
+ VmaSuballocationType suballocationType,
+ void* pMappedData,
+ VkDeviceSize size)
+{
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
+ VMA_ASSERT(hMemory != VK_NULL_HANDLE);
+ m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED;
+ m_Alignment = 0;
+ m_Size = size;
+ m_MemoryTypeIndex = memoryTypeIndex;
+ m_SuballocationType = (uint8_t)suballocationType;
+ if(pMappedData != VMA_NULL)
+ {
+ VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it.");
+ m_Flags |= (uint8_t)FLAG_PERSISTENT_MAP;
+ }
+ m_DedicatedAllocation.m_hParentPool = hParentPool;
+ m_DedicatedAllocation.m_hMemory = hMemory;
+ m_DedicatedAllocation.m_pMappedData = pMappedData;
+ m_DedicatedAllocation.m_Prev = VMA_NULL;
+ m_DedicatedAllocation.m_Next = VMA_NULL;
+}
+
+void VmaAllocation_T::SetName(VmaAllocator hAllocator, const char* pName)
+{
+ VMA_ASSERT(pName == VMA_NULL || pName != m_pName);
+
+ FreeName(hAllocator);
+
+ if (pName != VMA_NULL)
+ m_pName = VmaCreateStringCopy(hAllocator->GetAllocationCallbacks(), pName);
+}
+
+uint8_t VmaAllocation_T::SwapBlockAllocation(VmaAllocator hAllocator, VmaAllocation allocation)
+{
+ VMA_ASSERT(allocation != VMA_NULL);
+ VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
+ VMA_ASSERT(allocation->m_Type == ALLOCATION_TYPE_BLOCK);
+
+ if (m_MapCount != 0)
+ m_BlockAllocation.m_Block->Unmap(hAllocator, m_MapCount);
+
+ m_BlockAllocation.m_Block->m_pMetadata->SetAllocationUserData(m_BlockAllocation.m_AllocHandle, allocation);
+ std::swap(m_BlockAllocation, allocation->m_BlockAllocation);
+ m_BlockAllocation.m_Block->m_pMetadata->SetAllocationUserData(m_BlockAllocation.m_AllocHandle, this);
+
+#if VMA_STATS_STRING_ENABLED
+ std::swap(m_BufferImageUsage, allocation->m_BufferImageUsage);
+#endif
+ return m_MapCount;
+}
+
+VmaAllocHandle VmaAllocation_T::GetAllocHandle() const
+{
+ switch (m_Type)
+ {
+ case ALLOCATION_TYPE_BLOCK:
+ return m_BlockAllocation.m_AllocHandle;
+ case ALLOCATION_TYPE_DEDICATED:
+ return VK_NULL_HANDLE;
+ default:
+ VMA_ASSERT(0);
+ return VK_NULL_HANDLE;
+ }
+}
+
+VkDeviceSize VmaAllocation_T::GetOffset() const
+{
+ switch (m_Type)
+ {
+ case ALLOCATION_TYPE_BLOCK:
+ return m_BlockAllocation.m_Block->m_pMetadata->GetAllocationOffset(m_BlockAllocation.m_AllocHandle);
+ case ALLOCATION_TYPE_DEDICATED:
+ return 0;
+ default:
+ VMA_ASSERT(0);
+ return 0;
+ }
+}
+
+VmaPool VmaAllocation_T::GetParentPool() const
+{
+ switch (m_Type)
+ {
+ case ALLOCATION_TYPE_BLOCK:
+ return m_BlockAllocation.m_Block->GetParentPool();
+ case ALLOCATION_TYPE_DEDICATED:
+ return m_DedicatedAllocation.m_hParentPool;
+ default:
+ VMA_ASSERT(0);
+ return VK_NULL_HANDLE;
+ }
+}
+
+VkDeviceMemory VmaAllocation_T::GetMemory() const
+{
+ switch (m_Type)
+ {
+ case ALLOCATION_TYPE_BLOCK:
+ return m_BlockAllocation.m_Block->GetDeviceMemory();
+ case ALLOCATION_TYPE_DEDICATED:
+ return m_DedicatedAllocation.m_hMemory;
+ default:
+ VMA_ASSERT(0);
+ return VK_NULL_HANDLE;
+ }
+}
+
+void* VmaAllocation_T::GetMappedData() const
+{
+ switch (m_Type)
+ {
+ case ALLOCATION_TYPE_BLOCK:
+ if (m_MapCount != 0 || IsPersistentMap())
+ {
+ void* pBlockData = m_BlockAllocation.m_Block->GetMappedData();
+ VMA_ASSERT(pBlockData != VMA_NULL);
+ return (char*)pBlockData + GetOffset();
+ }
+ else
+ {
+ return VMA_NULL;
+ }
+ break;
+ case ALLOCATION_TYPE_DEDICATED:
+ VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0 || IsPersistentMap()));
+ return m_DedicatedAllocation.m_pMappedData;
+ default:
+ VMA_ASSERT(0);
+ return VMA_NULL;
+ }
+}
+
+void VmaAllocation_T::BlockAllocMap()
+{
+ VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
+ VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it.");
+
+ if (m_MapCount < 0xFF)
+ {
+ ++m_MapCount;
+ }
+ else
+ {
+ VMA_ASSERT(0 && "Allocation mapped too many times simultaneously.");
+ }
+}
+
+void VmaAllocation_T::BlockAllocUnmap()
+{
+ VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
+
+ if (m_MapCount > 0)
+ {
+ --m_MapCount;
+ }
+ else
+ {
+ VMA_ASSERT(0 && "Unmapping allocation not previously mapped.");
+ }
+}
+
+VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData)
+{
+ VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
+ VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it.");
+
+ if (m_MapCount != 0 || IsPersistentMap())
+ {
+ if (m_MapCount < 0xFF)
+ {
+ VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL);
+ *ppData = m_DedicatedAllocation.m_pMappedData;
+ ++m_MapCount;
+ return VK_SUCCESS;
+ }
+ else
+ {
+ VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously.");
+ return VK_ERROR_MEMORY_MAP_FAILED;
+ }
+ }
+ else
+ {
+ VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
+ hAllocator->m_hDevice,
+ m_DedicatedAllocation.m_hMemory,
+ 0, // offset
+ VK_WHOLE_SIZE,
+ 0, // flags
+ ppData);
+ if (result == VK_SUCCESS)
+ {
+ m_DedicatedAllocation.m_pMappedData = *ppData;
+ m_MapCount = 1;
+ }
+ return result;
+ }
+}
+
+void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator)
+{
+ VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
+
+ if (m_MapCount > 0)
+ {
+ --m_MapCount;
+ if (m_MapCount == 0 && !IsPersistentMap())
+ {
+ m_DedicatedAllocation.m_pMappedData = VMA_NULL;
+ (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(
+ hAllocator->m_hDevice,
+ m_DedicatedAllocation.m_hMemory);
+ }
+ }
+ else
+ {
+ VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped.");
+ }
+}
+
+#if VMA_STATS_STRING_ENABLED
+void VmaAllocation_T::PrintParameters(class VmaJsonWriter& json) const
+{
+ json.WriteString("Type");
+ json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]);
+
+ json.WriteString("Size");
+ json.WriteNumber(m_Size);
+ json.WriteString("Usage");
+ json.WriteNumber(m_BufferImageUsage.Value); // It may be uint32_t or uint64_t.
+
+ if (m_pUserData != VMA_NULL)
+ {
+ json.WriteString("CustomData");
+ json.BeginString();
+ json.ContinueString_Pointer(m_pUserData);
+ json.EndString();
+ }
+ if (m_pName != VMA_NULL)
+ {
+ json.WriteString("Name");
+ json.WriteString(m_pName);
+ }
+}
+#endif // VMA_STATS_STRING_ENABLED
+
+void VmaAllocation_T::FreeName(VmaAllocator hAllocator)
+{
+ if(m_pName)
+ {
+ VmaFreeString(hAllocator->GetAllocationCallbacks(), m_pName);
+ m_pName = VMA_NULL;
+ }
+}
+#endif // _VMA_ALLOCATION_T_FUNCTIONS
+
+#ifndef _VMA_BLOCK_VECTOR_FUNCTIONS
+VmaBlockVector::VmaBlockVector(
+ VmaAllocator hAllocator,
+ VmaPool hParentPool,
+ uint32_t memoryTypeIndex,
+ VkDeviceSize preferredBlockSize,
+ size_t minBlockCount,
+ size_t maxBlockCount,
+ VkDeviceSize bufferImageGranularity,
+ bool explicitBlockSize,
+ uint32_t algorithm,
+ float priority,
+ VkDeviceSize minAllocationAlignment,
+ void* pMemoryAllocateNext)
+ : m_hAllocator(hAllocator),
+ m_hParentPool(hParentPool),
+ m_MemoryTypeIndex(memoryTypeIndex),
+ m_PreferredBlockSize(preferredBlockSize),
+ m_MinBlockCount(minBlockCount),
+ m_MaxBlockCount(maxBlockCount),
+ m_BufferImageGranularity(bufferImageGranularity),
+ m_ExplicitBlockSize(explicitBlockSize),
+ m_Algorithm(algorithm),
+ m_Priority(priority),
+ m_MinAllocationAlignment(minAllocationAlignment),
+ m_pMemoryAllocateNext(pMemoryAllocateNext),
+ m_Blocks(VmaStlAllocator<VmaDeviceMemoryBlock*>(hAllocator->GetAllocationCallbacks())),
+ m_NextBlockId(0) {}
+
+VmaBlockVector::~VmaBlockVector()
+{
+ for (size_t i = m_Blocks.size(); i--; )
+ {
+ m_Blocks[i]->Destroy(m_hAllocator);
+ vma_delete(m_hAllocator, m_Blocks[i]);
+ }
+}
+
+VkResult VmaBlockVector::CreateMinBlocks()
+{
+ for (size_t i = 0; i < m_MinBlockCount; ++i)
+ {
+ VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL);
+ if (res != VK_SUCCESS)
+ {
+ return res;
+ }
+ }
+ return VK_SUCCESS;
+}
+
+void VmaBlockVector::AddStatistics(VmaStatistics& inoutStats)
+{
+ VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+ const size_t blockCount = m_Blocks.size();
+ for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
+ {
+ const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
+ VMA_ASSERT(pBlock);
+ VMA_HEAVY_ASSERT(pBlock->Validate());
+ pBlock->m_pMetadata->AddStatistics(inoutStats);
+ }
+}
+
+void VmaBlockVector::AddDetailedStatistics(VmaDetailedStatistics& inoutStats)
+{
+ VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+ const size_t blockCount = m_Blocks.size();
+ for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
+ {
+ const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
+ VMA_ASSERT(pBlock);
+ VMA_HEAVY_ASSERT(pBlock->Validate());
+ pBlock->m_pMetadata->AddDetailedStatistics(inoutStats);
+ }
+}
+
+bool VmaBlockVector::IsEmpty()
+{
+ VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
+ return m_Blocks.empty();
+}
+
+bool VmaBlockVector::IsCorruptionDetectionEnabled() const
+{
+ const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
+ return (VMA_DEBUG_DETECT_CORRUPTION != 0) &&
+ (VMA_DEBUG_MARGIN > 0) &&
+ (m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) &&
+ (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags;
+}
+
+VkResult VmaBlockVector::Allocate(
+ VkDeviceSize size,
+ VkDeviceSize alignment,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaSuballocationType suballocType,
+ size_t allocationCount,
+ VmaAllocation* pAllocations)
+{
+ size_t allocIndex;
+ VkResult res = VK_SUCCESS;
+
+ alignment = VMA_MAX(alignment, m_MinAllocationAlignment);
+
+ if (IsCorruptionDetectionEnabled())
+ {
+ size = VmaAlignUp<VkDeviceSize>(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));
+ alignment = VmaAlignUp<VkDeviceSize>(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));
+ }
+
+ {
+ VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
+ for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
+ {
+ res = AllocatePage(
+ size,
+ alignment,
+ createInfo,
+ suballocType,
+ pAllocations + allocIndex);
+ if (res != VK_SUCCESS)
+ {
+ break;
+ }
+ }
+ }
+
+ if (res != VK_SUCCESS)
+ {
+ // Free all already created allocations.
+ while (allocIndex--)
+ Free(pAllocations[allocIndex]);
+ memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
+ }
+
+ return res;
+}
+
+VkResult VmaBlockVector::AllocatePage(
+ VkDeviceSize size,
+ VkDeviceSize alignment,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaSuballocationType suballocType,
+ VmaAllocation* pAllocation)
+{
+ const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
+
+ VkDeviceSize freeMemory;
+ {
+ const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex);
+ VmaBudget heapBudget = {};
+ m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1);
+ freeMemory = (heapBudget.usage < heapBudget.budget) ? (heapBudget.budget - heapBudget.usage) : 0;
+ }
+
+ const bool canFallbackToDedicated = !HasExplicitBlockSize() &&
+ (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0;
+ const bool canCreateNewBlock =
+ ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) &&
+ (m_Blocks.size() < m_MaxBlockCount) &&
+ (freeMemory >= size || !canFallbackToDedicated);
+ uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK;
+
+ // Upper address can only be used with linear allocator and within single memory block.
+ if (isUpperAddress &&
+ (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1))
+ {
+ return VK_ERROR_FEATURE_NOT_PRESENT;
+ }
+
+ // Early reject: requested allocation size is larger that maximum block size for this block vector.
+ if (size + VMA_DEBUG_MARGIN > m_PreferredBlockSize)
+ {
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+
+ // 1. Search existing allocations. Try to allocate.
+ if (m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
+ {
+ // Use only last block.
+ if (!m_Blocks.empty())
+ {
+ VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back();
+ VMA_ASSERT(pCurrBlock);
+ VkResult res = AllocateFromBlock(
+ pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
+ if (res == VK_SUCCESS)
+ {
+ VMA_DEBUG_LOG_FORMAT(" Returned from last block #%" PRIu32, pCurrBlock->GetId());
+ IncrementallySortBlocks();
+ return VK_SUCCESS;
+ }
+ }
+ }
+ else
+ {
+ if (strategy != VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT) // MIN_MEMORY or default
+ {
+ const bool isHostVisible =
+ (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0;
+ if(isHostVisible)
+ {
+ const bool isMappingAllowed = (createInfo.flags &
+ (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0;
+ /*
+ For non-mappable allocations, check blocks that are not mapped first.
+ For mappable allocations, check blocks that are already mapped first.
+ This way, having many blocks, we will separate mappable and non-mappable allocations,
+ hopefully limiting the number of blocks that are mapped, which will help tools like RenderDoc.
+ */
+ for(size_t mappingI = 0; mappingI < 2; ++mappingI)
+ {
+ // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
+ for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
+ {
+ VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
+ VMA_ASSERT(pCurrBlock);
+ const bool isBlockMapped = pCurrBlock->GetMappedData() != VMA_NULL;
+ if((mappingI == 0) == (isMappingAllowed == isBlockMapped))
+ {
+ VkResult res = AllocateFromBlock(
+ pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
+ if (res == VK_SUCCESS)
+ {
+ VMA_DEBUG_LOG_FORMAT(" Returned from existing block #%" PRIu32, pCurrBlock->GetId());
+ IncrementallySortBlocks();
+ return VK_SUCCESS;
+ }
+ }
+ }
+ }
+ }
+ else
+ {
+ // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
+ for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
+ {
+ VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
+ VMA_ASSERT(pCurrBlock);
+ VkResult res = AllocateFromBlock(
+ pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
+ if (res == VK_SUCCESS)
+ {
+ VMA_DEBUG_LOG_FORMAT(" Returned from existing block #%" PRIu32, pCurrBlock->GetId());
+ IncrementallySortBlocks();
+ return VK_SUCCESS;
+ }
+ }
+ }
+ }
+ else // VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT
+ {
+ // Backward order in m_Blocks - prefer blocks with largest amount of free space.
+ for (size_t blockIndex = m_Blocks.size(); blockIndex--; )
+ {
+ VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
+ VMA_ASSERT(pCurrBlock);
+ VkResult res = AllocateFromBlock(pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
+ if (res == VK_SUCCESS)
+ {
+ VMA_DEBUG_LOG_FORMAT(" Returned from existing block #%" PRIu32, pCurrBlock->GetId());
+ IncrementallySortBlocks();
+ return VK_SUCCESS;
+ }
+ }
+ }
+ }
+
+ // 2. Try to create new block.
+ if (canCreateNewBlock)
+ {
+ // Calculate optimal size for new block.
+ VkDeviceSize newBlockSize = m_PreferredBlockSize;
+ uint32_t newBlockSizeShift = 0;
+ const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3;
+
+ if (!m_ExplicitBlockSize)
+ {
+ // Allocate 1/8, 1/4, 1/2 as first blocks.
+ const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize();
+ for (uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i)
+ {
+ const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
+ if (smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2)
+ {
+ newBlockSize = smallerNewBlockSize;
+ ++newBlockSizeShift;
+ }
+ else
+ {
+ break;
+ }
+ }
+ }
+
+ size_t newBlockIndex = 0;
+ VkResult res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ?
+ CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize.
+ if (!m_ExplicitBlockSize)
+ {
+ while (res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX)
+ {
+ const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
+ if (smallerNewBlockSize >= size)
+ {
+ newBlockSize = smallerNewBlockSize;
+ ++newBlockSizeShift;
+ res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ?
+ CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ else
+ {
+ break;
+ }
+ }
+ }
+
+ if (res == VK_SUCCESS)
+ {
+ VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex];
+ VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size);
+
+ res = AllocateFromBlock(
+ pBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
+ if (res == VK_SUCCESS)
+ {
+ VMA_DEBUG_LOG_FORMAT(" Created new block #%" PRIu32 " Size=%" PRIu64, pBlock->GetId(), newBlockSize);
+ IncrementallySortBlocks();
+ return VK_SUCCESS;
+ }
+ else
+ {
+ // Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment.
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ }
+ }
+
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+}
+
+void VmaBlockVector::Free(const VmaAllocation hAllocation)
+{
+ VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL;
+
+ bool budgetExceeded = false;
+ {
+ const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex);
+ VmaBudget heapBudget = {};
+ m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1);
+ budgetExceeded = heapBudget.usage >= heapBudget.budget;
+ }
+
+ // Scope for lock.
+ {
+ VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+ VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
+
+ if (IsCorruptionDetectionEnabled())
+ {
+ VkResult res = pBlock->ValidateMagicValueAfterAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize());
+ VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value.");
+ }
+
+ if (hAllocation->IsPersistentMap())
+ {
+ pBlock->Unmap(m_hAllocator, 1);
+ }
+
+ const bool hadEmptyBlockBeforeFree = HasEmptyBlock();
+ pBlock->m_pMetadata->Free(hAllocation->GetAllocHandle());
+ pBlock->PostFree(m_hAllocator);
+ VMA_HEAVY_ASSERT(pBlock->Validate());
+
+ VMA_DEBUG_LOG_FORMAT(" Freed from MemoryTypeIndex=%" PRIu32, m_MemoryTypeIndex);
+
+ const bool canDeleteBlock = m_Blocks.size() > m_MinBlockCount;
+ // pBlock became empty after this deallocation.
+ if (pBlock->m_pMetadata->IsEmpty())
+ {
+ // Already had empty block. We don't want to have two, so delete this one.
+ if ((hadEmptyBlockBeforeFree || budgetExceeded) && canDeleteBlock)
+ {
+ pBlockToDelete = pBlock;
+ Remove(pBlock);
+ }
+ // else: We now have one empty block - leave it. A hysteresis to avoid allocating whole block back and forth.
+ }
+ // pBlock didn't become empty, but we have another empty block - find and free that one.
+ // (This is optional, heuristics.)
+ else if (hadEmptyBlockBeforeFree && canDeleteBlock)
+ {
+ VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back();
+ if (pLastBlock->m_pMetadata->IsEmpty())
+ {
+ pBlockToDelete = pLastBlock;
+ m_Blocks.pop_back();
+ }
+ }
+
+ IncrementallySortBlocks();
+ }
+
+ // Destruction of a free block. Deferred until this point, outside of mutex
+ // lock, for performance reason.
+ if (pBlockToDelete != VMA_NULL)
+ {
+ VMA_DEBUG_LOG_FORMAT(" Deleted empty block #%" PRIu32, pBlockToDelete->GetId());
+ pBlockToDelete->Destroy(m_hAllocator);
+ vma_delete(m_hAllocator, pBlockToDelete);
+ }
+
+ m_hAllocator->m_Budget.RemoveAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), hAllocation->GetSize());
+ m_hAllocator->m_AllocationObjectAllocator.Free(hAllocation);
+}
+
+VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const
+{
+ VkDeviceSize result = 0;
+ for (size_t i = m_Blocks.size(); i--; )
+ {
+ result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize());
+ if (result >= m_PreferredBlockSize)
+ {
+ break;
+ }
+ }
+ return result;
+}
+
+void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock)
+{
+ for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
+ {
+ if (m_Blocks[blockIndex] == pBlock)
+ {
+ VmaVectorRemove(m_Blocks, blockIndex);
+ return;
+ }
+ }
+ VMA_ASSERT(0);
+}
+
+void VmaBlockVector::IncrementallySortBlocks()
+{
+ if (!m_IncrementalSort)
+ return;
+ if (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
+ {
+ // Bubble sort only until first swap.
+ for (size_t i = 1; i < m_Blocks.size(); ++i)
+ {
+ if (m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize())
+ {
+ std::swap(m_Blocks[i - 1], m_Blocks[i]);
+ return;
+ }
+ }
+ }
+}
+
+void VmaBlockVector::SortByFreeSize()
+{
+ VMA_SORT(m_Blocks.begin(), m_Blocks.end(),
+ [](VmaDeviceMemoryBlock* b1, VmaDeviceMemoryBlock* b2) -> bool
+ {
+ return b1->m_pMetadata->GetSumFreeSize() < b2->m_pMetadata->GetSumFreeSize();
+ });
+}
+
+VkResult VmaBlockVector::AllocateFromBlock(
+ VmaDeviceMemoryBlock* pBlock,
+ VkDeviceSize size,
+ VkDeviceSize alignment,
+ VmaAllocationCreateFlags allocFlags,
+ void* pUserData,
+ VmaSuballocationType suballocType,
+ uint32_t strategy,
+ VmaAllocation* pAllocation)
+{
+ const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
+
+ VmaAllocationRequest currRequest = {};
+ if (pBlock->m_pMetadata->CreateAllocationRequest(
+ size,
+ alignment,
+ isUpperAddress,
+ suballocType,
+ strategy,
+ &currRequest))
+ {
+ return CommitAllocationRequest(currRequest, pBlock, alignment, allocFlags, pUserData, suballocType, pAllocation);
+ }
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+}
+
+VkResult VmaBlockVector::CommitAllocationRequest(
+ VmaAllocationRequest& allocRequest,
+ VmaDeviceMemoryBlock* pBlock,
+ VkDeviceSize alignment,
+ VmaAllocationCreateFlags allocFlags,
+ void* pUserData,
+ VmaSuballocationType suballocType,
+ VmaAllocation* pAllocation)
+{
+ const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;
+ const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;
+ const bool isMappingAllowed = (allocFlags &
+ (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0;
+
+ pBlock->PostAlloc(m_hAllocator);
+ // Allocate from pCurrBlock.
+ if (mapped)
+ {
+ VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL);
+ if (res != VK_SUCCESS)
+ {
+ return res;
+ }
+ }
+
+ *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(isMappingAllowed);
+ pBlock->m_pMetadata->Alloc(allocRequest, suballocType, *pAllocation);
+ (*pAllocation)->InitBlockAllocation(
+ pBlock,
+ allocRequest.allocHandle,
+ alignment,
+ allocRequest.size, // Not size, as actual allocation size may be larger than requested!
+ m_MemoryTypeIndex,
+ suballocType,
+ mapped);
+ VMA_HEAVY_ASSERT(pBlock->Validate());
+ if (isUserDataString)
+ (*pAllocation)->SetName(m_hAllocator, (const char*)pUserData);
+ else
+ (*pAllocation)->SetUserData(m_hAllocator, pUserData);
+ m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), allocRequest.size);
+ if (VMA_DEBUG_INITIALIZE_ALLOCATIONS)
+ {
+ m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
+ }
+ if (IsCorruptionDetectionEnabled())
+ {
+ VkResult res = pBlock->WriteMagicValueAfterAllocation(m_hAllocator, (*pAllocation)->GetOffset(), allocRequest.size);
+ VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value.");
+ }
+ return VK_SUCCESS;
+}
+
+VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex)
+{
+ VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
+ allocInfo.pNext = m_pMemoryAllocateNext;
+ allocInfo.memoryTypeIndex = m_MemoryTypeIndex;
+ allocInfo.allocationSize = blockSize;
+
+#if VMA_BUFFER_DEVICE_ADDRESS
+ // Every standalone block can potentially contain a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT - always enable the feature.
+ VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR };
+ if (m_hAllocator->m_UseKhrBufferDeviceAddress)
+ {
+ allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
+ VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo);
+ }
+#endif // VMA_BUFFER_DEVICE_ADDRESS
+
+#if VMA_MEMORY_PRIORITY
+ VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT };
+ if (m_hAllocator->m_UseExtMemoryPriority)
+ {
+ VMA_ASSERT(m_Priority >= 0.f && m_Priority <= 1.f);
+ priorityInfo.priority = m_Priority;
+ VmaPnextChainPushFront(&allocInfo, &priorityInfo);
+ }
+#endif // VMA_MEMORY_PRIORITY
+
+#if VMA_EXTERNAL_MEMORY
+ // Attach VkExportMemoryAllocateInfoKHR if necessary.
+ VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR };
+ exportMemoryAllocInfo.handleTypes = m_hAllocator->GetExternalMemoryHandleTypeFlags(m_MemoryTypeIndex);
+ if (exportMemoryAllocInfo.handleTypes != 0)
+ {
+ VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo);
+ }
+#endif // VMA_EXTERNAL_MEMORY
+
+ VkDeviceMemory mem = VK_NULL_HANDLE;
+ VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem);
+ if (res < 0)
+ {
+ return res;
+ }
+
+ // New VkDeviceMemory successfully created.
+
+ // Create new Allocation for it.
+ VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator);
+ pBlock->Init(
+ m_hAllocator,
+ m_hParentPool,
+ m_MemoryTypeIndex,
+ mem,
+ allocInfo.allocationSize,
+ m_NextBlockId++,
+ m_Algorithm,
+ m_BufferImageGranularity);
+
+ m_Blocks.push_back(pBlock);
+ if (pNewBlockIndex != VMA_NULL)
+ {
+ *pNewBlockIndex = m_Blocks.size() - 1;
+ }
+
+ return VK_SUCCESS;
+}
+
+bool VmaBlockVector::HasEmptyBlock()
+{
+ for (size_t index = 0, count = m_Blocks.size(); index < count; ++index)
+ {
+ VmaDeviceMemoryBlock* const pBlock = m_Blocks[index];
+ if (pBlock->m_pMetadata->IsEmpty())
+ {
+ return true;
+ }
+ }
+ return false;
+}
+
+#if VMA_STATS_STRING_ENABLED
+void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json)
+{
+ VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
+
+
+ json.BeginObject();
+ for (size_t i = 0; i < m_Blocks.size(); ++i)
+ {
+ json.BeginString();
+ json.ContinueString(m_Blocks[i]->GetId());
+ json.EndString();
+
+ json.BeginObject();
+ json.WriteString("MapRefCount");
+ json.WriteNumber(m_Blocks[i]->GetMapRefCount());
+
+ m_Blocks[i]->m_pMetadata->PrintDetailedMap(json);
+ json.EndObject();
+ }
+ json.EndObject();
+}
+#endif // VMA_STATS_STRING_ENABLED
+
+VkResult VmaBlockVector::CheckCorruption()
+{
+ if (!IsCorruptionDetectionEnabled())
+ {
+ return VK_ERROR_FEATURE_NOT_PRESENT;
+ }
+
+ VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
+ for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
+ {
+ VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
+ VMA_ASSERT(pBlock);
+ VkResult res = pBlock->CheckCorruption(m_hAllocator);
+ if (res != VK_SUCCESS)
+ {
+ return res;
+ }
+ }
+ return VK_SUCCESS;
+}
+
+#endif // _VMA_BLOCK_VECTOR_FUNCTIONS
+
+#ifndef _VMA_DEFRAGMENTATION_CONTEXT_FUNCTIONS
+VmaDefragmentationContext_T::VmaDefragmentationContext_T(
+ VmaAllocator hAllocator,
+ const VmaDefragmentationInfo& info)
+ : m_MaxPassBytes(info.maxBytesPerPass == 0 ? VK_WHOLE_SIZE : info.maxBytesPerPass),
+ m_MaxPassAllocations(info.maxAllocationsPerPass == 0 ? UINT32_MAX : info.maxAllocationsPerPass),
+ m_BreakCallback(info.pfnBreakCallback),
+ m_BreakCallbackUserData(info.pBreakCallbackUserData),
+ m_MoveAllocator(hAllocator->GetAllocationCallbacks()),
+ m_Moves(m_MoveAllocator)
+{
+ m_Algorithm = info.flags & VMA_DEFRAGMENTATION_FLAG_ALGORITHM_MASK;
+
+ if (info.pool != VMA_NULL)
+ {
+ m_BlockVectorCount = 1;
+ m_PoolBlockVector = &info.pool->m_BlockVector;
+ m_pBlockVectors = &m_PoolBlockVector;
+ m_PoolBlockVector->SetIncrementalSort(false);
+ m_PoolBlockVector->SortByFreeSize();
+ }
+ else
+ {
+ m_BlockVectorCount = hAllocator->GetMemoryTypeCount();
+ m_PoolBlockVector = VMA_NULL;
+ m_pBlockVectors = hAllocator->m_pBlockVectors;
+ for (uint32_t i = 0; i < m_BlockVectorCount; ++i)
+ {
+ VmaBlockVector* vector = m_pBlockVectors[i];
+ if (vector != VMA_NULL)
+ {
+ vector->SetIncrementalSort(false);
+ vector->SortByFreeSize();
+ }
+ }
+ }
+
+ switch (m_Algorithm)
+ {
+ case 0: // Default algorithm
+ m_Algorithm = VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT;
+ m_AlgorithmState = vma_new_array(hAllocator, StateBalanced, m_BlockVectorCount);
+ break;
+ case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT:
+ m_AlgorithmState = vma_new_array(hAllocator, StateBalanced, m_BlockVectorCount);
+ break;
+ case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT:
+ if (hAllocator->GetBufferImageGranularity() > 1)
+ {
+ m_AlgorithmState = vma_new_array(hAllocator, StateExtensive, m_BlockVectorCount);
+ }
+ break;
+ }
+}
+
+VmaDefragmentationContext_T::~VmaDefragmentationContext_T()
+{
+ if (m_PoolBlockVector != VMA_NULL)
+ {
+ m_PoolBlockVector->SetIncrementalSort(true);
+ }
+ else
+ {
+ for (uint32_t i = 0; i < m_BlockVectorCount; ++i)
+ {
+ VmaBlockVector* vector = m_pBlockVectors[i];
+ if (vector != VMA_NULL)
+ vector->SetIncrementalSort(true);
+ }
+ }
+
+ if (m_AlgorithmState)
+ {
+ switch (m_Algorithm)
+ {
+ case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT:
+ vma_delete_array(m_MoveAllocator.m_pCallbacks, reinterpret_cast<StateBalanced*>(m_AlgorithmState), m_BlockVectorCount);
+ break;
+ case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT:
+ vma_delete_array(m_MoveAllocator.m_pCallbacks, reinterpret_cast<StateExtensive*>(m_AlgorithmState), m_BlockVectorCount);
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+ }
+}
+
+VkResult VmaDefragmentationContext_T::DefragmentPassBegin(VmaDefragmentationPassMoveInfo& moveInfo)
+{
+ if (m_PoolBlockVector != VMA_NULL)
+ {
+ VmaMutexLockWrite lock(m_PoolBlockVector->GetMutex(), m_PoolBlockVector->GetAllocator()->m_UseMutex);
+
+ if (m_PoolBlockVector->GetBlockCount() > 1)
+ ComputeDefragmentation(*m_PoolBlockVector, 0);
+ else if (m_PoolBlockVector->GetBlockCount() == 1)
+ ReallocWithinBlock(*m_PoolBlockVector, m_PoolBlockVector->GetBlock(0));
+ }
+ else
+ {
+ for (uint32_t i = 0; i < m_BlockVectorCount; ++i)
+ {
+ if (m_pBlockVectors[i] != VMA_NULL)
+ {
+ VmaMutexLockWrite lock(m_pBlockVectors[i]->GetMutex(), m_pBlockVectors[i]->GetAllocator()->m_UseMutex);
+
+ if (m_pBlockVectors[i]->GetBlockCount() > 1)
+ {
+ if (ComputeDefragmentation(*m_pBlockVectors[i], i))
+ break;
+ }
+ else if (m_pBlockVectors[i]->GetBlockCount() == 1)
+ {
+ if (ReallocWithinBlock(*m_pBlockVectors[i], m_pBlockVectors[i]->GetBlock(0)))
+ break;
+ }
+ }
+ }
+ }
+
+ moveInfo.moveCount = static_cast<uint32_t>(m_Moves.size());
+ if (moveInfo.moveCount > 0)
+ {
+ moveInfo.pMoves = m_Moves.data();
+ return VK_INCOMPLETE;
+ }
+
+ moveInfo.pMoves = VMA_NULL;
+ return VK_SUCCESS;
+}
+
+VkResult VmaDefragmentationContext_T::DefragmentPassEnd(VmaDefragmentationPassMoveInfo& moveInfo)
+{
+ VMA_ASSERT(moveInfo.moveCount > 0 ? moveInfo.pMoves != VMA_NULL : true);
+
+ VkResult result = VK_SUCCESS;
+ VmaStlAllocator<FragmentedBlock> blockAllocator(m_MoveAllocator.m_pCallbacks);
+ VmaVector<FragmentedBlock, VmaStlAllocator<FragmentedBlock>> immovableBlocks(blockAllocator);
+ VmaVector<FragmentedBlock, VmaStlAllocator<FragmentedBlock>> mappedBlocks(blockAllocator);
+
+ VmaAllocator allocator = VMA_NULL;
+ for (uint32_t i = 0; i < moveInfo.moveCount; ++i)
+ {
+ VmaDefragmentationMove& move = moveInfo.pMoves[i];
+ size_t prevCount = 0, currentCount = 0;
+ VkDeviceSize freedBlockSize = 0;
+
+ uint32_t vectorIndex;
+ VmaBlockVector* vector;
+ if (m_PoolBlockVector != VMA_NULL)
+ {
+ vectorIndex = 0;
+ vector = m_PoolBlockVector;
+ }
+ else
+ {
+ vectorIndex = move.srcAllocation->GetMemoryTypeIndex();
+ vector = m_pBlockVectors[vectorIndex];
+ VMA_ASSERT(vector != VMA_NULL);
+ }
+
+ switch (move.operation)
+ {
+ case VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY:
+ {
+ uint8_t mapCount = move.srcAllocation->SwapBlockAllocation(vector->m_hAllocator, move.dstTmpAllocation);
+ if (mapCount > 0)
+ {
+ allocator = vector->m_hAllocator;
+ VmaDeviceMemoryBlock* newMapBlock = move.srcAllocation->GetBlock();
+ bool notPresent = true;
+ for (FragmentedBlock& block : mappedBlocks)
+ {
+ if (block.block == newMapBlock)
+ {
+ notPresent = false;
+ block.data += mapCount;
+ break;
+ }
+ }
+ if (notPresent)
+ mappedBlocks.push_back({ mapCount, newMapBlock });
+ }
+
+ // Scope for locks, Free have it's own lock
+ {
+ VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
+ prevCount = vector->GetBlockCount();
+ freedBlockSize = move.dstTmpAllocation->GetBlock()->m_pMetadata->GetSize();
+ }
+ vector->Free(move.dstTmpAllocation);
+ {
+ VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
+ currentCount = vector->GetBlockCount();
+ }
+
+ result = VK_INCOMPLETE;
+ break;
+ }
+ case VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE:
+ {
+ m_PassStats.bytesMoved -= move.srcAllocation->GetSize();
+ --m_PassStats.allocationsMoved;
+ vector->Free(move.dstTmpAllocation);
+
+ VmaDeviceMemoryBlock* newBlock = move.srcAllocation->GetBlock();
+ bool notPresent = true;
+ for (const FragmentedBlock& block : immovableBlocks)
+ {
+ if (block.block == newBlock)
+ {
+ notPresent = false;
+ break;
+ }
+ }
+ if (notPresent)
+ immovableBlocks.push_back({ vectorIndex, newBlock });
+ break;
+ }
+ case VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY:
+ {
+ m_PassStats.bytesMoved -= move.srcAllocation->GetSize();
+ --m_PassStats.allocationsMoved;
+ // Scope for locks, Free have it's own lock
+ {
+ VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
+ prevCount = vector->GetBlockCount();
+ freedBlockSize = move.srcAllocation->GetBlock()->m_pMetadata->GetSize();
+ }
+ vector->Free(move.srcAllocation);
+ {
+ VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
+ currentCount = vector->GetBlockCount();
+ }
+ freedBlockSize *= prevCount - currentCount;
+
+ VkDeviceSize dstBlockSize;
+ {
+ VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
+ dstBlockSize = move.dstTmpAllocation->GetBlock()->m_pMetadata->GetSize();
+ }
+ vector->Free(move.dstTmpAllocation);
+ {
+ VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
+ freedBlockSize += dstBlockSize * (currentCount - vector->GetBlockCount());
+ currentCount = vector->GetBlockCount();
+ }
+
+ result = VK_INCOMPLETE;
+ break;
+ }
+ default:
+ VMA_ASSERT(0);
+ }
+
+ if (prevCount > currentCount)
+ {
+ size_t freedBlocks = prevCount - currentCount;
+ m_PassStats.deviceMemoryBlocksFreed += static_cast<uint32_t>(freedBlocks);
+ m_PassStats.bytesFreed += freedBlockSize;
+ }
+
+ if(m_Algorithm == VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT &&
+ m_AlgorithmState != VMA_NULL)
+ {
+ // Avoid unnecessary tries to allocate when new free block is available
+ StateExtensive& state = reinterpret_cast<StateExtensive*>(m_AlgorithmState)[vectorIndex];
+ if (state.firstFreeBlock != SIZE_MAX)
+ {
+ const size_t diff = prevCount - currentCount;
+ if (state.firstFreeBlock >= diff)
+ {
+ state.firstFreeBlock -= diff;
+ if (state.firstFreeBlock != 0)
+ state.firstFreeBlock -= vector->GetBlock(state.firstFreeBlock - 1)->m_pMetadata->IsEmpty();
+ }
+ else
+ state.firstFreeBlock = 0;
+ }
+ }
+ }
+ moveInfo.moveCount = 0;
+ moveInfo.pMoves = VMA_NULL;
+ m_Moves.clear();
+
+ // Update stats
+ m_GlobalStats.allocationsMoved += m_PassStats.allocationsMoved;
+ m_GlobalStats.bytesFreed += m_PassStats.bytesFreed;
+ m_GlobalStats.bytesMoved += m_PassStats.bytesMoved;
+ m_GlobalStats.deviceMemoryBlocksFreed += m_PassStats.deviceMemoryBlocksFreed;
+ m_PassStats = { 0 };
+
+ // Move blocks with immovable allocations according to algorithm
+ if (immovableBlocks.size() > 0)
+ {
+ do
+ {
+ if(m_Algorithm == VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT)
+ {
+ if (m_AlgorithmState != VMA_NULL)
+ {
+ bool swapped = false;
+ // Move to the start of free blocks range
+ for (const FragmentedBlock& block : immovableBlocks)
+ {
+ StateExtensive& state = reinterpret_cast<StateExtensive*>(m_AlgorithmState)[block.data];
+ if (state.operation != StateExtensive::Operation::Cleanup)
+ {
+ VmaBlockVector* vector = m_pBlockVectors[block.data];
+ VmaMutexLockWrite lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
+
+ for (size_t i = 0, count = vector->GetBlockCount() - m_ImmovableBlockCount; i < count; ++i)
+ {
+ if (vector->GetBlock(i) == block.block)
+ {
+ std::swap(vector->m_Blocks[i], vector->m_Blocks[vector->GetBlockCount() - ++m_ImmovableBlockCount]);
+ if (state.firstFreeBlock != SIZE_MAX)
+ {
+ if (i + 1 < state.firstFreeBlock)
+ {
+ if (state.firstFreeBlock > 1)
+ std::swap(vector->m_Blocks[i], vector->m_Blocks[--state.firstFreeBlock]);
+ else
+ --state.firstFreeBlock;
+ }
+ }
+ swapped = true;
+ break;
+ }
+ }
+ }
+ }
+ if (swapped)
+ result = VK_INCOMPLETE;
+ break;
+ }
+ }
+
+ // Move to the beginning
+ for (const FragmentedBlock& block : immovableBlocks)
+ {
+ VmaBlockVector* vector = m_pBlockVectors[block.data];
+ VmaMutexLockWrite lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
+
+ for (size_t i = m_ImmovableBlockCount; i < vector->GetBlockCount(); ++i)
+ {
+ if (vector->GetBlock(i) == block.block)
+ {
+ std::swap(vector->m_Blocks[i], vector->m_Blocks[m_ImmovableBlockCount++]);
+ break;
+ }
+ }
+ }
+ } while (false);
+ }
+
+ // Bulk-map destination blocks
+ for (const FragmentedBlock& block : mappedBlocks)
+ {
+ VkResult res = block.block->Map(allocator, block.data, VMA_NULL);
+ VMA_ASSERT(res == VK_SUCCESS);
+ }
+ return result;
+}
+
+bool VmaDefragmentationContext_T::ComputeDefragmentation(VmaBlockVector& vector, size_t index)
+{
+ switch (m_Algorithm)
+ {
+ case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT:
+ return ComputeDefragmentation_Fast(vector);
+ case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT:
+ return ComputeDefragmentation_Balanced(vector, index, true);
+ case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT:
+ return ComputeDefragmentation_Full(vector);
+ case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT:
+ return ComputeDefragmentation_Extensive(vector, index);
+ default:
+ VMA_ASSERT(0);
+ return ComputeDefragmentation_Balanced(vector, index, true);
+ }
+}
+
+VmaDefragmentationContext_T::MoveAllocationData VmaDefragmentationContext_T::GetMoveData(
+ VmaAllocHandle handle, VmaBlockMetadata* metadata)
+{
+ MoveAllocationData moveData;
+ moveData.move.srcAllocation = (VmaAllocation)metadata->GetAllocationUserData(handle);
+ moveData.size = moveData.move.srcAllocation->GetSize();
+ moveData.alignment = moveData.move.srcAllocation->GetAlignment();
+ moveData.type = moveData.move.srcAllocation->GetSuballocationType();
+ moveData.flags = 0;
+
+ if (moveData.move.srcAllocation->IsPersistentMap())
+ moveData.flags |= VMA_ALLOCATION_CREATE_MAPPED_BIT;
+ if (moveData.move.srcAllocation->IsMappingAllowed())
+ moveData.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT;
+
+ return moveData;
+}
+
+VmaDefragmentationContext_T::CounterStatus VmaDefragmentationContext_T::CheckCounters(VkDeviceSize bytes)
+{
+ // Check custom criteria if exists
+ if (m_BreakCallback && m_BreakCallback(m_BreakCallbackUserData))
+ return CounterStatus::End;
+
+ // Ignore allocation if will exceed max size for copy
+ if (m_PassStats.bytesMoved + bytes > m_MaxPassBytes)
+ {
+ if (++m_IgnoredAllocs < MAX_ALLOCS_TO_IGNORE)
+ return CounterStatus::Ignore;
+ else
+ return CounterStatus::End;
+ }
+ else
+ m_IgnoredAllocs = 0;
+ return CounterStatus::Pass;
+}
+
+bool VmaDefragmentationContext_T::IncrementCounters(VkDeviceSize bytes)
+{
+ m_PassStats.bytesMoved += bytes;
+ // Early return when max found
+ if (++m_PassStats.allocationsMoved >= m_MaxPassAllocations || m_PassStats.bytesMoved >= m_MaxPassBytes)
+ {
+ VMA_ASSERT((m_PassStats.allocationsMoved == m_MaxPassAllocations ||
+ m_PassStats.bytesMoved == m_MaxPassBytes) && "Exceeded maximal pass threshold!");
+ return true;
+ }
+ return false;
+}
+
+bool VmaDefragmentationContext_T::ReallocWithinBlock(VmaBlockVector& vector, VmaDeviceMemoryBlock* block)
+{
+ VmaBlockMetadata* metadata = block->m_pMetadata;
+
+ for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
+ handle != VK_NULL_HANDLE;
+ handle = metadata->GetNextAllocation(handle))
+ {
+ MoveAllocationData moveData = GetMoveData(handle, metadata);
+ // Ignore newly created allocations by defragmentation algorithm
+ if (moveData.move.srcAllocation->GetUserData() == this)
+ continue;
+ switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
+ {
+ case CounterStatus::Ignore:
+ continue;
+ case CounterStatus::End:
+ return true;
+ case CounterStatus::Pass:
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+
+ VkDeviceSize offset = moveData.move.srcAllocation->GetOffset();
+ if (offset != 0 && metadata->GetSumFreeSize() >= moveData.size)
+ {
+ VmaAllocationRequest request = {};
+ if (metadata->CreateAllocationRequest(
+ moveData.size,
+ moveData.alignment,
+ false,
+ moveData.type,
+ VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
+ &request))
+ {
+ if (metadata->GetAllocationOffset(request.allocHandle) < offset)
+ {
+ if (vector.CommitAllocationRequest(
+ request,
+ block,
+ moveData.alignment,
+ moveData.flags,
+ this,
+ moveData.type,
+ &moveData.move.dstTmpAllocation) == VK_SUCCESS)
+ {
+ m_Moves.push_back(moveData.move);
+ if (IncrementCounters(moveData.size))
+ return true;
+ }
+ }
+ }
+ }
+ }
+ return false;
+}
+
+bool VmaDefragmentationContext_T::AllocInOtherBlock(size_t start, size_t end, MoveAllocationData& data, VmaBlockVector& vector)
+{
+ for (; start < end; ++start)
+ {
+ VmaDeviceMemoryBlock* dstBlock = vector.GetBlock(start);
+ if (dstBlock->m_pMetadata->GetSumFreeSize() >= data.size)
+ {
+ if (vector.AllocateFromBlock(dstBlock,
+ data.size,
+ data.alignment,
+ data.flags,
+ this,
+ data.type,
+ 0,
+ &data.move.dstTmpAllocation) == VK_SUCCESS)
+ {
+ m_Moves.push_back(data.move);
+ if (IncrementCounters(data.size))
+ return true;
+ break;
+ }
+ }
+ }
+ return false;
+}
+
+bool VmaDefragmentationContext_T::ComputeDefragmentation_Fast(VmaBlockVector& vector)
+{
+ // Move only between blocks
+
+ // Go through allocations in last blocks and try to fit them inside first ones
+ for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i)
+ {
+ VmaBlockMetadata* metadata = vector.GetBlock(i)->m_pMetadata;
+
+ for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
+ handle != VK_NULL_HANDLE;
+ handle = metadata->GetNextAllocation(handle))
+ {
+ MoveAllocationData moveData = GetMoveData(handle, metadata);
+ // Ignore newly created allocations by defragmentation algorithm
+ if (moveData.move.srcAllocation->GetUserData() == this)
+ continue;
+ switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
+ {
+ case CounterStatus::Ignore:
+ continue;
+ case CounterStatus::End:
+ return true;
+ case CounterStatus::Pass:
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+
+ // Check all previous blocks for free space
+ if (AllocInOtherBlock(0, i, moveData, vector))
+ return true;
+ }
+ }
+ return false;
+}
+
+bool VmaDefragmentationContext_T::ComputeDefragmentation_Balanced(VmaBlockVector& vector, size_t index, bool update)
+{
+ // Go over every allocation and try to fit it in previous blocks at lowest offsets,
+ // if not possible: realloc within single block to minimize offset (exclude offset == 0),
+ // but only if there are noticeable gaps between them (some heuristic, ex. average size of allocation in block)
+ VMA_ASSERT(m_AlgorithmState != VMA_NULL);
+
+ StateBalanced& vectorState = reinterpret_cast<StateBalanced*>(m_AlgorithmState)[index];
+ if (update && vectorState.avgAllocSize == UINT64_MAX)
+ UpdateVectorStatistics(vector, vectorState);
+
+ const size_t startMoveCount = m_Moves.size();
+ VkDeviceSize minimalFreeRegion = vectorState.avgFreeSize / 2;
+ for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i)
+ {
+ VmaDeviceMemoryBlock* block = vector.GetBlock(i);
+ VmaBlockMetadata* metadata = block->m_pMetadata;
+ VkDeviceSize prevFreeRegionSize = 0;
+
+ for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
+ handle != VK_NULL_HANDLE;
+ handle = metadata->GetNextAllocation(handle))
+ {
+ MoveAllocationData moveData = GetMoveData(handle, metadata);
+ // Ignore newly created allocations by defragmentation algorithm
+ if (moveData.move.srcAllocation->GetUserData() == this)
+ continue;
+ switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
+ {
+ case CounterStatus::Ignore:
+ continue;
+ case CounterStatus::End:
+ return true;
+ case CounterStatus::Pass:
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+
+ // Check all previous blocks for free space
+ const size_t prevMoveCount = m_Moves.size();
+ if (AllocInOtherBlock(0, i, moveData, vector))
+ return true;
+
+ VkDeviceSize nextFreeRegionSize = metadata->GetNextFreeRegionSize(handle);
+ // If no room found then realloc within block for lower offset
+ VkDeviceSize offset = moveData.move.srcAllocation->GetOffset();
+ if (prevMoveCount == m_Moves.size() && offset != 0 && metadata->GetSumFreeSize() >= moveData.size)
+ {
+ // Check if realloc will make sense
+ if (prevFreeRegionSize >= minimalFreeRegion ||
+ nextFreeRegionSize >= minimalFreeRegion ||
+ moveData.size <= vectorState.avgFreeSize ||
+ moveData.size <= vectorState.avgAllocSize)
+ {
+ VmaAllocationRequest request = {};
+ if (metadata->CreateAllocationRequest(
+ moveData.size,
+ moveData.alignment,
+ false,
+ moveData.type,
+ VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
+ &request))
+ {
+ if (metadata->GetAllocationOffset(request.allocHandle) < offset)
+ {
+ if (vector.CommitAllocationRequest(
+ request,
+ block,
+ moveData.alignment,
+ moveData.flags,
+ this,
+ moveData.type,
+ &moveData.move.dstTmpAllocation) == VK_SUCCESS)
+ {
+ m_Moves.push_back(moveData.move);
+ if (IncrementCounters(moveData.size))
+ return true;
+ }
+ }
+ }
+ }
+ }
+ prevFreeRegionSize = nextFreeRegionSize;
+ }
+ }
+
+ // No moves performed, update statistics to current vector state
+ if (startMoveCount == m_Moves.size() && !update)
+ {
+ vectorState.avgAllocSize = UINT64_MAX;
+ return ComputeDefragmentation_Balanced(vector, index, false);
+ }
+ return false;
+}
+
+bool VmaDefragmentationContext_T::ComputeDefragmentation_Full(VmaBlockVector& vector)
+{
+ // Go over every allocation and try to fit it in previous blocks at lowest offsets,
+ // if not possible: realloc within single block to minimize offset (exclude offset == 0)
+
+ for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i)
+ {
+ VmaDeviceMemoryBlock* block = vector.GetBlock(i);
+ VmaBlockMetadata* metadata = block->m_pMetadata;
+
+ for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
+ handle != VK_NULL_HANDLE;
+ handle = metadata->GetNextAllocation(handle))
+ {
+ MoveAllocationData moveData = GetMoveData(handle, metadata);
+ // Ignore newly created allocations by defragmentation algorithm
+ if (moveData.move.srcAllocation->GetUserData() == this)
+ continue;
+ switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
+ {
+ case CounterStatus::Ignore:
+ continue;
+ case CounterStatus::End:
+ return true;
+ case CounterStatus::Pass:
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+
+ // Check all previous blocks for free space
+ const size_t prevMoveCount = m_Moves.size();
+ if (AllocInOtherBlock(0, i, moveData, vector))
+ return true;
+
+ // If no room found then realloc within block for lower offset
+ VkDeviceSize offset = moveData.move.srcAllocation->GetOffset();
+ if (prevMoveCount == m_Moves.size() && offset != 0 && metadata->GetSumFreeSize() >= moveData.size)
+ {
+ VmaAllocationRequest request = {};
+ if (metadata->CreateAllocationRequest(
+ moveData.size,
+ moveData.alignment,
+ false,
+ moveData.type,
+ VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
+ &request))
+ {
+ if (metadata->GetAllocationOffset(request.allocHandle) < offset)
+ {
+ if (vector.CommitAllocationRequest(
+ request,
+ block,
+ moveData.alignment,
+ moveData.flags,
+ this,
+ moveData.type,
+ &moveData.move.dstTmpAllocation) == VK_SUCCESS)
+ {
+ m_Moves.push_back(moveData.move);
+ if (IncrementCounters(moveData.size))
+ return true;
+ }
+ }
+ }
+ }
+ }
+ }
+ return false;
+}
+
+bool VmaDefragmentationContext_T::ComputeDefragmentation_Extensive(VmaBlockVector& vector, size_t index)
+{
+ // First free single block, then populate it to the brim, then free another block, and so on
+
+ // Fallback to previous algorithm since without granularity conflicts it can achieve max packing
+ if (vector.m_BufferImageGranularity == 1)
+ return ComputeDefragmentation_Full(vector);
+
+ VMA_ASSERT(m_AlgorithmState != VMA_NULL);
+
+ StateExtensive& vectorState = reinterpret_cast<StateExtensive*>(m_AlgorithmState)[index];
+
+ bool texturePresent = false, bufferPresent = false, otherPresent = false;
+ switch (vectorState.operation)
+ {
+ case StateExtensive::Operation::Done: // Vector defragmented
+ return false;
+ case StateExtensive::Operation::FindFreeBlockBuffer:
+ case StateExtensive::Operation::FindFreeBlockTexture:
+ case StateExtensive::Operation::FindFreeBlockAll:
+ {
+ // No more blocks to free, just perform fast realloc and move to cleanup
+ if (vectorState.firstFreeBlock == 0)
+ {
+ vectorState.operation = StateExtensive::Operation::Cleanup;
+ return ComputeDefragmentation_Fast(vector);
+ }
+
+ // No free blocks, have to clear last one
+ size_t last = (vectorState.firstFreeBlock == SIZE_MAX ? vector.GetBlockCount() : vectorState.firstFreeBlock) - 1;
+ VmaBlockMetadata* freeMetadata = vector.GetBlock(last)->m_pMetadata;
+
+ const size_t prevMoveCount = m_Moves.size();
+ for (VmaAllocHandle handle = freeMetadata->GetAllocationListBegin();
+ handle != VK_NULL_HANDLE;
+ handle = freeMetadata->GetNextAllocation(handle))
+ {
+ MoveAllocationData moveData = GetMoveData(handle, freeMetadata);
+ switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
+ {
+ case CounterStatus::Ignore:
+ continue;
+ case CounterStatus::End:
+ return true;
+ case CounterStatus::Pass:
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+
+ // Check all previous blocks for free space
+ if (AllocInOtherBlock(0, last, moveData, vector))
+ {
+ // Full clear performed already
+ if (prevMoveCount != m_Moves.size() && freeMetadata->GetNextAllocation(handle) == VK_NULL_HANDLE)
+ vectorState.firstFreeBlock = last;
+ return true;
+ }
+ }
+
+ if (prevMoveCount == m_Moves.size())
+ {
+ // Cannot perform full clear, have to move data in other blocks around
+ if (last != 0)
+ {
+ for (size_t i = last - 1; i; --i)
+ {
+ if (ReallocWithinBlock(vector, vector.GetBlock(i)))
+ return true;
+ }
+ }
+
+ if (prevMoveCount == m_Moves.size())
+ {
+ // No possible reallocs within blocks, try to move them around fast
+ return ComputeDefragmentation_Fast(vector);
+ }
+ }
+ else
+ {
+ switch (vectorState.operation)
+ {
+ case StateExtensive::Operation::FindFreeBlockBuffer:
+ vectorState.operation = StateExtensive::Operation::MoveBuffers;
+ break;
+ case StateExtensive::Operation::FindFreeBlockTexture:
+ vectorState.operation = StateExtensive::Operation::MoveTextures;
+ break;
+ case StateExtensive::Operation::FindFreeBlockAll:
+ vectorState.operation = StateExtensive::Operation::MoveAll;
+ break;
+ default:
+ VMA_ASSERT(0);
+ vectorState.operation = StateExtensive::Operation::MoveTextures;
+ }
+ vectorState.firstFreeBlock = last;
+ // Nothing done, block found without reallocations, can perform another reallocs in same pass
+ return ComputeDefragmentation_Extensive(vector, index);
+ }
+ break;
+ }
+ case StateExtensive::Operation::MoveTextures:
+ {
+ if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL, vector,
+ vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent))
+ {
+ if (texturePresent)
+ {
+ vectorState.operation = StateExtensive::Operation::FindFreeBlockTexture;
+ return ComputeDefragmentation_Extensive(vector, index);
+ }
+
+ if (!bufferPresent && !otherPresent)
+ {
+ vectorState.operation = StateExtensive::Operation::Cleanup;
+ break;
+ }
+
+ // No more textures to move, check buffers
+ vectorState.operation = StateExtensive::Operation::MoveBuffers;
+ bufferPresent = false;
+ otherPresent = false;
+ }
+ else
+ break;
+ VMA_FALLTHROUGH; // Fallthrough
+ }
+ case StateExtensive::Operation::MoveBuffers:
+ {
+ if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_BUFFER, vector,
+ vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent))
+ {
+ if (bufferPresent)
+ {
+ vectorState.operation = StateExtensive::Operation::FindFreeBlockBuffer;
+ return ComputeDefragmentation_Extensive(vector, index);
+ }
+
+ if (!otherPresent)
+ {
+ vectorState.operation = StateExtensive::Operation::Cleanup;
+ break;
+ }
+
+ // No more buffers to move, check all others
+ vectorState.operation = StateExtensive::Operation::MoveAll;
+ otherPresent = false;
+ }
+ else
+ break;
+ VMA_FALLTHROUGH; // Fallthrough
+ }
+ case StateExtensive::Operation::MoveAll:
+ {
+ if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_FREE, vector,
+ vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent))
+ {
+ if (otherPresent)
+ {
+ vectorState.operation = StateExtensive::Operation::FindFreeBlockBuffer;
+ return ComputeDefragmentation_Extensive(vector, index);
+ }
+ // Everything moved
+ vectorState.operation = StateExtensive::Operation::Cleanup;
+ }
+ break;
+ }
+ case StateExtensive::Operation::Cleanup:
+ // Cleanup is handled below so that other operations may reuse the cleanup code. This case is here to prevent the unhandled enum value warning (C4062).
+ break;
+ }
+
+ if (vectorState.operation == StateExtensive::Operation::Cleanup)
+ {
+ // All other work done, pack data in blocks even tighter if possible
+ const size_t prevMoveCount = m_Moves.size();
+ for (size_t i = 0; i < vector.GetBlockCount(); ++i)
+ {
+ if (ReallocWithinBlock(vector, vector.GetBlock(i)))
+ return true;
+ }
+
+ if (prevMoveCount == m_Moves.size())
+ vectorState.operation = StateExtensive::Operation::Done;
+ }
+ return false;
+}
+
+void VmaDefragmentationContext_T::UpdateVectorStatistics(VmaBlockVector& vector, StateBalanced& state)
+{
+ size_t allocCount = 0;
+ size_t freeCount = 0;
+ state.avgFreeSize = 0;
+ state.avgAllocSize = 0;
+
+ for (size_t i = 0; i < vector.GetBlockCount(); ++i)
+ {
+ VmaBlockMetadata* metadata = vector.GetBlock(i)->m_pMetadata;
+
+ allocCount += metadata->GetAllocationCount();
+ freeCount += metadata->GetFreeRegionsCount();
+ state.avgFreeSize += metadata->GetSumFreeSize();
+ state.avgAllocSize += metadata->GetSize();
+ }
+
+ state.avgAllocSize = (state.avgAllocSize - state.avgFreeSize) / allocCount;
+ state.avgFreeSize /= freeCount;
+}
+
+bool VmaDefragmentationContext_T::MoveDataToFreeBlocks(VmaSuballocationType currentType,
+ VmaBlockVector& vector, size_t firstFreeBlock,
+ bool& texturePresent, bool& bufferPresent, bool& otherPresent)
+{
+ const size_t prevMoveCount = m_Moves.size();
+ for (size_t i = firstFreeBlock ; i;)
+ {
+ VmaDeviceMemoryBlock* block = vector.GetBlock(--i);
+ VmaBlockMetadata* metadata = block->m_pMetadata;
+
+ for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
+ handle != VK_NULL_HANDLE;
+ handle = metadata->GetNextAllocation(handle))
+ {
+ MoveAllocationData moveData = GetMoveData(handle, metadata);
+ // Ignore newly created allocations by defragmentation algorithm
+ if (moveData.move.srcAllocation->GetUserData() == this)
+ continue;
+ switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
+ {
+ case CounterStatus::Ignore:
+ continue;
+ case CounterStatus::End:
+ return true;
+ case CounterStatus::Pass:
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+
+ // Move only single type of resources at once
+ if (!VmaIsBufferImageGranularityConflict(moveData.type, currentType))
+ {
+ // Try to fit allocation into free blocks
+ if (AllocInOtherBlock(firstFreeBlock, vector.GetBlockCount(), moveData, vector))
+ return false;
+ }
+
+ if (!VmaIsBufferImageGranularityConflict(moveData.type, VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL))
+ texturePresent = true;
+ else if (!VmaIsBufferImageGranularityConflict(moveData.type, VMA_SUBALLOCATION_TYPE_BUFFER))
+ bufferPresent = true;
+ else
+ otherPresent = true;
+ }
+ }
+ return prevMoveCount == m_Moves.size();
+}
+#endif // _VMA_DEFRAGMENTATION_CONTEXT_FUNCTIONS
+
+#ifndef _VMA_POOL_T_FUNCTIONS
+VmaPool_T::VmaPool_T(
+ VmaAllocator hAllocator,
+ const VmaPoolCreateInfo& createInfo,
+ VkDeviceSize preferredBlockSize)
+ : m_BlockVector(
+ hAllocator,
+ this, // hParentPool
+ createInfo.memoryTypeIndex,
+ createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize,
+ createInfo.minBlockCount,
+ createInfo.maxBlockCount,
+ (createInfo.flags& VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(),
+ createInfo.blockSize != 0, // explicitBlockSize
+ createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK, // algorithm
+ createInfo.priority,
+ VMA_MAX(hAllocator->GetMemoryTypeMinAlignment(createInfo.memoryTypeIndex), createInfo.minAllocationAlignment),
+ createInfo.pMemoryAllocateNext),
+ m_Id(0),
+ m_Name(VMA_NULL) {}
+
+VmaPool_T::~VmaPool_T()
+{
+ VMA_ASSERT(m_PrevPool == VMA_NULL && m_NextPool == VMA_NULL);
+
+ const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks();
+ VmaFreeString(allocs, m_Name);
+}
+
+void VmaPool_T::SetName(const char* pName)
+{
+ const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks();
+ VmaFreeString(allocs, m_Name);
+
+ if (pName != VMA_NULL)
+ {
+ m_Name = VmaCreateStringCopy(allocs, pName);
+ }
+ else
+ {
+ m_Name = VMA_NULL;
+ }
+}
+#endif // _VMA_POOL_T_FUNCTIONS
+
+#ifndef _VMA_ALLOCATOR_T_FUNCTIONS
+VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) :
+ m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0),
+ m_VulkanApiVersion(pCreateInfo->vulkanApiVersion != 0 ? pCreateInfo->vulkanApiVersion : VK_API_VERSION_1_0),
+ m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0),
+ m_UseKhrBindMemory2((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0),
+ m_UseExtMemoryBudget((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0),
+ m_UseAmdDeviceCoherentMemory((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT) != 0),
+ m_UseKhrBufferDeviceAddress((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT) != 0),
+ m_UseExtMemoryPriority((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT) != 0),
+ m_UseKhrMaintenance4((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE4_BIT) != 0),
+ m_UseKhrMaintenance5((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT) != 0),
+ m_hDevice(pCreateInfo->device),
+ m_hInstance(pCreateInfo->instance),
+ m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL),
+ m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ?
+ *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks),
+ m_AllocationObjectAllocator(&m_AllocationCallbacks),
+ m_HeapSizeLimitMask(0),
+ m_DeviceMemoryCount(0),
+ m_PreferredLargeHeapBlockSize(0),
+ m_PhysicalDevice(pCreateInfo->physicalDevice),
+ m_GpuDefragmentationMemoryTypeBits(UINT32_MAX),
+ m_NextPoolId(0),
+ m_GlobalMemoryTypeBits(UINT32_MAX)
+{
+ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
+ {
+ m_UseKhrDedicatedAllocation = false;
+ m_UseKhrBindMemory2 = false;
+ }
+
+ if(VMA_DEBUG_DETECT_CORRUPTION)
+ {
+ // Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it.
+ VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0);
+ }
+
+ VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device && pCreateInfo->instance);
+
+ if(m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0))
+ {
+#if !(VMA_DEDICATED_ALLOCATION)
+ if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0)
+ {
+ VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros.");
+ }
+#endif
+#if !(VMA_BIND_MEMORY2)
+ if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0)
+ {
+ VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT set but required extension is disabled by preprocessor macros.");
+ }
+#endif
+ }
+#if !(VMA_MEMORY_BUDGET)
+ if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0)
+ {
+ VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT set but required extension is disabled by preprocessor macros.");
+ }
+#endif
+#if !(VMA_BUFFER_DEVICE_ADDRESS)
+ if(m_UseKhrBufferDeviceAddress)
+ {
+ VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT is set but required extension or Vulkan 1.2 is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");
+ }
+#endif
+#if VMA_VULKAN_VERSION < 1003000
+ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0))
+ {
+ VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_3 but required Vulkan version is disabled by preprocessor macros.");
+ }
+#endif
+#if VMA_VULKAN_VERSION < 1002000
+ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 2, 0))
+ {
+ VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_2 but required Vulkan version is disabled by preprocessor macros.");
+ }
+#endif
+#if VMA_VULKAN_VERSION < 1001000
+ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
+ {
+ VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_1 but required Vulkan version is disabled by preprocessor macros.");
+ }
+#endif
+#if !(VMA_MEMORY_PRIORITY)
+ if(m_UseExtMemoryPriority)
+ {
+ VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");
+ }
+#endif
+#if !(VMA_KHR_MAINTENANCE4)
+ if(m_UseKhrMaintenance4)
+ {
+ VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE4_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");
+ }
+#endif
+#if !(VMA_KHR_MAINTENANCE5)
+ if(m_UseKhrMaintenance5)
+ {
+ VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");
+ }
+#endif
+
+ memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks));
+ memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties));
+ memset(&m_MemProps, 0, sizeof(m_MemProps));
+
+ memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors));
+ memset(&m_VulkanFunctions, 0, sizeof(m_VulkanFunctions));
+
+#if VMA_EXTERNAL_MEMORY
+ memset(&m_TypeExternalMemoryHandleTypes, 0, sizeof(m_TypeExternalMemoryHandleTypes));
+#endif // #if VMA_EXTERNAL_MEMORY
+
+ if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL)
+ {
+ m_DeviceMemoryCallbacks.pUserData = pCreateInfo->pDeviceMemoryCallbacks->pUserData;
+ m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate;
+ m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree;
+ }
+
+ ImportVulkanFunctions(pCreateInfo->pVulkanFunctions);
+
+ (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties);
+ (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps);
+
+ VMA_ASSERT(VmaIsPow2(VMA_MIN_ALIGNMENT));
+ VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY));
+ VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity));
+ VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize));
+
+ m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ?
+ pCreateInfo->preferredLargeHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);
+
+ m_GlobalMemoryTypeBits = CalculateGlobalMemoryTypeBits();
+
+#if VMA_EXTERNAL_MEMORY
+ if(pCreateInfo->pTypeExternalMemoryHandleTypes != VMA_NULL)
+ {
+ memcpy(m_TypeExternalMemoryHandleTypes, pCreateInfo->pTypeExternalMemoryHandleTypes,
+ sizeof(VkExternalMemoryHandleTypeFlagsKHR) * GetMemoryTypeCount());
+ }
+#endif // #if VMA_EXTERNAL_MEMORY
+
+ if(pCreateInfo->pHeapSizeLimit != VMA_NULL)
+ {
+ for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
+ {
+ const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex];
+ if(limit != VK_WHOLE_SIZE)
+ {
+ m_HeapSizeLimitMask |= 1u << heapIndex;
+ if(limit < m_MemProps.memoryHeaps[heapIndex].size)
+ {
+ m_MemProps.memoryHeaps[heapIndex].size = limit;
+ }
+ }
+ }
+ }
+
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ // Create only supported types
+ if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0)
+ {
+ const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex);
+ m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)(
+ this,
+ VK_NULL_HANDLE, // hParentPool
+ memTypeIndex,
+ preferredBlockSize,
+ 0,
+ SIZE_MAX,
+ GetBufferImageGranularity(),
+ false, // explicitBlockSize
+ 0, // algorithm
+ 0.5f, // priority (0.5 is the default per Vulkan spec)
+ GetMemoryTypeMinAlignment(memTypeIndex), // minAllocationAlignment
+ VMA_NULL); // // pMemoryAllocateNext
+ // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here,
+ // because minBlockCount is 0.
+ }
+ }
+}
+
+VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo* pCreateInfo)
+{
+ VkResult res = VK_SUCCESS;
+
+#if VMA_MEMORY_BUDGET
+ if(m_UseExtMemoryBudget)
+ {
+ UpdateVulkanBudget();
+ }
+#endif // #if VMA_MEMORY_BUDGET
+
+ return res;
+}
+
+VmaAllocator_T::~VmaAllocator_T()
+{
+ VMA_ASSERT(m_Pools.IsEmpty());
+
+ for(size_t memTypeIndex = GetMemoryTypeCount(); memTypeIndex--; )
+ {
+ vma_delete(this, m_pBlockVectors[memTypeIndex]);
+ }
+}
+
+void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions)
+{
+#if VMA_STATIC_VULKAN_FUNCTIONS == 1
+ ImportVulkanFunctions_Static();
+#endif
+
+ if(pVulkanFunctions != VMA_NULL)
+ {
+ ImportVulkanFunctions_Custom(pVulkanFunctions);
+ }
+
+#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
+ ImportVulkanFunctions_Dynamic();
+#endif
+
+ ValidateVulkanFunctions();
+}
+
+#if VMA_STATIC_VULKAN_FUNCTIONS == 1
+
+void VmaAllocator_T::ImportVulkanFunctions_Static()
+{
+ // Vulkan 1.0
+ m_VulkanFunctions.vkGetInstanceProcAddr = (PFN_vkGetInstanceProcAddr)vkGetInstanceProcAddr;
+ m_VulkanFunctions.vkGetDeviceProcAddr = (PFN_vkGetDeviceProcAddr)vkGetDeviceProcAddr;
+ m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties;
+ m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties;
+ m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory;
+ m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory;
+ m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory;
+ m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory;
+ m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges;
+ m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges;
+ m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory;
+ m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory;
+ m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements;
+ m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements;
+ m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer;
+ m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer;
+ m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage;
+ m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage;
+ m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer;
+
+ // Vulkan 1.1
+#if VMA_VULKAN_VERSION >= 1001000
+ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
+ {
+ m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = (PFN_vkGetBufferMemoryRequirements2)vkGetBufferMemoryRequirements2;
+ m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = (PFN_vkGetImageMemoryRequirements2)vkGetImageMemoryRequirements2;
+ m_VulkanFunctions.vkBindBufferMemory2KHR = (PFN_vkBindBufferMemory2)vkBindBufferMemory2;
+ m_VulkanFunctions.vkBindImageMemory2KHR = (PFN_vkBindImageMemory2)vkBindImageMemory2;
+ }
+#endif
+
+#if VMA_VULKAN_VERSION >= 1001000
+ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
+ {
+ m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR = (PFN_vkGetPhysicalDeviceMemoryProperties2)vkGetPhysicalDeviceMemoryProperties2;
+ }
+#endif
+
+#if VMA_VULKAN_VERSION >= 1003000
+ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0))
+ {
+ m_VulkanFunctions.vkGetDeviceBufferMemoryRequirements = (PFN_vkGetDeviceBufferMemoryRequirements)vkGetDeviceBufferMemoryRequirements;
+ m_VulkanFunctions.vkGetDeviceImageMemoryRequirements = (PFN_vkGetDeviceImageMemoryRequirements)vkGetDeviceImageMemoryRequirements;
+ }
+#endif
+}
+
+#endif // VMA_STATIC_VULKAN_FUNCTIONS == 1
+
+void VmaAllocator_T::ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions)
+{
+ VMA_ASSERT(pVulkanFunctions != VMA_NULL);
+
+#define VMA_COPY_IF_NOT_NULL(funcName) \
+ if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName;
+
+ VMA_COPY_IF_NOT_NULL(vkGetInstanceProcAddr);
+ VMA_COPY_IF_NOT_NULL(vkGetDeviceProcAddr);
+ VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties);
+ VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties);
+ VMA_COPY_IF_NOT_NULL(vkAllocateMemory);
+ VMA_COPY_IF_NOT_NULL(vkFreeMemory);
+ VMA_COPY_IF_NOT_NULL(vkMapMemory);
+ VMA_COPY_IF_NOT_NULL(vkUnmapMemory);
+ VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges);
+ VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges);
+ VMA_COPY_IF_NOT_NULL(vkBindBufferMemory);
+ VMA_COPY_IF_NOT_NULL(vkBindImageMemory);
+ VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements);
+ VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements);
+ VMA_COPY_IF_NOT_NULL(vkCreateBuffer);
+ VMA_COPY_IF_NOT_NULL(vkDestroyBuffer);
+ VMA_COPY_IF_NOT_NULL(vkCreateImage);
+ VMA_COPY_IF_NOT_NULL(vkDestroyImage);
+ VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer);
+
+#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
+ VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR);
+ VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR);
+#endif
+
+#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
+ VMA_COPY_IF_NOT_NULL(vkBindBufferMemory2KHR);
+ VMA_COPY_IF_NOT_NULL(vkBindImageMemory2KHR);
+#endif
+
+#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
+ VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties2KHR);
+#endif
+
+#if VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000
+ VMA_COPY_IF_NOT_NULL(vkGetDeviceBufferMemoryRequirements);
+ VMA_COPY_IF_NOT_NULL(vkGetDeviceImageMemoryRequirements);
+#endif
+
+#undef VMA_COPY_IF_NOT_NULL
+}
+
+#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
+
+void VmaAllocator_T::ImportVulkanFunctions_Dynamic()
+{
+ VMA_ASSERT(m_VulkanFunctions.vkGetInstanceProcAddr && m_VulkanFunctions.vkGetDeviceProcAddr &&
+ "To use VMA_DYNAMIC_VULKAN_FUNCTIONS in new versions of VMA you now have to pass "
+ "VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as VmaAllocatorCreateInfo::pVulkanFunctions. "
+ "Other members can be null.");
+
+#define VMA_FETCH_INSTANCE_FUNC(memberName, functionPointerType, functionNameString) \
+ if(m_VulkanFunctions.memberName == VMA_NULL) \
+ m_VulkanFunctions.memberName = \
+ (functionPointerType)m_VulkanFunctions.vkGetInstanceProcAddr(m_hInstance, functionNameString);
+#define VMA_FETCH_DEVICE_FUNC(memberName, functionPointerType, functionNameString) \
+ if(m_VulkanFunctions.memberName == VMA_NULL) \
+ m_VulkanFunctions.memberName = \
+ (functionPointerType)m_VulkanFunctions.vkGetDeviceProcAddr(m_hDevice, functionNameString);
+
+ VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceProperties, PFN_vkGetPhysicalDeviceProperties, "vkGetPhysicalDeviceProperties");
+ VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties, PFN_vkGetPhysicalDeviceMemoryProperties, "vkGetPhysicalDeviceMemoryProperties");
+ VMA_FETCH_DEVICE_FUNC(vkAllocateMemory, PFN_vkAllocateMemory, "vkAllocateMemory");
+ VMA_FETCH_DEVICE_FUNC(vkFreeMemory, PFN_vkFreeMemory, "vkFreeMemory");
+ VMA_FETCH_DEVICE_FUNC(vkMapMemory, PFN_vkMapMemory, "vkMapMemory");
+ VMA_FETCH_DEVICE_FUNC(vkUnmapMemory, PFN_vkUnmapMemory, "vkUnmapMemory");
+ VMA_FETCH_DEVICE_FUNC(vkFlushMappedMemoryRanges, PFN_vkFlushMappedMemoryRanges, "vkFlushMappedMemoryRanges");
+ VMA_FETCH_DEVICE_FUNC(vkInvalidateMappedMemoryRanges, PFN_vkInvalidateMappedMemoryRanges, "vkInvalidateMappedMemoryRanges");
+ VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory, PFN_vkBindBufferMemory, "vkBindBufferMemory");
+ VMA_FETCH_DEVICE_FUNC(vkBindImageMemory, PFN_vkBindImageMemory, "vkBindImageMemory");
+ VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements, PFN_vkGetBufferMemoryRequirements, "vkGetBufferMemoryRequirements");
+ VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements, PFN_vkGetImageMemoryRequirements, "vkGetImageMemoryRequirements");
+ VMA_FETCH_DEVICE_FUNC(vkCreateBuffer, PFN_vkCreateBuffer, "vkCreateBuffer");
+ VMA_FETCH_DEVICE_FUNC(vkDestroyBuffer, PFN_vkDestroyBuffer, "vkDestroyBuffer");
+ VMA_FETCH_DEVICE_FUNC(vkCreateImage, PFN_vkCreateImage, "vkCreateImage");
+ VMA_FETCH_DEVICE_FUNC(vkDestroyImage, PFN_vkDestroyImage, "vkDestroyImage");
+ VMA_FETCH_DEVICE_FUNC(vkCmdCopyBuffer, PFN_vkCmdCopyBuffer, "vkCmdCopyBuffer");
+
+#if VMA_VULKAN_VERSION >= 1001000
+ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
+ {
+ VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2, "vkGetBufferMemoryRequirements2");
+ VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2, "vkGetImageMemoryRequirements2");
+ VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2, "vkBindBufferMemory2");
+ VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2, "vkBindImageMemory2");
+ }
+#endif
+
+#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
+ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
+ {
+ VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2");
+ }
+ else if(m_UseExtMemoryBudget)
+ {
+ VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2KHR");
+ }
+#endif
+
+#if VMA_DEDICATED_ALLOCATION
+ if(m_UseKhrDedicatedAllocation)
+ {
+ VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2KHR, "vkGetBufferMemoryRequirements2KHR");
+ VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2KHR, "vkGetImageMemoryRequirements2KHR");
+ }
+#endif
+
+#if VMA_BIND_MEMORY2
+ if(m_UseKhrBindMemory2)
+ {
+ VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2KHR, "vkBindBufferMemory2KHR");
+ VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2KHR, "vkBindImageMemory2KHR");
+ }
+#endif // #if VMA_BIND_MEMORY2
+
+#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
+ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
+ {
+ VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2");
+ }
+ else if(m_UseExtMemoryBudget)
+ {
+ VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2KHR");
+ }
+#endif // #if VMA_MEMORY_BUDGET
+
+#if VMA_VULKAN_VERSION >= 1003000
+ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0))
+ {
+ VMA_FETCH_DEVICE_FUNC(vkGetDeviceBufferMemoryRequirements, PFN_vkGetDeviceBufferMemoryRequirements, "vkGetDeviceBufferMemoryRequirements");
+ VMA_FETCH_DEVICE_FUNC(vkGetDeviceImageMemoryRequirements, PFN_vkGetDeviceImageMemoryRequirements, "vkGetDeviceImageMemoryRequirements");
+ }
+#endif
+#if VMA_KHR_MAINTENANCE4
+ if(m_UseKhrMaintenance4)
+ {
+ VMA_FETCH_DEVICE_FUNC(vkGetDeviceBufferMemoryRequirements, PFN_vkGetDeviceBufferMemoryRequirementsKHR, "vkGetDeviceBufferMemoryRequirementsKHR");
+ VMA_FETCH_DEVICE_FUNC(vkGetDeviceImageMemoryRequirements, PFN_vkGetDeviceImageMemoryRequirementsKHR, "vkGetDeviceImageMemoryRequirementsKHR");
+ }
+#endif
+
+#undef VMA_FETCH_DEVICE_FUNC
+#undef VMA_FETCH_INSTANCE_FUNC
+}
+
+#endif // VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
+
+void VmaAllocator_T::ValidateVulkanFunctions()
+{
+ VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL);
+
+#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
+ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrDedicatedAllocation)
+ {
+ VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL);
+ }
+#endif
+
+#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
+ if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrBindMemory2)
+ {
+ VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL);
+ VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL);
+ }
+#endif
+
+#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
+ if(m_UseExtMemoryBudget || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
+ {
+ VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR != VMA_NULL);
+ }
+#endif
+
+ // Not validating these due to suspected driver bugs with these function
+ // pointers being null despite correct extension or Vulkan version is enabled.
+ // See issue #397. Their usage in VMA is optional anyway.
+ //
+ // VMA_ASSERT(m_VulkanFunctions.vkGetDeviceBufferMemoryRequirements != VMA_NULL);
+ // VMA_ASSERT(m_VulkanFunctions.vkGetDeviceImageMemoryRequirements != VMA_NULL);
+}
+
+VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex)
+{
+ const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
+ const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
+ const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE;
+ return VmaAlignUp(isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize, (VkDeviceSize)32);
+}
+
+VkResult VmaAllocator_T::AllocateMemoryOfType(
+ VmaPool pool,
+ VkDeviceSize size,
+ VkDeviceSize alignment,
+ bool dedicatedPreferred,
+ VkBuffer dedicatedBuffer,
+ VkImage dedicatedImage,
+ VmaBufferImageUsage dedicatedBufferImageUsage,
+ const VmaAllocationCreateInfo& createInfo,
+ uint32_t memTypeIndex,
+ VmaSuballocationType suballocType,
+ VmaDedicatedAllocationList& dedicatedAllocations,
+ VmaBlockVector& blockVector,
+ size_t allocationCount,
+ VmaAllocation* pAllocations)
+{
+ VMA_ASSERT(pAllocations != VMA_NULL);
+ VMA_DEBUG_LOG_FORMAT(" AllocateMemory: MemoryTypeIndex=%" PRIu32 ", AllocationCount=%zu, Size=%" PRIu64, memTypeIndex, allocationCount, size);
+
+ VmaAllocationCreateInfo finalCreateInfo = createInfo;
+ VkResult res = CalcMemTypeParams(
+ finalCreateInfo,
+ memTypeIndex,
+ size,
+ allocationCount);
+ if(res != VK_SUCCESS)
+ return res;
+
+ if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
+ {
+ return AllocateDedicatedMemory(
+ pool,
+ size,
+ suballocType,
+ dedicatedAllocations,
+ memTypeIndex,
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
+ (finalCreateInfo.flags &
+ (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0,
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0,
+ finalCreateInfo.pUserData,
+ finalCreateInfo.priority,
+ dedicatedBuffer,
+ dedicatedImage,
+ dedicatedBufferImageUsage,
+ allocationCount,
+ pAllocations,
+ blockVector.GetAllocationNextPtr());
+ }
+ else
+ {
+ const bool canAllocateDedicated =
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 &&
+ (pool == VK_NULL_HANDLE || !blockVector.HasExplicitBlockSize());
+
+ if(canAllocateDedicated)
+ {
+ // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size.
+ if(size > blockVector.GetPreferredBlockSize() / 2)
+ {
+ dedicatedPreferred = true;
+ }
+ // Protection against creating each allocation as dedicated when we reach or exceed heap size/budget,
+ // which can quickly deplete maxMemoryAllocationCount: Don't prefer dedicated allocations when above
+ // 3/4 of the maximum allocation count.
+ if(m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount < UINT32_MAX / 4 &&
+ m_DeviceMemoryCount.load() > m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount * 3 / 4)
+ {
+ dedicatedPreferred = false;
+ }
+
+ if(dedicatedPreferred)
+ {
+ res = AllocateDedicatedMemory(
+ pool,
+ size,
+ suballocType,
+ dedicatedAllocations,
+ memTypeIndex,
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
+ (finalCreateInfo.flags &
+ (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0,
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0,
+ finalCreateInfo.pUserData,
+ finalCreateInfo.priority,
+ dedicatedBuffer,
+ dedicatedImage,
+ dedicatedBufferImageUsage,
+ allocationCount,
+ pAllocations,
+ blockVector.GetAllocationNextPtr());
+ if(res == VK_SUCCESS)
+ {
+ // Succeeded: AllocateDedicatedMemory function already filled pMemory, nothing more to do here.
+ VMA_DEBUG_LOG(" Allocated as DedicatedMemory");
+ return VK_SUCCESS;
+ }
+ }
+ }
+
+ res = blockVector.Allocate(
+ size,
+ alignment,
+ finalCreateInfo,
+ suballocType,
+ allocationCount,
+ pAllocations);
+ if(res == VK_SUCCESS)
+ return VK_SUCCESS;
+
+ // Try dedicated memory.
+ if(canAllocateDedicated && !dedicatedPreferred)
+ {
+ res = AllocateDedicatedMemory(
+ pool,
+ size,
+ suballocType,
+ dedicatedAllocations,
+ memTypeIndex,
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
+ (finalCreateInfo.flags &
+ (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0,
+ (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0,
+ finalCreateInfo.pUserData,
+ finalCreateInfo.priority,
+ dedicatedBuffer,
+ dedicatedImage,
+ dedicatedBufferImageUsage,
+ allocationCount,
+ pAllocations,
+ blockVector.GetAllocationNextPtr());
+ if(res == VK_SUCCESS)
+ {
+ // Succeeded: AllocateDedicatedMemory function already filled pMemory, nothing more to do here.
+ VMA_DEBUG_LOG(" Allocated as DedicatedMemory");
+ return VK_SUCCESS;
+ }
+ }
+ // Everything failed: Return error code.
+ VMA_DEBUG_LOG(" vkAllocateMemory FAILED");
+ return res;
+ }
+}
+
+VkResult VmaAllocator_T::AllocateDedicatedMemory(
+ VmaPool pool,
+ VkDeviceSize size,
+ VmaSuballocationType suballocType,
+ VmaDedicatedAllocationList& dedicatedAllocations,
+ uint32_t memTypeIndex,
+ bool map,
+ bool isUserDataString,
+ bool isMappingAllowed,
+ bool canAliasMemory,
+ void* pUserData,
+ float priority,
+ VkBuffer dedicatedBuffer,
+ VkImage dedicatedImage,
+ VmaBufferImageUsage dedicatedBufferImageUsage,
+ size_t allocationCount,
+ VmaAllocation* pAllocations,
+ const void* pNextChain)
+{
+ VMA_ASSERT(allocationCount > 0 && pAllocations);
+
+ VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
+ allocInfo.memoryTypeIndex = memTypeIndex;
+ allocInfo.allocationSize = size;
+ allocInfo.pNext = pNextChain;
+
+#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
+ VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR };
+ if(!canAliasMemory)
+ {
+ if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
+ {
+ if(dedicatedBuffer != VK_NULL_HANDLE)
+ {
+ VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE);
+ dedicatedAllocInfo.buffer = dedicatedBuffer;
+ VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo);
+ }
+ else if(dedicatedImage != VK_NULL_HANDLE)
+ {
+ dedicatedAllocInfo.image = dedicatedImage;
+ VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo);
+ }
+ }
+ }
+#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
+
+#if VMA_BUFFER_DEVICE_ADDRESS
+ VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR };
+ if(m_UseKhrBufferDeviceAddress)
+ {
+ bool canContainBufferWithDeviceAddress = true;
+ if(dedicatedBuffer != VK_NULL_HANDLE)
+ {
+ canContainBufferWithDeviceAddress = dedicatedBufferImageUsage == VmaBufferImageUsage::UNKNOWN ||
+ dedicatedBufferImageUsage.Contains(VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT);
+ }
+ else if(dedicatedImage != VK_NULL_HANDLE)
+ {
+ canContainBufferWithDeviceAddress = false;
+ }
+ if(canContainBufferWithDeviceAddress)
+ {
+ allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
+ VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo);
+ }
+ }
+#endif // #if VMA_BUFFER_DEVICE_ADDRESS
+
+#if VMA_MEMORY_PRIORITY
+ VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT };
+ if(m_UseExtMemoryPriority)
+ {
+ VMA_ASSERT(priority >= 0.f && priority <= 1.f);
+ priorityInfo.priority = priority;
+ VmaPnextChainPushFront(&allocInfo, &priorityInfo);
+ }
+#endif // #if VMA_MEMORY_PRIORITY
+
+#if VMA_EXTERNAL_MEMORY
+ // Attach VkExportMemoryAllocateInfoKHR if necessary.
+ VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR };
+ exportMemoryAllocInfo.handleTypes = GetExternalMemoryHandleTypeFlags(memTypeIndex);
+ if(exportMemoryAllocInfo.handleTypes != 0)
+ {
+ VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo);
+ }
+#endif // #if VMA_EXTERNAL_MEMORY
+
+ size_t allocIndex;
+ VkResult res = VK_SUCCESS;
+ for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
+ {
+ res = AllocateDedicatedMemoryPage(
+ pool,
+ size,
+ suballocType,
+ memTypeIndex,
+ allocInfo,
+ map,
+ isUserDataString,
+ isMappingAllowed,
+ pUserData,
+ pAllocations + allocIndex);
+ if(res != VK_SUCCESS)
+ {
+ break;
+ }
+ }
+
+ if(res == VK_SUCCESS)
+ {
+ for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
+ {
+ dedicatedAllocations.Register(pAllocations[allocIndex]);
+ }
+ VMA_DEBUG_LOG_FORMAT(" Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%" PRIu32, allocationCount, memTypeIndex);
+ }
+ else
+ {
+ // Free all already created allocations.
+ while(allocIndex--)
+ {
+ VmaAllocation currAlloc = pAllocations[allocIndex];
+ VkDeviceMemory hMemory = currAlloc->GetMemory();
+
+ /*
+ There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory
+ before vkFreeMemory.
+
+ if(currAlloc->GetMappedData() != VMA_NULL)
+ {
+ (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
+ }
+ */
+
+ FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory);
+ m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), currAlloc->GetSize());
+ m_AllocationObjectAllocator.Free(currAlloc);
+ }
+
+ memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
+ }
+
+ return res;
+}
+
+VkResult VmaAllocator_T::AllocateDedicatedMemoryPage(
+ VmaPool pool,
+ VkDeviceSize size,
+ VmaSuballocationType suballocType,
+ uint32_t memTypeIndex,
+ const VkMemoryAllocateInfo& allocInfo,
+ bool map,
+ bool isUserDataString,
+ bool isMappingAllowed,
+ void* pUserData,
+ VmaAllocation* pAllocation)
+{
+ VkDeviceMemory hMemory = VK_NULL_HANDLE;
+ VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory);
+ if(res < 0)
+ {
+ VMA_DEBUG_LOG(" vkAllocateMemory FAILED");
+ return res;
+ }
+
+ void* pMappedData = VMA_NULL;
+ if(map)
+ {
+ res = (*m_VulkanFunctions.vkMapMemory)(
+ m_hDevice,
+ hMemory,
+ 0,
+ VK_WHOLE_SIZE,
+ 0,
+ &pMappedData);
+ if(res < 0)
+ {
+ VMA_DEBUG_LOG(" vkMapMemory FAILED");
+ FreeVulkanMemory(memTypeIndex, size, hMemory);
+ return res;
+ }
+ }
+
+ *pAllocation = m_AllocationObjectAllocator.Allocate(isMappingAllowed);
+ (*pAllocation)->InitDedicatedAllocation(pool, memTypeIndex, hMemory, suballocType, pMappedData, size);
+ if (isUserDataString)
+ (*pAllocation)->SetName(this, (const char*)pUserData);
+ else
+ (*pAllocation)->SetUserData(this, pUserData);
+ m_Budget.AddAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), size);
+ if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
+ {
+ FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
+ }
+
+ return VK_SUCCESS;
+}
+
+void VmaAllocator_T::GetBufferMemoryRequirements(
+ VkBuffer hBuffer,
+ VkMemoryRequirements& memReq,
+ bool& requiresDedicatedAllocation,
+ bool& prefersDedicatedAllocation) const
+{
+#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
+ if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
+ {
+ VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR };
+ memReqInfo.buffer = hBuffer;
+
+ VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
+
+ VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
+ VmaPnextChainPushFront(&memReq2, &memDedicatedReq);
+
+ (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
+
+ memReq = memReq2.memoryRequirements;
+ requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
+ prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE);
+ }
+ else
+#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
+ {
+ (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq);
+ requiresDedicatedAllocation = false;
+ prefersDedicatedAllocation = false;
+ }
+}
+
+void VmaAllocator_T::GetImageMemoryRequirements(
+ VkImage hImage,
+ VkMemoryRequirements& memReq,
+ bool& requiresDedicatedAllocation,
+ bool& prefersDedicatedAllocation) const
+{
+#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
+ if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
+ {
+ VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR };
+ memReqInfo.image = hImage;
+
+ VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
+
+ VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
+ VmaPnextChainPushFront(&memReq2, &memDedicatedReq);
+
+ (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
+
+ memReq = memReq2.memoryRequirements;
+ requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
+ prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE);
+ }
+ else
+#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
+ {
+ (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq);
+ requiresDedicatedAllocation = false;
+ prefersDedicatedAllocation = false;
+ }
+}
+
+VkResult VmaAllocator_T::FindMemoryTypeIndex(
+ uint32_t memoryTypeBits,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ VmaBufferImageUsage bufImgUsage,
+ uint32_t* pMemoryTypeIndex) const
+{
+ memoryTypeBits &= GetGlobalMemoryTypeBits();
+
+ if(pAllocationCreateInfo->memoryTypeBits != 0)
+ {
+ memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits;
+ }
+
+ VkMemoryPropertyFlags requiredFlags = 0, preferredFlags = 0, notPreferredFlags = 0;
+ if(!FindMemoryPreferences(
+ IsIntegratedGpu(),
+ *pAllocationCreateInfo,
+ bufImgUsage,
+ requiredFlags, preferredFlags, notPreferredFlags))
+ {
+ return VK_ERROR_FEATURE_NOT_PRESENT;
+ }
+
+ *pMemoryTypeIndex = UINT32_MAX;
+ uint32_t minCost = UINT32_MAX;
+ for(uint32_t memTypeIndex = 0, memTypeBit = 1;
+ memTypeIndex < GetMemoryTypeCount();
+ ++memTypeIndex, memTypeBit <<= 1)
+ {
+ // This memory type is acceptable according to memoryTypeBits bitmask.
+ if((memTypeBit & memoryTypeBits) != 0)
+ {
+ const VkMemoryPropertyFlags currFlags =
+ m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
+ // This memory type contains requiredFlags.
+ if((requiredFlags & ~currFlags) == 0)
+ {
+ // Calculate cost as number of bits from preferredFlags not present in this memory type.
+ uint32_t currCost = VMA_COUNT_BITS_SET(preferredFlags & ~currFlags) +
+ VMA_COUNT_BITS_SET(currFlags & notPreferredFlags);
+ // Remember memory type with lowest cost.
+ if(currCost < minCost)
+ {
+ *pMemoryTypeIndex = memTypeIndex;
+ if(currCost == 0)
+ {
+ return VK_SUCCESS;
+ }
+ minCost = currCost;
+ }
+ }
+ }
+ }
+ return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT;
+}
+
+VkResult VmaAllocator_T::CalcMemTypeParams(
+ VmaAllocationCreateInfo& inoutCreateInfo,
+ uint32_t memTypeIndex,
+ VkDeviceSize size,
+ size_t allocationCount)
+{
+ // If memory type is not HOST_VISIBLE, disable MAPPED.
+ if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
+ (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
+ {
+ inoutCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;
+ }
+
+ if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&
+ (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0)
+ {
+ const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
+ VmaBudget heapBudget = {};
+ GetHeapBudgets(&heapBudget, heapIndex, 1);
+ if(heapBudget.usage + size * allocationCount > heapBudget.budget)
+ {
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ }
+ return VK_SUCCESS;
+}
+
+VkResult VmaAllocator_T::CalcAllocationParams(
+ VmaAllocationCreateInfo& inoutCreateInfo,
+ bool dedicatedRequired,
+ bool dedicatedPreferred)
+{
+ VMA_ASSERT((inoutCreateInfo.flags &
+ (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) !=
+ (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT) &&
+ "Specifying both flags VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT and VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT is incorrect.");
+ VMA_ASSERT((((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT) == 0 ||
+ (inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0)) &&
+ "Specifying VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT requires also VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.");
+ if(inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO || inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE || inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_HOST)
+ {
+ if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0)
+ {
+ VMA_ASSERT((inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0 &&
+ "When using VMA_ALLOCATION_CREATE_MAPPED_BIT and usage = VMA_MEMORY_USAGE_AUTO*, you must also specify VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.");
+ }
+ }
+
+ // If memory is lazily allocated, it should be always dedicated.
+ if(dedicatedRequired ||
+ inoutCreateInfo.usage == VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED)
+ {
+ inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
+ }
+
+ if(inoutCreateInfo.pool != VK_NULL_HANDLE)
+ {
+ if(inoutCreateInfo.pool->m_BlockVector.HasExplicitBlockSize() &&
+ (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
+ {
+ VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT while current custom pool doesn't support dedicated allocations.");
+ return VK_ERROR_FEATURE_NOT_PRESENT;
+ }
+ inoutCreateInfo.priority = inoutCreateInfo.pool->m_BlockVector.GetPriority();
+ }
+
+ if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&
+ (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
+ {
+ VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense.");
+ return VK_ERROR_FEATURE_NOT_PRESENT;
+ }
+
+ if(VMA_DEBUG_ALWAYS_DEDICATED_MEMORY &&
+ (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
+ {
+ inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
+ }
+
+ // Non-auto USAGE values imply HOST_ACCESS flags.
+ // And so does VMA_MEMORY_USAGE_UNKNOWN because it is used with custom pools.
+ // Which specific flag is used doesn't matter. They change things only when used with VMA_MEMORY_USAGE_AUTO*.
+ // Otherwise they just protect from assert on mapping.
+ if(inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO &&
+ inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE &&
+ inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO_PREFER_HOST)
+ {
+ if((inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) == 0)
+ {
+ inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT;
+ }
+ }
+
+ return VK_SUCCESS;
+}
+
+VkResult VmaAllocator_T::AllocateMemory(
+ const VkMemoryRequirements& vkMemReq,
+ bool requiresDedicatedAllocation,
+ bool prefersDedicatedAllocation,
+ VkBuffer dedicatedBuffer,
+ VkImage dedicatedImage,
+ VmaBufferImageUsage dedicatedBufferImageUsage,
+ const VmaAllocationCreateInfo& createInfo,
+ VmaSuballocationType suballocType,
+ size_t allocationCount,
+ VmaAllocation* pAllocations)
+{
+ memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
+
+ VMA_ASSERT(VmaIsPow2(vkMemReq.alignment));
+
+ if(vkMemReq.size == 0)
+ {
+ return VK_ERROR_INITIALIZATION_FAILED;
+ }
+
+ VmaAllocationCreateInfo createInfoFinal = createInfo;
+ VkResult res = CalcAllocationParams(createInfoFinal, requiresDedicatedAllocation, prefersDedicatedAllocation);
+ if(res != VK_SUCCESS)
+ return res;
+
+ if(createInfoFinal.pool != VK_NULL_HANDLE)
+ {
+ VmaBlockVector& blockVector = createInfoFinal.pool->m_BlockVector;
+ return AllocateMemoryOfType(
+ createInfoFinal.pool,
+ vkMemReq.size,
+ vkMemReq.alignment,
+ prefersDedicatedAllocation,
+ dedicatedBuffer,
+ dedicatedImage,
+ dedicatedBufferImageUsage,
+ createInfoFinal,
+ blockVector.GetMemoryTypeIndex(),
+ suballocType,
+ createInfoFinal.pool->m_DedicatedAllocations,
+ blockVector,
+ allocationCount,
+ pAllocations);
+ }
+ else
+ {
+ // Bit mask of memory Vulkan types acceptable for this allocation.
+ uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;
+ uint32_t memTypeIndex = UINT32_MAX;
+ res = FindMemoryTypeIndex(memoryTypeBits, &createInfoFinal, dedicatedBufferImageUsage, &memTypeIndex);
+ // Can't find any single memory type matching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.
+ if(res != VK_SUCCESS)
+ return res;
+ do
+ {
+ VmaBlockVector* blockVector = m_pBlockVectors[memTypeIndex];
+ VMA_ASSERT(blockVector && "Trying to use unsupported memory type!");
+ res = AllocateMemoryOfType(
+ VK_NULL_HANDLE,
+ vkMemReq.size,
+ vkMemReq.alignment,
+ requiresDedicatedAllocation || prefersDedicatedAllocation,
+ dedicatedBuffer,
+ dedicatedImage,
+ dedicatedBufferImageUsage,
+ createInfoFinal,
+ memTypeIndex,
+ suballocType,
+ m_DedicatedAllocations[memTypeIndex],
+ *blockVector,
+ allocationCount,
+ pAllocations);
+ // Allocation succeeded
+ if(res == VK_SUCCESS)
+ return VK_SUCCESS;
+
+ // Remove old memTypeIndex from list of possibilities.
+ memoryTypeBits &= ~(1u << memTypeIndex);
+ // Find alternative memTypeIndex.
+ res = FindMemoryTypeIndex(memoryTypeBits, &createInfoFinal, dedicatedBufferImageUsage, &memTypeIndex);
+ } while(res == VK_SUCCESS);
+
+ // No other matching memory type index could be found.
+ // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+}
+
+void VmaAllocator_T::FreeMemory(
+ size_t allocationCount,
+ const VmaAllocation* pAllocations)
+{
+ VMA_ASSERT(pAllocations);
+
+ for(size_t allocIndex = allocationCount; allocIndex--; )
+ {
+ VmaAllocation allocation = pAllocations[allocIndex];
+
+ if(allocation != VK_NULL_HANDLE)
+ {
+ if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
+ {
+ FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED);
+ }
+
+ allocation->FreeName(this);
+
+ switch(allocation->GetType())
+ {
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+ {
+ VmaBlockVector* pBlockVector = VMA_NULL;
+ VmaPool hPool = allocation->GetParentPool();
+ if(hPool != VK_NULL_HANDLE)
+ {
+ pBlockVector = &hPool->m_BlockVector;
+ }
+ else
+ {
+ const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
+ pBlockVector = m_pBlockVectors[memTypeIndex];
+ VMA_ASSERT(pBlockVector && "Trying to free memory of unsupported type!");
+ }
+ pBlockVector->Free(allocation);
+ }
+ break;
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+ FreeDedicatedMemory(allocation);
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+ }
+ }
+}
+
+void VmaAllocator_T::CalculateStatistics(VmaTotalStatistics* pStats)
+{
+ // Initialize.
+ VmaClearDetailedStatistics(pStats->total);
+ for(uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i)
+ VmaClearDetailedStatistics(pStats->memoryType[i]);
+ for(uint32_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
+ VmaClearDetailedStatistics(pStats->memoryHeap[i]);
+
+ // Process default pools.
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
+ if (pBlockVector != VMA_NULL)
+ pBlockVector->AddDetailedStatistics(pStats->memoryType[memTypeIndex]);
+ }
+
+ // Process custom pools.
+ {
+ VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
+ for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
+ {
+ VmaBlockVector& blockVector = pool->m_BlockVector;
+ const uint32_t memTypeIndex = blockVector.GetMemoryTypeIndex();
+ blockVector.AddDetailedStatistics(pStats->memoryType[memTypeIndex]);
+ pool->m_DedicatedAllocations.AddDetailedStatistics(pStats->memoryType[memTypeIndex]);
+ }
+ }
+
+ // Process dedicated allocations.
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ m_DedicatedAllocations[memTypeIndex].AddDetailedStatistics(pStats->memoryType[memTypeIndex]);
+ }
+
+ // Sum from memory types to memory heaps.
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ const uint32_t memHeapIndex = m_MemProps.memoryTypes[memTypeIndex].heapIndex;
+ VmaAddDetailedStatistics(pStats->memoryHeap[memHeapIndex], pStats->memoryType[memTypeIndex]);
+ }
+
+ // Sum from memory heaps to total.
+ for(uint32_t memHeapIndex = 0; memHeapIndex < GetMemoryHeapCount(); ++memHeapIndex)
+ VmaAddDetailedStatistics(pStats->total, pStats->memoryHeap[memHeapIndex]);
+
+ VMA_ASSERT(pStats->total.statistics.allocationCount == 0 ||
+ pStats->total.allocationSizeMax >= pStats->total.allocationSizeMin);
+ VMA_ASSERT(pStats->total.unusedRangeCount == 0 ||
+ pStats->total.unusedRangeSizeMax >= pStats->total.unusedRangeSizeMin);
+}
+
+void VmaAllocator_T::GetHeapBudgets(VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount)
+{
+#if VMA_MEMORY_BUDGET
+ if(m_UseExtMemoryBudget)
+ {
+ if(m_Budget.m_OperationsSinceBudgetFetch < 30)
+ {
+ VmaMutexLockRead lockRead(m_Budget.m_BudgetMutex, m_UseMutex);
+ for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets)
+ {
+ const uint32_t heapIndex = firstHeap + i;
+
+ outBudgets->statistics.blockCount = m_Budget.m_BlockCount[heapIndex];
+ outBudgets->statistics.allocationCount = m_Budget.m_AllocationCount[heapIndex];
+ outBudgets->statistics.blockBytes = m_Budget.m_BlockBytes[heapIndex];
+ outBudgets->statistics.allocationBytes = m_Budget.m_AllocationBytes[heapIndex];
+
+ if(m_Budget.m_VulkanUsage[heapIndex] + outBudgets->statistics.blockBytes > m_Budget.m_BlockBytesAtBudgetFetch[heapIndex])
+ {
+ outBudgets->usage = m_Budget.m_VulkanUsage[heapIndex] +
+ outBudgets->statistics.blockBytes - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex];
+ }
+ else
+ {
+ outBudgets->usage = 0;
+ }
+
+ // Have to take MIN with heap size because explicit HeapSizeLimit is included in it.
+ outBudgets->budget = VMA_MIN(
+ m_Budget.m_VulkanBudget[heapIndex], m_MemProps.memoryHeaps[heapIndex].size);
+ }
+ }
+ else
+ {
+ UpdateVulkanBudget(); // Outside of mutex lock
+ GetHeapBudgets(outBudgets, firstHeap, heapCount); // Recursion
+ }
+ }
+ else
+#endif
+ {
+ for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets)
+ {
+ const uint32_t heapIndex = firstHeap + i;
+
+ outBudgets->statistics.blockCount = m_Budget.m_BlockCount[heapIndex];
+ outBudgets->statistics.allocationCount = m_Budget.m_AllocationCount[heapIndex];
+ outBudgets->statistics.blockBytes = m_Budget.m_BlockBytes[heapIndex];
+ outBudgets->statistics.allocationBytes = m_Budget.m_AllocationBytes[heapIndex];
+
+ outBudgets->usage = outBudgets->statistics.blockBytes;
+ outBudgets->budget = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics.
+ }
+ }
+}
+
+void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo)
+{
+ pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
+ pAllocationInfo->deviceMemory = hAllocation->GetMemory();
+ pAllocationInfo->offset = hAllocation->GetOffset();
+ pAllocationInfo->size = hAllocation->GetSize();
+ pAllocationInfo->pMappedData = hAllocation->GetMappedData();
+ pAllocationInfo->pUserData = hAllocation->GetUserData();
+ pAllocationInfo->pName = hAllocation->GetName();
+}
+
+void VmaAllocator_T::GetAllocationInfo2(VmaAllocation hAllocation, VmaAllocationInfo2* pAllocationInfo)
+{
+ GetAllocationInfo(hAllocation, &pAllocationInfo->allocationInfo);
+
+ switch (hAllocation->GetType())
+ {
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+ pAllocationInfo->blockSize = hAllocation->GetBlock()->m_pMetadata->GetSize();
+ pAllocationInfo->dedicatedMemory = VK_FALSE;
+ break;
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+ pAllocationInfo->blockSize = pAllocationInfo->allocationInfo.size;
+ pAllocationInfo->dedicatedMemory = VK_TRUE;
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+}
+
+VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool)
+{
+ VMA_DEBUG_LOG_FORMAT(" CreatePool: MemoryTypeIndex=%" PRIu32 ", flags=%" PRIu32, pCreateInfo->memoryTypeIndex, pCreateInfo->flags);
+
+ VmaPoolCreateInfo newCreateInfo = *pCreateInfo;
+
+ // Protection against uninitialized new structure member. If garbage data are left there, this pointer dereference would crash.
+ if(pCreateInfo->pMemoryAllocateNext)
+ {
+ VMA_ASSERT(((const VkBaseInStructure*)pCreateInfo->pMemoryAllocateNext)->sType != 0);
+ }
+
+ if(newCreateInfo.maxBlockCount == 0)
+ {
+ newCreateInfo.maxBlockCount = SIZE_MAX;
+ }
+ if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount)
+ {
+ return VK_ERROR_INITIALIZATION_FAILED;
+ }
+ // Memory type index out of range or forbidden.
+ if(pCreateInfo->memoryTypeIndex >= GetMemoryTypeCount() ||
+ ((1u << pCreateInfo->memoryTypeIndex) & m_GlobalMemoryTypeBits) == 0)
+ {
+ return VK_ERROR_FEATURE_NOT_PRESENT;
+ }
+ if(newCreateInfo.minAllocationAlignment > 0)
+ {
+ VMA_ASSERT(VmaIsPow2(newCreateInfo.minAllocationAlignment));
+ }
+
+ const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex);
+
+ *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize);
+
+ VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks();
+ if(res != VK_SUCCESS)
+ {
+ vma_delete(this, *pPool);
+ *pPool = VMA_NULL;
+ return res;
+ }
+
+ // Add to m_Pools.
+ {
+ VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);
+ (*pPool)->SetId(m_NextPoolId++);
+ m_Pools.PushBack(*pPool);
+ }
+
+ return VK_SUCCESS;
+}
+
+void VmaAllocator_T::DestroyPool(VmaPool pool)
+{
+ // Remove from m_Pools.
+ {
+ VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);
+ m_Pools.Remove(pool);
+ }
+
+ vma_delete(this, pool);
+}
+
+void VmaAllocator_T::GetPoolStatistics(VmaPool pool, VmaStatistics* pPoolStats)
+{
+ VmaClearStatistics(*pPoolStats);
+ pool->m_BlockVector.AddStatistics(*pPoolStats);
+ pool->m_DedicatedAllocations.AddStatistics(*pPoolStats);
+}
+
+void VmaAllocator_T::CalculatePoolStatistics(VmaPool pool, VmaDetailedStatistics* pPoolStats)
+{
+ VmaClearDetailedStatistics(*pPoolStats);
+ pool->m_BlockVector.AddDetailedStatistics(*pPoolStats);
+ pool->m_DedicatedAllocations.AddDetailedStatistics(*pPoolStats);
+}
+
+void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex)
+{
+ m_CurrentFrameIndex.store(frameIndex);
+
+#if VMA_MEMORY_BUDGET
+ if(m_UseExtMemoryBudget)
+ {
+ UpdateVulkanBudget();
+ }
+#endif // #if VMA_MEMORY_BUDGET
+}
+
+VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool)
+{
+ return hPool->m_BlockVector.CheckCorruption();
+}
+
+VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits)
+{
+ VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT;
+
+ // Process default pools.
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
+ if(pBlockVector != VMA_NULL)
+ {
+ VkResult localRes = pBlockVector->CheckCorruption();
+ switch(localRes)
+ {
+ case VK_ERROR_FEATURE_NOT_PRESENT:
+ break;
+ case VK_SUCCESS:
+ finalRes = VK_SUCCESS;
+ break;
+ default:
+ return localRes;
+ }
+ }
+ }
+
+ // Process custom pools.
+ {
+ VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
+ for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
+ {
+ if(((1u << pool->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0)
+ {
+ VkResult localRes = pool->m_BlockVector.CheckCorruption();
+ switch(localRes)
+ {
+ case VK_ERROR_FEATURE_NOT_PRESENT:
+ break;
+ case VK_SUCCESS:
+ finalRes = VK_SUCCESS;
+ break;
+ default:
+ return localRes;
+ }
+ }
+ }
+ }
+
+ return finalRes;
+}
+
+VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory)
+{
+ AtomicTransactionalIncrement<VMA_ATOMIC_UINT32> deviceMemoryCountIncrement;
+ const uint64_t prevDeviceMemoryCount = deviceMemoryCountIncrement.Increment(&m_DeviceMemoryCount);
+#if VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT
+ if(prevDeviceMemoryCount >= m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount)
+ {
+ return VK_ERROR_TOO_MANY_OBJECTS;
+ }
+#endif
+
+ const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex);
+
+ // HeapSizeLimit is in effect for this heap.
+ if((m_HeapSizeLimitMask & (1u << heapIndex)) != 0)
+ {
+ const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
+ VkDeviceSize blockBytes = m_Budget.m_BlockBytes[heapIndex];
+ for(;;)
+ {
+ const VkDeviceSize blockBytesAfterAllocation = blockBytes + pAllocateInfo->allocationSize;
+ if(blockBytesAfterAllocation > heapSize)
+ {
+ return VK_ERROR_OUT_OF_DEVICE_MEMORY;
+ }
+ if(m_Budget.m_BlockBytes[heapIndex].compare_exchange_strong(blockBytes, blockBytesAfterAllocation))
+ {
+ break;
+ }
+ }
+ }
+ else
+ {
+ m_Budget.m_BlockBytes[heapIndex] += pAllocateInfo->allocationSize;
+ }
+ ++m_Budget.m_BlockCount[heapIndex];
+
+ // VULKAN CALL vkAllocateMemory.
+ VkResult res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);
+
+ if(res == VK_SUCCESS)
+ {
+#if VMA_MEMORY_BUDGET
+ ++m_Budget.m_OperationsSinceBudgetFetch;
+#endif
+
+ // Informative callback.
+ if(m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL)
+ {
+ (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize, m_DeviceMemoryCallbacks.pUserData);
+ }
+
+ deviceMemoryCountIncrement.Commit();
+ }
+ else
+ {
+ --m_Budget.m_BlockCount[heapIndex];
+ m_Budget.m_BlockBytes[heapIndex] -= pAllocateInfo->allocationSize;
+ }
+
+ return res;
+}
+
+void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory)
+{
+ // Informative callback.
+ if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL)
+ {
+ (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size, m_DeviceMemoryCallbacks.pUserData);
+ }
+
+ // VULKAN CALL vkFreeMemory.
+ (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks());
+
+ const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memoryType);
+ --m_Budget.m_BlockCount[heapIndex];
+ m_Budget.m_BlockBytes[heapIndex] -= size;
+
+ --m_DeviceMemoryCount;
+}
+
+VkResult VmaAllocator_T::BindVulkanBuffer(
+ VkDeviceMemory memory,
+ VkDeviceSize memoryOffset,
+ VkBuffer buffer,
+ const void* pNext)
+{
+ if(pNext != VMA_NULL)
+ {
+#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
+ if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) &&
+ m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL)
+ {
+ VkBindBufferMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR };
+ bindBufferMemoryInfo.pNext = pNext;
+ bindBufferMemoryInfo.buffer = buffer;
+ bindBufferMemoryInfo.memory = memory;
+ bindBufferMemoryInfo.memoryOffset = memoryOffset;
+ return (*m_VulkanFunctions.vkBindBufferMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo);
+ }
+ else
+#endif // #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
+ {
+ return VK_ERROR_EXTENSION_NOT_PRESENT;
+ }
+ }
+ else
+ {
+ return (*m_VulkanFunctions.vkBindBufferMemory)(m_hDevice, buffer, memory, memoryOffset);
+ }
+}
+
+VkResult VmaAllocator_T::BindVulkanImage(
+ VkDeviceMemory memory,
+ VkDeviceSize memoryOffset,
+ VkImage image,
+ const void* pNext)
+{
+ if(pNext != VMA_NULL)
+ {
+#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
+ if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) &&
+ m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL)
+ {
+ VkBindImageMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR };
+ bindBufferMemoryInfo.pNext = pNext;
+ bindBufferMemoryInfo.image = image;
+ bindBufferMemoryInfo.memory = memory;
+ bindBufferMemoryInfo.memoryOffset = memoryOffset;
+ return (*m_VulkanFunctions.vkBindImageMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo);
+ }
+ else
+#endif // #if VMA_BIND_MEMORY2
+ {
+ return VK_ERROR_EXTENSION_NOT_PRESENT;
+ }
+ }
+ else
+ {
+ return (*m_VulkanFunctions.vkBindImageMemory)(m_hDevice, image, memory, memoryOffset);
+ }
+}
+
+VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData)
+{
+ switch(hAllocation->GetType())
+ {
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+ {
+ VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
+ char *pBytes = VMA_NULL;
+ VkResult res = pBlock->Map(this, 1, (void**)&pBytes);
+ if(res == VK_SUCCESS)
+ {
+ *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset();
+ hAllocation->BlockAllocMap();
+ }
+ return res;
+ }
+ VMA_FALLTHROUGH; // Fallthrough
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+ return hAllocation->DedicatedAllocMap(this, ppData);
+ default:
+ VMA_ASSERT(0);
+ return VK_ERROR_MEMORY_MAP_FAILED;
+ }
+}
+
+void VmaAllocator_T::Unmap(VmaAllocation hAllocation)
+{
+ switch(hAllocation->GetType())
+ {
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+ {
+ VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
+ hAllocation->BlockAllocUnmap();
+ pBlock->Unmap(this, 1);
+ }
+ break;
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+ hAllocation->DedicatedAllocUnmap(this);
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+}
+
+VkResult VmaAllocator_T::BindBufferMemory(
+ VmaAllocation hAllocation,
+ VkDeviceSize allocationLocalOffset,
+ VkBuffer hBuffer,
+ const void* pNext)
+{
+ VkResult res = VK_ERROR_UNKNOWN_COPY;
+ switch(hAllocation->GetType())
+ {
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+ res = BindVulkanBuffer(hAllocation->GetMemory(), allocationLocalOffset, hBuffer, pNext);
+ break;
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+ {
+ VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
+ VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block.");
+ res = pBlock->BindBufferMemory(this, hAllocation, allocationLocalOffset, hBuffer, pNext);
+ break;
+ }
+ default:
+ VMA_ASSERT(0);
+ }
+ return res;
+}
+
+VkResult VmaAllocator_T::BindImageMemory(
+ VmaAllocation hAllocation,
+ VkDeviceSize allocationLocalOffset,
+ VkImage hImage,
+ const void* pNext)
+{
+ VkResult res = VK_ERROR_UNKNOWN_COPY;
+ switch(hAllocation->GetType())
+ {
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+ res = BindVulkanImage(hAllocation->GetMemory(), allocationLocalOffset, hImage, pNext);
+ break;
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+ {
+ VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
+ VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block.");
+ res = pBlock->BindImageMemory(this, hAllocation, allocationLocalOffset, hImage, pNext);
+ break;
+ }
+ default:
+ VMA_ASSERT(0);
+ }
+ return res;
+}
+
+VkResult VmaAllocator_T::FlushOrInvalidateAllocation(
+ VmaAllocation hAllocation,
+ VkDeviceSize offset, VkDeviceSize size,
+ VMA_CACHE_OPERATION op)
+{
+ VkResult res = VK_SUCCESS;
+
+ VkMappedMemoryRange memRange = {};
+ if(GetFlushOrInvalidateRange(hAllocation, offset, size, memRange))
+ {
+ switch(op)
+ {
+ case VMA_CACHE_FLUSH:
+ res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange);
+ break;
+ case VMA_CACHE_INVALIDATE:
+ res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange);
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+ }
+ // else: Just ignore this call.
+ return res;
+}
+
+VkResult VmaAllocator_T::FlushOrInvalidateAllocations(
+ uint32_t allocationCount,
+ const VmaAllocation* allocations,
+ const VkDeviceSize* offsets, const VkDeviceSize* sizes,
+ VMA_CACHE_OPERATION op)
+{
+ typedef VmaStlAllocator<VkMappedMemoryRange> RangeAllocator;
+ typedef VmaSmallVector<VkMappedMemoryRange, RangeAllocator, 16> RangeVector;
+ RangeVector ranges = RangeVector(RangeAllocator(GetAllocationCallbacks()));
+
+ for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
+ {
+ const VmaAllocation alloc = allocations[allocIndex];
+ const VkDeviceSize offset = offsets != VMA_NULL ? offsets[allocIndex] : 0;
+ const VkDeviceSize size = sizes != VMA_NULL ? sizes[allocIndex] : VK_WHOLE_SIZE;
+ VkMappedMemoryRange newRange;
+ if(GetFlushOrInvalidateRange(alloc, offset, size, newRange))
+ {
+ ranges.push_back(newRange);
+ }
+ }
+
+ VkResult res = VK_SUCCESS;
+ if(!ranges.empty())
+ {
+ switch(op)
+ {
+ case VMA_CACHE_FLUSH:
+ res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data());
+ break;
+ case VMA_CACHE_INVALIDATE:
+ res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data());
+ break;
+ default:
+ VMA_ASSERT(0);
+ }
+ }
+ // else: Just ignore this call.
+ return res;
+}
+
+VkResult VmaAllocator_T::CopyMemoryToAllocation(
+ const void* pSrcHostPointer,
+ VmaAllocation dstAllocation,
+ VkDeviceSize dstAllocationLocalOffset,
+ VkDeviceSize size)
+{
+ void* dstMappedData = VMA_NULL;
+ VkResult res = Map(dstAllocation, &dstMappedData);
+ if(res == VK_SUCCESS)
+ {
+ memcpy((char*)dstMappedData + dstAllocationLocalOffset, pSrcHostPointer, (size_t)size);
+ Unmap(dstAllocation);
+ res = FlushOrInvalidateAllocation(dstAllocation, dstAllocationLocalOffset, size, VMA_CACHE_FLUSH);
+ }
+ return res;
+}
+
+VkResult VmaAllocator_T::CopyAllocationToMemory(
+ VmaAllocation srcAllocation,
+ VkDeviceSize srcAllocationLocalOffset,
+ void* pDstHostPointer,
+ VkDeviceSize size)
+{
+ void* srcMappedData = VMA_NULL;
+ VkResult res = Map(srcAllocation, &srcMappedData);
+ if(res == VK_SUCCESS)
+ {
+ res = FlushOrInvalidateAllocation(srcAllocation, srcAllocationLocalOffset, size, VMA_CACHE_INVALIDATE);
+ if(res == VK_SUCCESS)
+ {
+ memcpy(pDstHostPointer, (const char*)srcMappedData + srcAllocationLocalOffset, (size_t)size);
+ Unmap(srcAllocation);
+ }
+ }
+ return res;
+}
+
+void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation)
+{
+ VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
+
+ const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
+ VmaPool parentPool = allocation->GetParentPool();
+ if(parentPool == VK_NULL_HANDLE)
+ {
+ // Default pool
+ m_DedicatedAllocations[memTypeIndex].Unregister(allocation);
+ }
+ else
+ {
+ // Custom pool
+ parentPool->m_DedicatedAllocations.Unregister(allocation);
+ }
+
+ VkDeviceMemory hMemory = allocation->GetMemory();
+
+ /*
+ There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory
+ before vkFreeMemory.
+
+ if(allocation->GetMappedData() != VMA_NULL)
+ {
+ (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
+ }
+ */
+
+ FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory);
+
+ m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(allocation->GetMemoryTypeIndex()), allocation->GetSize());
+ m_AllocationObjectAllocator.Free(allocation);
+
+ VMA_DEBUG_LOG_FORMAT(" Freed DedicatedMemory MemoryTypeIndex=%" PRIu32, memTypeIndex);
+}
+
+uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const
+{
+ VkBufferCreateInfo dummyBufCreateInfo;
+ VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo);
+
+ uint32_t memoryTypeBits = 0;
+
+ // Create buffer.
+ VkBuffer buf = VK_NULL_HANDLE;
+ VkResult res = (*GetVulkanFunctions().vkCreateBuffer)(
+ m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf);
+ if(res == VK_SUCCESS)
+ {
+ // Query for supported memory types.
+ VkMemoryRequirements memReq;
+ (*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq);
+ memoryTypeBits = memReq.memoryTypeBits;
+
+ // Destroy buffer.
+ (*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks());
+ }
+
+ return memoryTypeBits;
+}
+
+uint32_t VmaAllocator_T::CalculateGlobalMemoryTypeBits() const
+{
+ // Make sure memory information is already fetched.
+ VMA_ASSERT(GetMemoryTypeCount() > 0);
+
+ uint32_t memoryTypeBits = UINT32_MAX;
+
+ if(!m_UseAmdDeviceCoherentMemory)
+ {
+ // Exclude memory types that have VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD.
+ for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0)
+ {
+ memoryTypeBits &= ~(1u << memTypeIndex);
+ }
+ }
+ }
+
+ return memoryTypeBits;
+}
+
+bool VmaAllocator_T::GetFlushOrInvalidateRange(
+ VmaAllocation allocation,
+ VkDeviceSize offset, VkDeviceSize size,
+ VkMappedMemoryRange& outRange) const
+{
+ const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
+ if(size > 0 && IsMemoryTypeNonCoherent(memTypeIndex))
+ {
+ const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize;
+ const VkDeviceSize allocationSize = allocation->GetSize();
+ VMA_ASSERT(offset <= allocationSize);
+
+ outRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
+ outRange.pNext = VMA_NULL;
+ outRange.memory = allocation->GetMemory();
+
+ switch(allocation->GetType())
+ {
+ case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
+ outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);
+ if(size == VK_WHOLE_SIZE)
+ {
+ outRange.size = allocationSize - outRange.offset;
+ }
+ else
+ {
+ VMA_ASSERT(offset + size <= allocationSize);
+ outRange.size = VMA_MIN(
+ VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize),
+ allocationSize - outRange.offset);
+ }
+ break;
+ case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
+ {
+ // 1. Still within this allocation.
+ outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);
+ if(size == VK_WHOLE_SIZE)
+ {
+ size = allocationSize - offset;
+ }
+ else
+ {
+ VMA_ASSERT(offset + size <= allocationSize);
+ }
+ outRange.size = VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize);
+
+ // 2. Adjust to whole block.
+ const VkDeviceSize allocationOffset = allocation->GetOffset();
+ VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0);
+ const VkDeviceSize blockSize = allocation->GetBlock()->m_pMetadata->GetSize();
+ outRange.offset += allocationOffset;
+ outRange.size = VMA_MIN(outRange.size, blockSize - outRange.offset);
+
+ break;
+ }
+ default:
+ VMA_ASSERT(0);
+ }
+ return true;
+ }
+ return false;
+}
+
+#if VMA_MEMORY_BUDGET
+void VmaAllocator_T::UpdateVulkanBudget()
+{
+ VMA_ASSERT(m_UseExtMemoryBudget);
+
+ VkPhysicalDeviceMemoryProperties2KHR memProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR };
+
+ VkPhysicalDeviceMemoryBudgetPropertiesEXT budgetProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT };
+ VmaPnextChainPushFront(&memProps, &budgetProps);
+
+ GetVulkanFunctions().vkGetPhysicalDeviceMemoryProperties2KHR(m_PhysicalDevice, &memProps);
+
+ {
+ VmaMutexLockWrite lockWrite(m_Budget.m_BudgetMutex, m_UseMutex);
+
+ for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
+ {
+ m_Budget.m_VulkanUsage[heapIndex] = budgetProps.heapUsage[heapIndex];
+ m_Budget.m_VulkanBudget[heapIndex] = budgetProps.heapBudget[heapIndex];
+ m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] = m_Budget.m_BlockBytes[heapIndex].load();
+
+ // Some bugged drivers return the budget incorrectly, e.g. 0 or much bigger than heap size.
+ if(m_Budget.m_VulkanBudget[heapIndex] == 0)
+ {
+ m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics.
+ }
+ else if(m_Budget.m_VulkanBudget[heapIndex] > m_MemProps.memoryHeaps[heapIndex].size)
+ {
+ m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size;
+ }
+ if(m_Budget.m_VulkanUsage[heapIndex] == 0 && m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] > 0)
+ {
+ m_Budget.m_VulkanUsage[heapIndex] = m_Budget.m_BlockBytesAtBudgetFetch[heapIndex];
+ }
+ }
+ m_Budget.m_OperationsSinceBudgetFetch = 0;
+ }
+}
+#endif // VMA_MEMORY_BUDGET
+
+void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern)
+{
+ if(VMA_DEBUG_INITIALIZE_ALLOCATIONS &&
+ hAllocation->IsMappingAllowed() &&
+ (m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
+ {
+ void* pData = VMA_NULL;
+ VkResult res = Map(hAllocation, &pData);
+ if(res == VK_SUCCESS)
+ {
+ memset(pData, (int)pattern, (size_t)hAllocation->GetSize());
+ FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH);
+ Unmap(hAllocation);
+ }
+ else
+ {
+ VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation.");
+ }
+ }
+}
+
+uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits()
+{
+ uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load();
+ if(memoryTypeBits == UINT32_MAX)
+ {
+ memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits();
+ m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits);
+ }
+ return memoryTypeBits;
+}
+
+#if VMA_STATS_STRING_ENABLED
+void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json)
+{
+ json.WriteString("DefaultPools");
+ json.BeginObject();
+ {
+ for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ VmaBlockVector* pBlockVector = m_pBlockVectors[memTypeIndex];
+ VmaDedicatedAllocationList& dedicatedAllocList = m_DedicatedAllocations[memTypeIndex];
+ if (pBlockVector != VMA_NULL)
+ {
+ json.BeginString("Type ");
+ json.ContinueString(memTypeIndex);
+ json.EndString();
+ json.BeginObject();
+ {
+ json.WriteString("PreferredBlockSize");
+ json.WriteNumber(pBlockVector->GetPreferredBlockSize());
+
+ json.WriteString("Blocks");
+ pBlockVector->PrintDetailedMap(json);
+
+ json.WriteString("DedicatedAllocations");
+ dedicatedAllocList.BuildStatsString(json);
+ }
+ json.EndObject();
+ }
+ }
+ }
+ json.EndObject();
+
+ json.WriteString("CustomPools");
+ json.BeginObject();
+ {
+ VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
+ if (!m_Pools.IsEmpty())
+ {
+ for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
+ {
+ bool displayType = true;
+ size_t index = 0;
+ for (VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
+ {
+ VmaBlockVector& blockVector = pool->m_BlockVector;
+ if (blockVector.GetMemoryTypeIndex() == memTypeIndex)
+ {
+ if (displayType)
+ {
+ json.BeginString("Type ");
+ json.ContinueString(memTypeIndex);
+ json.EndString();
+ json.BeginArray();
+ displayType = false;
+ }
+
+ json.BeginObject();
+ {
+ json.WriteString("Name");
+ json.BeginString();
+ json.ContinueString((uint64_t)index++);
+ if (pool->GetName())
+ {
+ json.ContinueString(" - ");
+ json.ContinueString(pool->GetName());
+ }
+ json.EndString();
+
+ json.WriteString("PreferredBlockSize");
+ json.WriteNumber(blockVector.GetPreferredBlockSize());
+
+ json.WriteString("Blocks");
+ blockVector.PrintDetailedMap(json);
+
+ json.WriteString("DedicatedAllocations");
+ pool->m_DedicatedAllocations.BuildStatsString(json);
+ }
+ json.EndObject();
+ }
+ }
+
+ if (!displayType)
+ json.EndArray();
+ }
+ }
+ }
+ json.EndObject();
+}
+#endif // VMA_STATS_STRING_ENABLED
+#endif // _VMA_ALLOCATOR_T_FUNCTIONS
+
+
+#ifndef _VMA_PUBLIC_INTERFACE
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator(
+ const VmaAllocatorCreateInfo* pCreateInfo,
+ VmaAllocator* pAllocator)
+{
+ VMA_ASSERT(pCreateInfo && pAllocator);
+ VMA_ASSERT(pCreateInfo->vulkanApiVersion == 0 ||
+ (VK_VERSION_MAJOR(pCreateInfo->vulkanApiVersion) == 1 && VK_VERSION_MINOR(pCreateInfo->vulkanApiVersion) <= 3));
+ VMA_DEBUG_LOG("vmaCreateAllocator");
+ *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo);
+ VkResult result = (*pAllocator)->Init(pCreateInfo);
+ if(result < 0)
+ {
+ vma_delete(pCreateInfo->pAllocationCallbacks, *pAllocator);
+ *pAllocator = VK_NULL_HANDLE;
+ }
+ return result;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator(
+ VmaAllocator allocator)
+{
+ if(allocator != VK_NULL_HANDLE)
+ {
+ VMA_DEBUG_LOG("vmaDestroyAllocator");
+ VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks; // Have to copy the callbacks when destroying.
+ vma_delete(&allocationCallbacks, allocator);
+ }
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(VmaAllocator allocator, VmaAllocatorInfo* pAllocatorInfo)
+{
+ VMA_ASSERT(allocator && pAllocatorInfo);
+ pAllocatorInfo->instance = allocator->m_hInstance;
+ pAllocatorInfo->physicalDevice = allocator->GetPhysicalDevice();
+ pAllocatorInfo->device = allocator->m_hDevice;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties(
+ VmaAllocator allocator,
+ const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties)
+{
+ VMA_ASSERT(allocator && ppPhysicalDeviceProperties);
+ *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties(
+ VmaAllocator allocator,
+ const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties)
+{
+ VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties);
+ *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties(
+ VmaAllocator allocator,
+ uint32_t memoryTypeIndex,
+ VkMemoryPropertyFlags* pFlags)
+{
+ VMA_ASSERT(allocator && pFlags);
+ VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount());
+ *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex(
+ VmaAllocator allocator,
+ uint32_t frameIndex)
+{
+ VMA_ASSERT(allocator);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocator->SetCurrentFrameIndex(frameIndex);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStatistics(
+ VmaAllocator allocator,
+ VmaTotalStatistics* pStats)
+{
+ VMA_ASSERT(allocator && pStats);
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+ allocator->CalculateStatistics(pStats);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets(
+ VmaAllocator allocator,
+ VmaBudget* pBudgets)
+{
+ VMA_ASSERT(allocator && pBudgets);
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+ allocator->GetHeapBudgets(pBudgets, 0, allocator->GetMemoryHeapCount());
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString(
+ VmaAllocator allocator,
+ char** ppStatsString,
+ VkBool32 detailedMap)
+{
+ VMA_ASSERT(allocator && ppStatsString);
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ VmaStringBuilder sb(allocator->GetAllocationCallbacks());
+ {
+ VmaBudget budgets[VK_MAX_MEMORY_HEAPS];
+ allocator->GetHeapBudgets(budgets, 0, allocator->GetMemoryHeapCount());
+
+ VmaTotalStatistics stats;
+ allocator->CalculateStatistics(&stats);
+
+ VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb);
+ json.BeginObject();
+ {
+ json.WriteString("General");
+ json.BeginObject();
+ {
+ const VkPhysicalDeviceProperties& deviceProperties = allocator->m_PhysicalDeviceProperties;
+ const VkPhysicalDeviceMemoryProperties& memoryProperties = allocator->m_MemProps;
+
+ json.WriteString("API");
+ json.WriteString("Vulkan");
+
+ json.WriteString("apiVersion");
+ json.BeginString();
+ json.ContinueString(VK_VERSION_MAJOR(deviceProperties.apiVersion));
+ json.ContinueString(".");
+ json.ContinueString(VK_VERSION_MINOR(deviceProperties.apiVersion));
+ json.ContinueString(".");
+ json.ContinueString(VK_VERSION_PATCH(deviceProperties.apiVersion));
+ json.EndString();
+
+ json.WriteString("GPU");
+ json.WriteString(deviceProperties.deviceName);
+ json.WriteString("deviceType");
+ json.WriteNumber(static_cast<uint32_t>(deviceProperties.deviceType));
+
+ json.WriteString("maxMemoryAllocationCount");
+ json.WriteNumber(deviceProperties.limits.maxMemoryAllocationCount);
+ json.WriteString("bufferImageGranularity");
+ json.WriteNumber(deviceProperties.limits.bufferImageGranularity);
+ json.WriteString("nonCoherentAtomSize");
+ json.WriteNumber(deviceProperties.limits.nonCoherentAtomSize);
+
+ json.WriteString("memoryHeapCount");
+ json.WriteNumber(memoryProperties.memoryHeapCount);
+ json.WriteString("memoryTypeCount");
+ json.WriteNumber(memoryProperties.memoryTypeCount);
+ }
+ json.EndObject();
+ }
+ {
+ json.WriteString("Total");
+ VmaPrintDetailedStatistics(json, stats.total);
+ }
+ {
+ json.WriteString("MemoryInfo");
+ json.BeginObject();
+ {
+ for (uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex)
+ {
+ json.BeginString("Heap ");
+ json.ContinueString(heapIndex);
+ json.EndString();
+ json.BeginObject();
+ {
+ const VkMemoryHeap& heapInfo = allocator->m_MemProps.memoryHeaps[heapIndex];
+ json.WriteString("Flags");
+ json.BeginArray(true);
+ {
+ if (heapInfo.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT)
+ json.WriteString("DEVICE_LOCAL");
+ #if VMA_VULKAN_VERSION >= 1001000
+ if (heapInfo.flags & VK_MEMORY_HEAP_MULTI_INSTANCE_BIT)
+ json.WriteString("MULTI_INSTANCE");
+ #endif
+
+ VkMemoryHeapFlags flags = heapInfo.flags &
+ ~(VK_MEMORY_HEAP_DEVICE_LOCAL_BIT
+ #if VMA_VULKAN_VERSION >= 1001000
+ | VK_MEMORY_HEAP_MULTI_INSTANCE_BIT
+ #endif
+ );
+ if (flags != 0)
+ json.WriteNumber(flags);
+ }
+ json.EndArray();
+
+ json.WriteString("Size");
+ json.WriteNumber(heapInfo.size);
+
+ json.WriteString("Budget");
+ json.BeginObject();
+ {
+ json.WriteString("BudgetBytes");
+ json.WriteNumber(budgets[heapIndex].budget);
+ json.WriteString("UsageBytes");
+ json.WriteNumber(budgets[heapIndex].usage);
+ }
+ json.EndObject();
+
+ json.WriteString("Stats");
+ VmaPrintDetailedStatistics(json, stats.memoryHeap[heapIndex]);
+
+ json.WriteString("MemoryPools");
+ json.BeginObject();
+ {
+ for (uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex)
+ {
+ if (allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex)
+ {
+ json.BeginString("Type ");
+ json.ContinueString(typeIndex);
+ json.EndString();
+ json.BeginObject();
+ {
+ json.WriteString("Flags");
+ json.BeginArray(true);
+ {
+ VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags;
+ if (flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT)
+ json.WriteString("DEVICE_LOCAL");
+ if (flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)
+ json.WriteString("HOST_VISIBLE");
+ if (flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
+ json.WriteString("HOST_COHERENT");
+ if (flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT)
+ json.WriteString("HOST_CACHED");
+ if (flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT)
+ json.WriteString("LAZILY_ALLOCATED");
+ #if VMA_VULKAN_VERSION >= 1001000
+ if (flags & VK_MEMORY_PROPERTY_PROTECTED_BIT)
+ json.WriteString("PROTECTED");
+ #endif
+ #if VK_AMD_device_coherent_memory
+ if (flags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY)
+ json.WriteString("DEVICE_COHERENT_AMD");
+ if (flags & VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)
+ json.WriteString("DEVICE_UNCACHED_AMD");
+ #endif
+
+ flags &= ~(VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
+ #if VMA_VULKAN_VERSION >= 1001000
+ | VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT
+ #endif
+ #if VK_AMD_device_coherent_memory
+ | VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY
+ | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY
+ #endif
+ | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
+ | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
+ | VK_MEMORY_PROPERTY_HOST_CACHED_BIT);
+ if (flags != 0)
+ json.WriteNumber(flags);
+ }
+ json.EndArray();
+
+ json.WriteString("Stats");
+ VmaPrintDetailedStatistics(json, stats.memoryType[typeIndex]);
+ }
+ json.EndObject();
+ }
+ }
+
+ }
+ json.EndObject();
+ }
+ json.EndObject();
+ }
+ }
+ json.EndObject();
+ }
+
+ if (detailedMap == VK_TRUE)
+ allocator->PrintDetailedMap(json);
+
+ json.EndObject();
+ }
+
+ *ppStatsString = VmaCreateStringCopy(allocator->GetAllocationCallbacks(), sb.GetData(), sb.GetLength());
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString(
+ VmaAllocator allocator,
+ char* pStatsString)
+{
+ if(pStatsString != VMA_NULL)
+ {
+ VMA_ASSERT(allocator);
+ VmaFreeString(allocator->GetAllocationCallbacks(), pStatsString);
+ }
+}
+
+#endif // VMA_STATS_STRING_ENABLED
+
+/*
+This function is not protected by any mutex because it just reads immutable data.
+*/
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex(
+ VmaAllocator allocator,
+ uint32_t memoryTypeBits,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ uint32_t* pMemoryTypeIndex)
+{
+ VMA_ASSERT(allocator != VK_NULL_HANDLE);
+ VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
+ VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
+
+ return allocator->FindMemoryTypeIndex(memoryTypeBits, pAllocationCreateInfo, VmaBufferImageUsage::UNKNOWN, pMemoryTypeIndex);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo(
+ VmaAllocator allocator,
+ const VkBufferCreateInfo* pBufferCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ uint32_t* pMemoryTypeIndex)
+{
+ VMA_ASSERT(allocator != VK_NULL_HANDLE);
+ VMA_ASSERT(pBufferCreateInfo != VMA_NULL);
+ VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
+ VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
+
+ const VkDevice hDev = allocator->m_hDevice;
+ const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions();
+ VkResult res;
+
+#if VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000
+ if(funcs->vkGetDeviceBufferMemoryRequirements)
+ {
+ // Can query straight from VkBufferCreateInfo :)
+ VkDeviceBufferMemoryRequirementsKHR devBufMemReq = {VK_STRUCTURE_TYPE_DEVICE_BUFFER_MEMORY_REQUIREMENTS_KHR};
+ devBufMemReq.pCreateInfo = pBufferCreateInfo;
+
+ VkMemoryRequirements2 memReq = {VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2};
+ (*funcs->vkGetDeviceBufferMemoryRequirements)(hDev, &devBufMemReq, &memReq);
+
+ res = allocator->FindMemoryTypeIndex(
+ memReq.memoryRequirements.memoryTypeBits, pAllocationCreateInfo,
+ VmaBufferImageUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5), pMemoryTypeIndex);
+ }
+ else
+#endif // VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000
+ {
+ // Must create a dummy buffer to query :(
+ VkBuffer hBuffer = VK_NULL_HANDLE;
+ res = funcs->vkCreateBuffer(
+ hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer);
+ if(res == VK_SUCCESS)
+ {
+ VkMemoryRequirements memReq = {};
+ funcs->vkGetBufferMemoryRequirements(hDev, hBuffer, &memReq);
+
+ res = allocator->FindMemoryTypeIndex(
+ memReq.memoryTypeBits, pAllocationCreateInfo,
+ VmaBufferImageUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5), pMemoryTypeIndex);
+
+ funcs->vkDestroyBuffer(
+ hDev, hBuffer, allocator->GetAllocationCallbacks());
+ }
+ }
+ return res;
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo(
+ VmaAllocator allocator,
+ const VkImageCreateInfo* pImageCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ uint32_t* pMemoryTypeIndex)
+{
+ VMA_ASSERT(allocator != VK_NULL_HANDLE);
+ VMA_ASSERT(pImageCreateInfo != VMA_NULL);
+ VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
+ VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
+
+ const VkDevice hDev = allocator->m_hDevice;
+ const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions();
+ VkResult res;
+
+#if VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000
+ if(funcs->vkGetDeviceImageMemoryRequirements)
+ {
+ // Can query straight from VkImageCreateInfo :)
+ VkDeviceImageMemoryRequirementsKHR devImgMemReq = {VK_STRUCTURE_TYPE_DEVICE_IMAGE_MEMORY_REQUIREMENTS_KHR};
+ devImgMemReq.pCreateInfo = pImageCreateInfo;
+ VMA_ASSERT(pImageCreateInfo->tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT_COPY && (pImageCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT_COPY) == 0 &&
+ "Cannot use this VkImageCreateInfo with vmaFindMemoryTypeIndexForImageInfo as I don't know what to pass as VkDeviceImageMemoryRequirements::planeAspect.");
+
+ VkMemoryRequirements2 memReq = {VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2};
+ (*funcs->vkGetDeviceImageMemoryRequirements)(hDev, &devImgMemReq, &memReq);
+
+ res = allocator->FindMemoryTypeIndex(
+ memReq.memoryRequirements.memoryTypeBits, pAllocationCreateInfo,
+ VmaBufferImageUsage(*pImageCreateInfo), pMemoryTypeIndex);
+ }
+ else
+#endif // VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000
+ {
+ // Must create a dummy image to query :(
+ VkImage hImage = VK_NULL_HANDLE;
+ res = funcs->vkCreateImage(
+ hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage);
+ if(res == VK_SUCCESS)
+ {
+ VkMemoryRequirements memReq = {};
+ funcs->vkGetImageMemoryRequirements(hDev, hImage, &memReq);
+
+ res = allocator->FindMemoryTypeIndex(
+ memReq.memoryTypeBits, pAllocationCreateInfo,
+ VmaBufferImageUsage(*pImageCreateInfo), pMemoryTypeIndex);
+
+ funcs->vkDestroyImage(
+ hDev, hImage, allocator->GetAllocationCallbacks());
+ }
+ }
+ return res;
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool(
+ VmaAllocator allocator,
+ const VmaPoolCreateInfo* pCreateInfo,
+ VmaPool* pPool)
+{
+ VMA_ASSERT(allocator && pCreateInfo && pPool);
+
+ VMA_DEBUG_LOG("vmaCreatePool");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->CreatePool(pCreateInfo, pPool);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool(
+ VmaAllocator allocator,
+ VmaPool pool)
+{
+ VMA_ASSERT(allocator);
+
+ if(pool == VK_NULL_HANDLE)
+ {
+ return;
+ }
+
+ VMA_DEBUG_LOG("vmaDestroyPool");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocator->DestroyPool(pool);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStatistics(
+ VmaAllocator allocator,
+ VmaPool pool,
+ VmaStatistics* pPoolStats)
+{
+ VMA_ASSERT(allocator && pool && pPoolStats);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocator->GetPoolStatistics(pool, pPoolStats);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaCalculatePoolStatistics(
+ VmaAllocator allocator,
+ VmaPool pool,
+ VmaDetailedStatistics* pPoolStats)
+{
+ VMA_ASSERT(allocator && pool && pPoolStats);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocator->CalculatePoolStatistics(pool, pPoolStats);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool)
+{
+ VMA_ASSERT(allocator && pool);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ VMA_DEBUG_LOG("vmaCheckPoolCorruption");
+
+ return allocator->CheckPoolCorruption(pool);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName(
+ VmaAllocator allocator,
+ VmaPool pool,
+ const char** ppName)
+{
+ VMA_ASSERT(allocator && pool && ppName);
+
+ VMA_DEBUG_LOG("vmaGetPoolName");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ *ppName = pool->GetName();
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName(
+ VmaAllocator allocator,
+ VmaPool pool,
+ const char* pName)
+{
+ VMA_ASSERT(allocator && pool);
+
+ VMA_DEBUG_LOG("vmaSetPoolName");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ pool->SetName(pName);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory(
+ VmaAllocator allocator,
+ const VkMemoryRequirements* pVkMemoryRequirements,
+ const VmaAllocationCreateInfo* pCreateInfo,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation);
+
+ VMA_DEBUG_LOG("vmaAllocateMemory");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ VkResult result = allocator->AllocateMemory(
+ *pVkMemoryRequirements,
+ false, // requiresDedicatedAllocation
+ false, // prefersDedicatedAllocation
+ VK_NULL_HANDLE, // dedicatedBuffer
+ VK_NULL_HANDLE, // dedicatedImage
+ VmaBufferImageUsage::UNKNOWN, // dedicatedBufferImageUsage
+ *pCreateInfo,
+ VMA_SUBALLOCATION_TYPE_UNKNOWN,
+ 1, // allocationCount
+ pAllocation);
+
+ if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS)
+ {
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+ }
+
+ return result;
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages(
+ VmaAllocator allocator,
+ const VkMemoryRequirements* pVkMemoryRequirements,
+ const VmaAllocationCreateInfo* pCreateInfo,
+ size_t allocationCount,
+ VmaAllocation* pAllocations,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ if(allocationCount == 0)
+ {
+ return VK_SUCCESS;
+ }
+
+ VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations);
+
+ VMA_DEBUG_LOG("vmaAllocateMemoryPages");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ VkResult result = allocator->AllocateMemory(
+ *pVkMemoryRequirements,
+ false, // requiresDedicatedAllocation
+ false, // prefersDedicatedAllocation
+ VK_NULL_HANDLE, // dedicatedBuffer
+ VK_NULL_HANDLE, // dedicatedImage
+ VmaBufferImageUsage::UNKNOWN, // dedicatedBufferImageUsage
+ *pCreateInfo,
+ VMA_SUBALLOCATION_TYPE_UNKNOWN,
+ allocationCount,
+ pAllocations);
+
+ if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS)
+ {
+ for(size_t i = 0; i < allocationCount; ++i)
+ {
+ allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i);
+ }
+ }
+
+ return result;
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer(
+ VmaAllocator allocator,
+ VkBuffer buffer,
+ const VmaAllocationCreateInfo* pCreateInfo,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation);
+
+ VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ VkMemoryRequirements vkMemReq = {};
+ bool requiresDedicatedAllocation = false;
+ bool prefersDedicatedAllocation = false;
+ allocator->GetBufferMemoryRequirements(buffer, vkMemReq,
+ requiresDedicatedAllocation,
+ prefersDedicatedAllocation);
+
+ VkResult result = allocator->AllocateMemory(
+ vkMemReq,
+ requiresDedicatedAllocation,
+ prefersDedicatedAllocation,
+ buffer, // dedicatedBuffer
+ VK_NULL_HANDLE, // dedicatedImage
+ VmaBufferImageUsage::UNKNOWN, // dedicatedBufferImageUsage
+ *pCreateInfo,
+ VMA_SUBALLOCATION_TYPE_BUFFER,
+ 1, // allocationCount
+ pAllocation);
+
+ if(pAllocationInfo && result == VK_SUCCESS)
+ {
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+ }
+
+ return result;
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage(
+ VmaAllocator allocator,
+ VkImage image,
+ const VmaAllocationCreateInfo* pCreateInfo,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation);
+
+ VMA_DEBUG_LOG("vmaAllocateMemoryForImage");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ VkMemoryRequirements vkMemReq = {};
+ bool requiresDedicatedAllocation = false;
+ bool prefersDedicatedAllocation = false;
+ allocator->GetImageMemoryRequirements(image, vkMemReq,
+ requiresDedicatedAllocation, prefersDedicatedAllocation);
+
+ VkResult result = allocator->AllocateMemory(
+ vkMemReq,
+ requiresDedicatedAllocation,
+ prefersDedicatedAllocation,
+ VK_NULL_HANDLE, // dedicatedBuffer
+ image, // dedicatedImage
+ VmaBufferImageUsage::UNKNOWN, // dedicatedBufferImageUsage
+ *pCreateInfo,
+ VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN,
+ 1, // allocationCount
+ pAllocation);
+
+ if(pAllocationInfo && result == VK_SUCCESS)
+ {
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+ }
+
+ return result;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation)
+{
+ VMA_ASSERT(allocator);
+
+ if(allocation == VK_NULL_HANDLE)
+ {
+ return;
+ }
+
+ VMA_DEBUG_LOG("vmaFreeMemory");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocator->FreeMemory(
+ 1, // allocationCount
+ &allocation);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages(
+ VmaAllocator allocator,
+ size_t allocationCount,
+ const VmaAllocation* pAllocations)
+{
+ if(allocationCount == 0)
+ {
+ return;
+ }
+
+ VMA_ASSERT(allocator);
+
+ VMA_DEBUG_LOG("vmaFreeMemoryPages");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocator->FreeMemory(allocationCount, pAllocations);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ VMA_ASSERT(allocator && allocation && pAllocationInfo);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocator->GetAllocationInfo(allocation, pAllocationInfo);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo2(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VmaAllocationInfo2* pAllocationInfo)
+{
+ VMA_ASSERT(allocator && allocation && pAllocationInfo);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocator->GetAllocationInfo2(allocation, pAllocationInfo);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ void* pUserData)
+{
+ VMA_ASSERT(allocator && allocation);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocation->SetUserData(allocator, pUserData);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationName(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ const char* VMA_NULLABLE pName)
+{
+ allocation->SetName(allocator, pName);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ VkMemoryPropertyFlags* VMA_NOT_NULL pFlags)
+{
+ VMA_ASSERT(allocator && allocation && pFlags);
+ const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
+ *pFlags = allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ void** ppData)
+{
+ VMA_ASSERT(allocator && allocation && ppData);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->Map(allocation, ppData);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation)
+{
+ VMA_ASSERT(allocator && allocation);
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ allocator->Unmap(allocation);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VkDeviceSize offset,
+ VkDeviceSize size)
+{
+ VMA_ASSERT(allocator && allocation);
+
+ VMA_DEBUG_LOG("vmaFlushAllocation");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VkDeviceSize offset,
+ VkDeviceSize size)
+{
+ VMA_ASSERT(allocator && allocation);
+
+ VMA_DEBUG_LOG("vmaInvalidateAllocation");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations(
+ VmaAllocator allocator,
+ uint32_t allocationCount,
+ const VmaAllocation* allocations,
+ const VkDeviceSize* offsets,
+ const VkDeviceSize* sizes)
+{
+ VMA_ASSERT(allocator);
+
+ if(allocationCount == 0)
+ {
+ return VK_SUCCESS;
+ }
+
+ VMA_ASSERT(allocations);
+
+ VMA_DEBUG_LOG("vmaFlushAllocations");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_FLUSH);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations(
+ VmaAllocator allocator,
+ uint32_t allocationCount,
+ const VmaAllocation* allocations,
+ const VkDeviceSize* offsets,
+ const VkDeviceSize* sizes)
+{
+ VMA_ASSERT(allocator);
+
+ if(allocationCount == 0)
+ {
+ return VK_SUCCESS;
+ }
+
+ VMA_ASSERT(allocations);
+
+ VMA_DEBUG_LOG("vmaInvalidateAllocations");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_INVALIDATE);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCopyMemoryToAllocation(
+ VmaAllocator allocator,
+ const void* pSrcHostPointer,
+ VmaAllocation dstAllocation,
+ VkDeviceSize dstAllocationLocalOffset,
+ VkDeviceSize size)
+{
+ VMA_ASSERT(allocator && pSrcHostPointer && dstAllocation);
+
+ if(size == 0)
+ {
+ return VK_SUCCESS;
+ }
+
+ VMA_DEBUG_LOG("vmaCopyMemoryToAllocation");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->CopyMemoryToAllocation(pSrcHostPointer, dstAllocation, dstAllocationLocalOffset, size);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCopyAllocationToMemory(
+ VmaAllocator allocator,
+ VmaAllocation srcAllocation,
+ VkDeviceSize srcAllocationLocalOffset,
+ void* pDstHostPointer,
+ VkDeviceSize size)
+{
+ VMA_ASSERT(allocator && srcAllocation && pDstHostPointer);
+
+ if(size == 0)
+ {
+ return VK_SUCCESS;
+ }
+
+ VMA_DEBUG_LOG("vmaCopyAllocationToMemory");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->CopyAllocationToMemory(srcAllocation, srcAllocationLocalOffset, pDstHostPointer, size);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(
+ VmaAllocator allocator,
+ uint32_t memoryTypeBits)
+{
+ VMA_ASSERT(allocator);
+
+ VMA_DEBUG_LOG("vmaCheckCorruption");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->CheckCorruption(memoryTypeBits);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentation(
+ VmaAllocator allocator,
+ const VmaDefragmentationInfo* pInfo,
+ VmaDefragmentationContext* pContext)
+{
+ VMA_ASSERT(allocator && pInfo && pContext);
+
+ VMA_DEBUG_LOG("vmaBeginDefragmentation");
+
+ if (pInfo->pool != VMA_NULL)
+ {
+ // Check if run on supported algorithms
+ if (pInfo->pool->m_BlockVector.GetAlgorithm() & VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
+ return VK_ERROR_FEATURE_NOT_PRESENT;
+ }
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ *pContext = vma_new(allocator, VmaDefragmentationContext_T)(allocator, *pInfo);
+ return VK_SUCCESS;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaEndDefragmentation(
+ VmaAllocator allocator,
+ VmaDefragmentationContext context,
+ VmaDefragmentationStats* pStats)
+{
+ VMA_ASSERT(allocator && context);
+
+ VMA_DEBUG_LOG("vmaEndDefragmentation");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ if (pStats)
+ context->GetStats(*pStats);
+ vma_delete(allocator, context);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaDefragmentationContext VMA_NOT_NULL context,
+ VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo)
+{
+ VMA_ASSERT(context && pPassInfo);
+
+ VMA_DEBUG_LOG("vmaBeginDefragmentationPass");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return context->DefragmentPassBegin(*pPassInfo);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaDefragmentationContext VMA_NOT_NULL context,
+ VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo)
+{
+ VMA_ASSERT(context && pPassInfo);
+
+ VMA_DEBUG_LOG("vmaEndDefragmentationPass");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return context->DefragmentPassEnd(*pPassInfo);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VkBuffer buffer)
+{
+ VMA_ASSERT(allocator && allocation && buffer);
+
+ VMA_DEBUG_LOG("vmaBindBufferMemory");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->BindBufferMemory(allocation, 0, buffer, VMA_NULL);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VkDeviceSize allocationLocalOffset,
+ VkBuffer buffer,
+ const void* pNext)
+{
+ VMA_ASSERT(allocator && allocation && buffer);
+
+ VMA_DEBUG_LOG("vmaBindBufferMemory2");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->BindBufferMemory(allocation, allocationLocalOffset, buffer, pNext);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VkImage image)
+{
+ VMA_ASSERT(allocator && allocation && image);
+
+ VMA_DEBUG_LOG("vmaBindImageMemory");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->BindImageMemory(allocation, 0, image, VMA_NULL);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2(
+ VmaAllocator allocator,
+ VmaAllocation allocation,
+ VkDeviceSize allocationLocalOffset,
+ VkImage image,
+ const void* pNext)
+{
+ VMA_ASSERT(allocator && allocation && image);
+
+ VMA_DEBUG_LOG("vmaBindImageMemory2");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ return allocator->BindImageMemory(allocation, allocationLocalOffset, image, pNext);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer(
+ VmaAllocator allocator,
+ const VkBufferCreateInfo* pBufferCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ VkBuffer* pBuffer,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation);
+
+ if(pBufferCreateInfo->size == 0)
+ {
+ return VK_ERROR_INITIALIZATION_FAILED;
+ }
+ if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 &&
+ !allocator->m_UseKhrBufferDeviceAddress)
+ {
+ VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used.");
+ return VK_ERROR_INITIALIZATION_FAILED;
+ }
+
+ VMA_DEBUG_LOG("vmaCreateBuffer");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ *pBuffer = VK_NULL_HANDLE;
+ *pAllocation = VK_NULL_HANDLE;
+
+ // 1. Create VkBuffer.
+ VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
+ allocator->m_hDevice,
+ pBufferCreateInfo,
+ allocator->GetAllocationCallbacks(),
+ pBuffer);
+ if(res >= 0)
+ {
+ // 2. vkGetBufferMemoryRequirements.
+ VkMemoryRequirements vkMemReq = {};
+ bool requiresDedicatedAllocation = false;
+ bool prefersDedicatedAllocation = false;
+ allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,
+ requiresDedicatedAllocation, prefersDedicatedAllocation);
+
+ // 3. Allocate memory using allocator.
+ res = allocator->AllocateMemory(
+ vkMemReq,
+ requiresDedicatedAllocation,
+ prefersDedicatedAllocation,
+ *pBuffer, // dedicatedBuffer
+ VK_NULL_HANDLE, // dedicatedImage
+ VmaBufferImageUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5), // dedicatedBufferImageUsage
+ *pAllocationCreateInfo,
+ VMA_SUBALLOCATION_TYPE_BUFFER,
+ 1, // allocationCount
+ pAllocation);
+
+ if(res >= 0)
+ {
+ // 3. Bind buffer with memory.
+ if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
+ {
+ res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL);
+ }
+ if(res >= 0)
+ {
+ // All steps succeeded.
+ #if VMA_STATS_STRING_ENABLED
+ (*pAllocation)->InitBufferUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5);
+ #endif
+ if(pAllocationInfo != VMA_NULL)
+ {
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+ }
+
+ return VK_SUCCESS;
+ }
+ allocator->FreeMemory(
+ 1, // allocationCount
+ pAllocation);
+ *pAllocation = VK_NULL_HANDLE;
+ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
+ *pBuffer = VK_NULL_HANDLE;
+ return res;
+ }
+ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
+ *pBuffer = VK_NULL_HANDLE;
+ return res;
+ }
+ return res;
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment(
+ VmaAllocator allocator,
+ const VkBufferCreateInfo* pBufferCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ VkDeviceSize minAlignment,
+ VkBuffer* pBuffer,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && VmaIsPow2(minAlignment) && pBuffer && pAllocation);
+
+ if(pBufferCreateInfo->size == 0)
+ {
+ return VK_ERROR_INITIALIZATION_FAILED;
+ }
+ if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 &&
+ !allocator->m_UseKhrBufferDeviceAddress)
+ {
+ VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used.");
+ return VK_ERROR_INITIALIZATION_FAILED;
+ }
+
+ VMA_DEBUG_LOG("vmaCreateBufferWithAlignment");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ *pBuffer = VK_NULL_HANDLE;
+ *pAllocation = VK_NULL_HANDLE;
+
+ // 1. Create VkBuffer.
+ VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
+ allocator->m_hDevice,
+ pBufferCreateInfo,
+ allocator->GetAllocationCallbacks(),
+ pBuffer);
+ if(res >= 0)
+ {
+ // 2. vkGetBufferMemoryRequirements.
+ VkMemoryRequirements vkMemReq = {};
+ bool requiresDedicatedAllocation = false;
+ bool prefersDedicatedAllocation = false;
+ allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,
+ requiresDedicatedAllocation, prefersDedicatedAllocation);
+
+ // 2a. Include minAlignment
+ vkMemReq.alignment = VMA_MAX(vkMemReq.alignment, minAlignment);
+
+ // 3. Allocate memory using allocator.
+ res = allocator->AllocateMemory(
+ vkMemReq,
+ requiresDedicatedAllocation,
+ prefersDedicatedAllocation,
+ *pBuffer, // dedicatedBuffer
+ VK_NULL_HANDLE, // dedicatedImage
+ VmaBufferImageUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5), // dedicatedBufferImageUsage
+ *pAllocationCreateInfo,
+ VMA_SUBALLOCATION_TYPE_BUFFER,
+ 1, // allocationCount
+ pAllocation);
+
+ if(res >= 0)
+ {
+ // 3. Bind buffer with memory.
+ if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
+ {
+ res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL);
+ }
+ if(res >= 0)
+ {
+ // All steps succeeded.
+ #if VMA_STATS_STRING_ENABLED
+ (*pAllocation)->InitBufferUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5);
+ #endif
+ if(pAllocationInfo != VMA_NULL)
+ {
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+ }
+
+ return VK_SUCCESS;
+ }
+ allocator->FreeMemory(
+ 1, // allocationCount
+ pAllocation);
+ *pAllocation = VK_NULL_HANDLE;
+ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
+ *pBuffer = VK_NULL_HANDLE;
+ return res;
+ }
+ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
+ *pBuffer = VK_NULL_HANDLE;
+ return res;
+ }
+ return res;
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
+ VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer)
+{
+ return vmaCreateAliasingBuffer2(allocator, allocation, 0, pBufferCreateInfo, pBuffer);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer2(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ VkDeviceSize allocationLocalOffset,
+ const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
+ VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer)
+{
+ VMA_ASSERT(allocator && pBufferCreateInfo && pBuffer && allocation);
+ VMA_ASSERT(allocationLocalOffset + pBufferCreateInfo->size <= allocation->GetSize());
+
+ VMA_DEBUG_LOG("vmaCreateAliasingBuffer2");
+
+ *pBuffer = VK_NULL_HANDLE;
+
+ if (pBufferCreateInfo->size == 0)
+ {
+ return VK_ERROR_INITIALIZATION_FAILED;
+ }
+ if ((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 &&
+ !allocator->m_UseKhrBufferDeviceAddress)
+ {
+ VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used.");
+ return VK_ERROR_INITIALIZATION_FAILED;
+ }
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ // 1. Create VkBuffer.
+ VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
+ allocator->m_hDevice,
+ pBufferCreateInfo,
+ allocator->GetAllocationCallbacks(),
+ pBuffer);
+ if (res >= 0)
+ {
+ // 2. Bind buffer with memory.
+ res = allocator->BindBufferMemory(allocation, allocationLocalOffset, *pBuffer, VMA_NULL);
+ if (res >= 0)
+ {
+ return VK_SUCCESS;
+ }
+ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
+ }
+ return res;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer(
+ VmaAllocator allocator,
+ VkBuffer buffer,
+ VmaAllocation allocation)
+{
+ VMA_ASSERT(allocator);
+
+ if(buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE)
+ {
+ return;
+ }
+
+ VMA_DEBUG_LOG("vmaDestroyBuffer");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ if(buffer != VK_NULL_HANDLE)
+ {
+ (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks());
+ }
+
+ if(allocation != VK_NULL_HANDLE)
+ {
+ allocator->FreeMemory(
+ 1, // allocationCount
+ &allocation);
+ }
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage(
+ VmaAllocator allocator,
+ const VkImageCreateInfo* pImageCreateInfo,
+ const VmaAllocationCreateInfo* pAllocationCreateInfo,
+ VkImage* pImage,
+ VmaAllocation* pAllocation,
+ VmaAllocationInfo* pAllocationInfo)
+{
+ VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation);
+
+ if(pImageCreateInfo->extent.width == 0 ||
+ pImageCreateInfo->extent.height == 0 ||
+ pImageCreateInfo->extent.depth == 0 ||
+ pImageCreateInfo->mipLevels == 0 ||
+ pImageCreateInfo->arrayLayers == 0)
+ {
+ return VK_ERROR_INITIALIZATION_FAILED;
+ }
+
+ VMA_DEBUG_LOG("vmaCreateImage");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ *pImage = VK_NULL_HANDLE;
+ *pAllocation = VK_NULL_HANDLE;
+
+ // 1. Create VkImage.
+ VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(
+ allocator->m_hDevice,
+ pImageCreateInfo,
+ allocator->GetAllocationCallbacks(),
+ pImage);
+ if(res >= 0)
+ {
+ VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ?
+ VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL :
+ VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR;
+
+ // 2. Allocate memory using allocator.
+ VkMemoryRequirements vkMemReq = {};
+ bool requiresDedicatedAllocation = false;
+ bool prefersDedicatedAllocation = false;
+ allocator->GetImageMemoryRequirements(*pImage, vkMemReq,
+ requiresDedicatedAllocation, prefersDedicatedAllocation);
+
+ res = allocator->AllocateMemory(
+ vkMemReq,
+ requiresDedicatedAllocation,
+ prefersDedicatedAllocation,
+ VK_NULL_HANDLE, // dedicatedBuffer
+ *pImage, // dedicatedImage
+ VmaBufferImageUsage(*pImageCreateInfo), // dedicatedBufferImageUsage
+ *pAllocationCreateInfo,
+ suballocType,
+ 1, // allocationCount
+ pAllocation);
+
+ if(res >= 0)
+ {
+ // 3. Bind image with memory.
+ if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
+ {
+ res = allocator->BindImageMemory(*pAllocation, 0, *pImage, VMA_NULL);
+ }
+ if(res >= 0)
+ {
+ // All steps succeeded.
+ #if VMA_STATS_STRING_ENABLED
+ (*pAllocation)->InitImageUsage(*pImageCreateInfo);
+ #endif
+ if(pAllocationInfo != VMA_NULL)
+ {
+ allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
+ }
+
+ return VK_SUCCESS;
+ }
+ allocator->FreeMemory(
+ 1, // allocationCount
+ pAllocation);
+ *pAllocation = VK_NULL_HANDLE;
+ (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
+ *pImage = VK_NULL_HANDLE;
+ return res;
+ }
+ (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
+ *pImage = VK_NULL_HANDLE;
+ return res;
+ }
+ return res;
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
+ VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage)
+{
+ return vmaCreateAliasingImage2(allocator, allocation, 0, pImageCreateInfo, pImage);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage2(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VmaAllocation VMA_NOT_NULL allocation,
+ VkDeviceSize allocationLocalOffset,
+ const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
+ VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage)
+{
+ VMA_ASSERT(allocator && pImageCreateInfo && pImage && allocation);
+
+ *pImage = VK_NULL_HANDLE;
+
+ VMA_DEBUG_LOG("vmaCreateImage2");
+
+ if (pImageCreateInfo->extent.width == 0 ||
+ pImageCreateInfo->extent.height == 0 ||
+ pImageCreateInfo->extent.depth == 0 ||
+ pImageCreateInfo->mipLevels == 0 ||
+ pImageCreateInfo->arrayLayers == 0)
+ {
+ return VK_ERROR_INITIALIZATION_FAILED;
+ }
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ // 1. Create VkImage.
+ VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(
+ allocator->m_hDevice,
+ pImageCreateInfo,
+ allocator->GetAllocationCallbacks(),
+ pImage);
+ if (res >= 0)
+ {
+ // 2. Bind image with memory.
+ res = allocator->BindImageMemory(allocation, allocationLocalOffset, *pImage, VMA_NULL);
+ if (res >= 0)
+ {
+ return VK_SUCCESS;
+ }
+ (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
+ }
+ return res;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage(
+ VmaAllocator VMA_NOT_NULL allocator,
+ VkImage VMA_NULLABLE_NON_DISPATCHABLE image,
+ VmaAllocation VMA_NULLABLE allocation)
+{
+ VMA_ASSERT(allocator);
+
+ if(image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE)
+ {
+ return;
+ }
+
+ VMA_DEBUG_LOG("vmaDestroyImage");
+
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK
+
+ if(image != VK_NULL_HANDLE)
+ {
+ (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks());
+ }
+ if(allocation != VK_NULL_HANDLE)
+ {
+ allocator->FreeMemory(
+ 1, // allocationCount
+ &allocation);
+ }
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock(
+ const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo,
+ VmaVirtualBlock VMA_NULLABLE * VMA_NOT_NULL pVirtualBlock)
+{
+ VMA_ASSERT(pCreateInfo && pVirtualBlock);
+ VMA_ASSERT(pCreateInfo->size > 0);
+ VMA_DEBUG_LOG("vmaCreateVirtualBlock");
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
+ *pVirtualBlock = vma_new(pCreateInfo->pAllocationCallbacks, VmaVirtualBlock_T)(*pCreateInfo);
+ VkResult res = (*pVirtualBlock)->Init();
+ if(res < 0)
+ {
+ vma_delete(pCreateInfo->pAllocationCallbacks, *pVirtualBlock);
+ *pVirtualBlock = VK_NULL_HANDLE;
+ }
+ return res;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock(VmaVirtualBlock VMA_NULLABLE virtualBlock)
+{
+ if(virtualBlock != VK_NULL_HANDLE)
+ {
+ VMA_DEBUG_LOG("vmaDestroyVirtualBlock");
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
+ VkAllocationCallbacks allocationCallbacks = virtualBlock->m_AllocationCallbacks; // Have to copy the callbacks when destroying.
+ vma_delete(&allocationCallbacks, virtualBlock);
+ }
+}
+
+VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty(VmaVirtualBlock VMA_NOT_NULL virtualBlock)
+{
+ VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
+ VMA_DEBUG_LOG("vmaIsVirtualBlockEmpty");
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
+ return virtualBlock->IsEmpty() ? VK_TRUE : VK_FALSE;
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
+ VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo)
+{
+ VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pVirtualAllocInfo != VMA_NULL);
+ VMA_DEBUG_LOG("vmaGetVirtualAllocationInfo");
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
+ virtualBlock->GetAllocationInfo(allocation, *pVirtualAllocInfo);
+}
+
+VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
+ const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation,
+ VkDeviceSize* VMA_NULLABLE pOffset)
+{
+ VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pCreateInfo != VMA_NULL && pAllocation != VMA_NULL);
+ VMA_DEBUG_LOG("vmaVirtualAllocate");
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
+ return virtualBlock->Allocate(*pCreateInfo, *pAllocation, pOffset);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree(VmaVirtualBlock VMA_NOT_NULL virtualBlock, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation)
+{
+ if(allocation != VK_NULL_HANDLE)
+ {
+ VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
+ VMA_DEBUG_LOG("vmaVirtualFree");
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
+ virtualBlock->Free(allocation);
+ }
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock(VmaVirtualBlock VMA_NOT_NULL virtualBlock)
+{
+ VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
+ VMA_DEBUG_LOG("vmaClearVirtualBlock");
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
+ virtualBlock->Clear();
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
+ VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, void* VMA_NULLABLE pUserData)
+{
+ VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
+ VMA_DEBUG_LOG("vmaSetVirtualAllocationUserData");
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
+ virtualBlock->SetAllocationUserData(allocation, pUserData);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualBlockStatistics(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
+ VmaStatistics* VMA_NOT_NULL pStats)
+{
+ VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pStats != VMA_NULL);
+ VMA_DEBUG_LOG("vmaGetVirtualBlockStatistics");
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
+ virtualBlock->GetStatistics(*pStats);
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStatistics(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
+ VmaDetailedStatistics* VMA_NOT_NULL pStats)
+{
+ VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pStats != VMA_NULL);
+ VMA_DEBUG_LOG("vmaCalculateVirtualBlockStatistics");
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
+ virtualBlock->CalculateDetailedStatistics(*pStats);
+}
+
+#if VMA_STATS_STRING_ENABLED
+
+VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
+ char* VMA_NULLABLE * VMA_NOT_NULL ppStatsString, VkBool32 detailedMap)
+{
+ VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && ppStatsString != VMA_NULL);
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
+ const VkAllocationCallbacks* allocationCallbacks = virtualBlock->GetAllocationCallbacks();
+ VmaStringBuilder sb(allocationCallbacks);
+ virtualBlock->BuildStatsString(detailedMap != VK_FALSE, sb);
+ *ppStatsString = VmaCreateStringCopy(allocationCallbacks, sb.GetData(), sb.GetLength());
+}
+
+VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
+ char* VMA_NULLABLE pStatsString)
+{
+ if(pStatsString != VMA_NULL)
+ {
+ VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
+ VMA_DEBUG_GLOBAL_MUTEX_LOCK;
+ VmaFreeString(virtualBlock->GetAllocationCallbacks(), pStatsString);
+ }
+}
+#endif // VMA_STATS_STRING_ENABLED
+#endif // _VMA_PUBLIC_INTERFACE
+#endif // VMA_IMPLEMENTATION
+
+/**
+\page quick_start Quick start
+
+\section quick_start_project_setup Project setup
+
+Vulkan Memory Allocator comes in form of a "stb-style" single header file.
+While you can pull the entire repository e.g. as Git module, there is also Cmake script provided,
+you don't need to build it as a separate library project.
+You can add file "vk_mem_alloc.h" directly to your project and submit it to code repository next to your other source files.
+
+"Single header" doesn't mean that everything is contained in C/C++ declarations,
+like it tends to be in case of inline functions or C++ templates.
+It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro.
+If you don't do it properly, it will result in linker errors.
+
+To do it properly:
+
+-# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library.
+ This includes declarations of all members of the library.
+-# In exactly one CPP file define following macro before this include.
+ It enables also internal definitions.
+
+\code
+#define VMA_IMPLEMENTATION
+#include "vk_mem_alloc.h"
+\endcode
+
+It may be a good idea to create dedicated CPP file just for this purpose, e.g. "VmaUsage.cpp".
+
+This library includes header `<vulkan/vulkan.h>`, which in turn
+includes `<windows.h>` on Windows. If you need some specific macros defined
+before including these headers (like `WIN32_LEAN_AND_MEAN` or
+`WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define
+them before every `#include` of this library.
+It may be a good idea to create a dedicate header file for this purpose, e.g. "VmaUsage.h",
+that will be included in other source files instead of VMA header directly.
+
+This library is written in C++, but has C-compatible interface.
+Thus, you can include and use "vk_mem_alloc.h" in C or C++ code, but full
+implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C.
+Some features of C++14 are used and required. Features of C++20 are used optionally when available.
+Some headers of standard C and C++ library are used, but STL containers, RTTI, or C++ exceptions are not used.
+
+
+\section quick_start_initialization Initialization
+
+VMA offers library interface in a style similar to Vulkan, with object handles like #VmaAllocation,
+structures describing parameters of objects to be created like #VmaAllocationCreateInfo,
+and errors codes returned from functions using `VkResult` type.
+
+The first and the main object that needs to be created is #VmaAllocator.
+It represents the initialization of the entire library.
+Only one such object should be created per `VkDevice`.
+You should create it at program startup, after `VkDevice` was created, and before any device memory allocator needs to be made.
+It must be destroyed before `VkDevice` is destroyed.
+
+At program startup:
+
+-# Initialize Vulkan to have `VkInstance`, `VkPhysicalDevice`, `VkDevice` object.
+-# Fill VmaAllocatorCreateInfo structure and call vmaCreateAllocator() to create #VmaAllocator object.
+
+Only members `physicalDevice`, `device`, `instance` are required.
+However, you should inform the library which Vulkan version do you use by setting
+VmaAllocatorCreateInfo::vulkanApiVersion and which extensions did you enable
+by setting VmaAllocatorCreateInfo::flags.
+Otherwise, VMA would use only features of Vulkan 1.0 core with no extensions.
+See below for details.
+
+\subsection quick_start_initialization_selecting_vulkan_version Selecting Vulkan version
+
+VMA supports Vulkan version down to 1.0, for backward compatibility.
+If you want to use higher version, you need to inform the library about it.
+This is a two-step process.
+
+<b>Step 1: Compile time.</b> By default, VMA compiles with code supporting the highest
+Vulkan version found in the included `<vulkan/vulkan.h>` that is also supported by the library.
+If this is OK, you don't need to do anything.
+However, if you want to compile VMA as if only some lower Vulkan version was available,
+define macro `VMA_VULKAN_VERSION` before every `#include "vk_mem_alloc.h"`.
+It should have decimal numeric value in form of ABBBCCC, where A = major, BBB = minor, CCC = patch Vulkan version.
+For example, to compile against Vulkan 1.2:
+
+\code
+#define VMA_VULKAN_VERSION 1002000 // Vulkan 1.2
+#include "vk_mem_alloc.h"
+\endcode
+
+<b>Step 2: Runtime.</b> Even when compiled with higher Vulkan version available,
+VMA can use only features of a lower version, which is configurable during creation of the #VmaAllocator object.
+By default, only Vulkan 1.0 is used.
+To initialize the allocator with support for higher Vulkan version, you need to set member
+VmaAllocatorCreateInfo::vulkanApiVersion to an appropriate value, e.g. using constants like `VK_API_VERSION_1_2`.
+See code sample below.
+
+\subsection quick_start_initialization_importing_vulkan_functions Importing Vulkan functions
+
+You may need to configure importing Vulkan functions. There are 3 ways to do this:
+
+-# **If you link with Vulkan static library** (e.g. "vulkan-1.lib" on Windows):
+ - You don't need to do anything.
+ - VMA will use these, as macro `VMA_STATIC_VULKAN_FUNCTIONS` is defined to 1 by default.
+-# **If you want VMA to fetch pointers to Vulkan functions dynamically** using `vkGetInstanceProcAddr`,
+ `vkGetDeviceProcAddr` (this is the option presented in the example below):
+ - Define `VMA_STATIC_VULKAN_FUNCTIONS` to 0, `VMA_DYNAMIC_VULKAN_FUNCTIONS` to 1.
+ - Provide pointers to these two functions via VmaVulkanFunctions::vkGetInstanceProcAddr,
+ VmaVulkanFunctions::vkGetDeviceProcAddr.
+ - The library will fetch pointers to all other functions it needs internally.
+-# **If you fetch pointers to all Vulkan functions in a custom way**, e.g. using some loader like
+ [Volk](https://github.com/zeux/volk):
+ - Define `VMA_STATIC_VULKAN_FUNCTIONS` and `VMA_DYNAMIC_VULKAN_FUNCTIONS` to 0.
+ - Pass these pointers via structure #VmaVulkanFunctions.
+
+\subsection quick_start_initialization_enabling_extensions Enabling extensions
+
+VMA can automatically use following Vulkan extensions.
+If you found them available on the selected physical device and you enabled them
+while creating `VkInstance` / `VkDevice` object, inform VMA about their availability
+by setting appropriate flags in VmaAllocatorCreateInfo::flags.
+
+Vulkan extension | VMA flag
+------------------------------|-----------------------------------------------------
+VK_KHR_dedicated_allocation | #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT
+VK_KHR_bind_memory2 | #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT
+VK_KHR_maintenance4 | #VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE4_BIT
+VK_KHR_maintenance5 | #VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT
+VK_EXT_memory_budget | #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT
+VK_KHR_buffer_device_address | #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT
+VK_EXT_memory_priority | #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT
+VK_AMD_device_coherent_memory | #VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT
+
+Example with fetching pointers to Vulkan functions dynamically:
+
+\code
+#define VMA_STATIC_VULKAN_FUNCTIONS 0
+#define VMA_DYNAMIC_VULKAN_FUNCTIONS 1
+#include "vk_mem_alloc.h"
+
+...
+
+VmaVulkanFunctions vulkanFunctions = {};
+vulkanFunctions.vkGetInstanceProcAddr = &vkGetInstanceProcAddr;
+vulkanFunctions.vkGetDeviceProcAddr = &vkGetDeviceProcAddr;
+
+VmaAllocatorCreateInfo allocatorCreateInfo = {};
+allocatorCreateInfo.flags = VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT;
+allocatorCreateInfo.vulkanApiVersion = VK_API_VERSION_1_2;
+allocatorCreateInfo.physicalDevice = physicalDevice;
+allocatorCreateInfo.device = device;
+allocatorCreateInfo.instance = instance;
+allocatorCreateInfo.pVulkanFunctions = &vulkanFunctions;
+
+VmaAllocator allocator;
+vmaCreateAllocator(&allocatorCreateInfo, &allocator);
+
+// Entire program...
+
+// At the end, don't forget to:
+vmaDestroyAllocator(allocator);
+\endcode
+
+
+\subsection quick_start_initialization_other_config Other configuration options
+
+There are additional configuration options available through preprocessor macros that you can define
+before including VMA header and through parameters passed in #VmaAllocatorCreateInfo.
+They include a possibility to use your own callbacks for host memory allocations (`VkAllocationCallbacks`),
+callbacks for device memory allocations (instead of `vkAllocateMemory`, `vkFreeMemory`),
+or your custom `VMA_ASSERT` macro, among others.
+For more information, see: @ref configuration.
+
+
+\section quick_start_resource_allocation Resource allocation
+
+When you want to create a buffer or image:
+
+-# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure.
+-# Fill VmaAllocationCreateInfo structure.
+-# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory
+ already allocated and bound to it, plus #VmaAllocation objects that represents its underlying memory.
+
+\code
+VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufferInfo.size = 65536;
+bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.usage = VMA_MEMORY_USAGE_AUTO;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
+\endcode
+
+Don't forget to destroy your buffer and allocation objects when no longer needed:
+
+\code
+vmaDestroyBuffer(allocator, buffer, allocation);
+\endcode
+
+If you need to map the buffer, you must set flag
+#VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
+in VmaAllocationCreateInfo::flags.
+There are many additional parameters that can control the choice of memory type to be used for the allocation
+and other features.
+For more information, see documentation chapters: @ref choosing_memory_type, @ref memory_mapping.
+
+
+\page choosing_memory_type Choosing memory type
+
+Physical devices in Vulkan support various combinations of memory heaps and
+types. Help with choosing correct and optimal memory type for your specific
+resource is one of the key features of this library. You can use it by filling
+appropriate members of VmaAllocationCreateInfo structure, as described below.
+You can also combine multiple methods.
+
+-# If you just want to find memory type index that meets your requirements, you
+ can use function: vmaFindMemoryTypeIndexForBufferInfo(),
+ vmaFindMemoryTypeIndexForImageInfo(), vmaFindMemoryTypeIndex().
+-# If you want to allocate a region of device memory without association with any
+ specific image or buffer, you can use function vmaAllocateMemory(). Usage of
+ this function is not recommended and usually not needed.
+ vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once,
+ which may be useful for sparse binding.
+-# If you already have a buffer or an image created, you want to allocate memory
+ for it and then you will bind it yourself, you can use function
+ vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage().
+ For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory()
+ or their extended versions: vmaBindBufferMemory2(), vmaBindImageMemory2().
+-# If you want to create a buffer or an image, allocate memory for it, and bind
+ them together, all in one call, you can use function vmaCreateBuffer(),
+ vmaCreateImage().
+ <b>This is the easiest and recommended way to use this library!</b>
+
+When using 3. or 4., the library internally queries Vulkan for memory types
+supported for that buffer or image (function `vkGetBufferMemoryRequirements()`)
+and uses only one of these types.
+
+If no memory type can be found that meets all the requirements, these functions
+return `VK_ERROR_FEATURE_NOT_PRESENT`.
+
+You can leave VmaAllocationCreateInfo structure completely filled with zeros.
+It means no requirements are specified for memory type.
+It is valid, although not very useful.
+
+\section choosing_memory_type_usage Usage
+
+The easiest way to specify memory requirements is to fill member
+VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage.
+It defines high level, common usage types.
+Since version 3 of the library, it is recommended to use #VMA_MEMORY_USAGE_AUTO to let it select best memory type for your resource automatically.
+
+For example, if you want to create a uniform buffer that will be filled using
+transfer only once or infrequently and then used for rendering every frame as a uniform buffer, you can
+do it using following code. The buffer will most likely end up in a memory type with
+`VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT` to be fast to access by the GPU device.
+
+\code
+VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufferInfo.size = 65536;
+bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.usage = VMA_MEMORY_USAGE_AUTO;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
+\endcode
+
+If you have a preference for putting the resource in GPU (device) memory or CPU (host) memory
+on systems with discrete graphics card that have the memories separate, you can use
+#VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE or #VMA_MEMORY_USAGE_AUTO_PREFER_HOST.
+
+When using `VMA_MEMORY_USAGE_AUTO*` while you want to map the allocated memory,
+you also need to specify one of the host access flags:
+#VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
+This will help the library decide about preferred memory type to ensure it has `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`
+so you can map it.
+
+For example, a staging buffer that will be filled via mapped pointer and then
+used as a source of transfer to the buffer described previously can be created like this.
+It will likely end up in a memory type that is `HOST_VISIBLE` and `HOST_COHERENT`
+but not `HOST_CACHED` (meaning uncached, write-combined) and not `DEVICE_LOCAL` (meaning system RAM).
+
+\code
+VkBufferCreateInfo stagingBufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+stagingBufferInfo.size = 65536;
+stagingBufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
+
+VmaAllocationCreateInfo stagingAllocInfo = {};
+stagingAllocInfo.usage = VMA_MEMORY_USAGE_AUTO;
+stagingAllocInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT;
+
+VkBuffer stagingBuffer;
+VmaAllocation stagingAllocation;
+vmaCreateBuffer(allocator, &stagingBufferInfo, &stagingAllocInfo, &stagingBuffer, &stagingAllocation, nullptr);
+\endcode
+
+For more examples of creating different kinds of resources, see chapter \ref usage_patterns.
+See also: @ref memory_mapping.
+
+Usage values `VMA_MEMORY_USAGE_AUTO*` are legal to use only when the library knows
+about the resource being created by having `VkBufferCreateInfo` / `VkImageCreateInfo` passed,
+so they work with functions like: vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo() etc.
+If you allocate raw memory using function vmaAllocateMemory(), you have to use other means of selecting
+memory type, as described below.
+
+\note
+Old usage values (`VMA_MEMORY_USAGE_GPU_ONLY`, `VMA_MEMORY_USAGE_CPU_ONLY`,
+`VMA_MEMORY_USAGE_CPU_TO_GPU`, `VMA_MEMORY_USAGE_GPU_TO_CPU`, `VMA_MEMORY_USAGE_CPU_COPY`)
+are still available and work same way as in previous versions of the library
+for backward compatibility, but they are deprecated.
+
+\section choosing_memory_type_required_preferred_flags Required and preferred flags
+
+You can specify more detailed requirements by filling members
+VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags
+with a combination of bits from enum `VkMemoryPropertyFlags`. For example,
+if you want to create a buffer that will be persistently mapped on host (so it
+must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`,
+use following code:
+
+\code
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
+allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
+allocInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
+\endcode
+
+A memory type is chosen that has all the required flags and as many preferred
+flags set as possible.
+
+Value passed in VmaAllocationCreateInfo::usage is internally converted to a set of required and preferred flags,
+plus some extra "magic" (heuristics).
+
+\section choosing_memory_type_explicit_memory_types Explicit memory types
+
+If you inspected memory types available on the physical device and <b>you have
+a preference for memory types that you want to use</b>, you can fill member
+VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set
+means that a memory type with that index is allowed to be used for the
+allocation. Special value 0, just like `UINT32_MAX`, means there are no
+restrictions to memory type index.
+
+Please note that this member is NOT just a memory type index.
+Still you can use it to choose just one, specific memory type.
+For example, if you already determined that your buffer should be created in
+memory type 2, use following code:
+
+\code
+uint32_t memoryTypeIndex = 2;
+
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.memoryTypeBits = 1u << memoryTypeIndex;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
+\endcode
+
+You can also use this parameter to <b>exclude some memory types</b>.
+If you inspect memory heaps and types available on the current physical device and
+you determine that for some reason you don't want to use a specific memory type for the allocation,
+you can enable automatic memory type selection but exclude certain memory type or types
+by setting all bits of `memoryTypeBits` to 1 except the ones you choose.
+
+\code
+// ...
+uint32_t excludedMemoryTypeIndex = 2;
+VmaAllocationCreateInfo allocInfo = {};
+allocInfo.usage = VMA_MEMORY_USAGE_AUTO;
+allocInfo.memoryTypeBits = ~(1u << excludedMemoryTypeIndex);
+// ...
+\endcode
+
+
+\section choosing_memory_type_custom_memory_pools Custom memory pools
+
+If you allocate from custom memory pool, all the ways of specifying memory
+requirements described above are not applicable and the aforementioned members
+of VmaAllocationCreateInfo structure are ignored. Memory type is selected
+explicitly when creating the pool and then used to make all the allocations from
+that pool. For further details, see \ref custom_memory_pools.
+
+\section choosing_memory_type_dedicated_allocations Dedicated allocations
+
+Memory for allocations is reserved out of larger block of `VkDeviceMemory`
+allocated from Vulkan internally. That is the main feature of this whole library.
+You can still request a separate memory block to be created for an allocation,
+just like you would do in a trivial solution without using any allocator.
+In that case, a buffer or image is always bound to that memory at offset 0.
+This is called a "dedicated allocation".
+You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
+The library can also internally decide to use dedicated allocation in some cases, e.g.:
+
+- When the size of the allocation is large.
+- When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled
+ and it reports that dedicated allocation is required or recommended for the resource.
+- When allocation of next big memory block fails due to not enough device memory,
+ but allocation with the exact requested size succeeds.
+
+
+\page memory_mapping Memory mapping
+
+To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`,
+to be able to read from it or write to it in CPU code.
+Mapping is possible only of memory allocated from a memory type that has
+`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag.
+Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose.
+You can use them directly with memory allocated by this library,
+but it is not recommended because of following issue:
+Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed.
+This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan.
+It is also not thread-safe.
+Because of this, Vulkan Memory Allocator provides following facilities:
+
+\note If you want to be able to map an allocation, you need to specify one of the flags
+#VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
+in VmaAllocationCreateInfo::flags. These flags are required for an allocation to be mappable
+when using #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` enum values.
+For other usage values they are ignored and every such allocation made in `HOST_VISIBLE` memory type is mappable,
+but these flags can still be used for consistency.
+
+\section memory_mapping_copy_functions Copy functions
+
+The easiest way to copy data from a host pointer to an allocation is to use convenience function vmaCopyMemoryToAllocation().
+It automatically maps the Vulkan memory temporarily (if not already mapped), performs `memcpy`,
+and calls `vkFlushMappedMemoryRanges` (if required - if memory type is not `HOST_COHERENT`).
+
+It is also the safest one, because using `memcpy` avoids a risk of accidentally introducing memory reads
+(e.g. by doing `pMappedVectors[i] += v`), which may be very slow on memory types that are not `HOST_CACHED`.
+
+\code
+struct ConstantBuffer
+{
+ ...
+};
+ConstantBuffer constantBufferData = ...
+
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufCreateInfo.size = sizeof(ConstantBuffer);
+bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT;
+
+VkBuffer buf;
+VmaAllocation alloc;
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, nullptr);
+
+vmaCopyMemoryToAllocation(allocator, &constantBufferData, alloc, 0, sizeof(ConstantBuffer));
+\endcode
+
+Copy in the other direction - from an allocation to a host pointer can be performed the same way using function vmaCopyAllocationToMemory().
+
+\section memory_mapping_mapping_functions Mapping functions
+
+The library provides following functions for mapping of a specific allocation: vmaMapMemory(), vmaUnmapMemory().
+They are safer and more convenient to use than standard Vulkan functions.
+You can map an allocation multiple times simultaneously - mapping is reference-counted internally.
+You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block.
+The way it is implemented is that the library always maps entire memory block, not just region of the allocation.
+For further details, see description of vmaMapMemory() function.
+Example:
+
+\code
+// Having these objects initialized:
+struct ConstantBuffer
+{
+ ...
+};
+ConstantBuffer constantBufferData = ...
+
+VmaAllocator allocator = ...
+VkBuffer constantBuffer = ...
+VmaAllocation constantBufferAllocation = ...
+
+// You can map and fill your buffer using following code:
+
+void* mappedData;
+vmaMapMemory(allocator, constantBufferAllocation, &mappedData);
+memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));
+vmaUnmapMemory(allocator, constantBufferAllocation);
+\endcode
+
+When mapping, you may see a warning from Vulkan validation layer similar to this one:
+
+<i>Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.</i>
+
+It happens because the library maps entire `VkDeviceMemory` block, where different
+types of images and buffers may end up together, especially on GPUs with unified memory like Intel.
+You can safely ignore it if you are sure you access only memory of the intended
+object that you wanted to map.
+
+
+\section memory_mapping_persistently_mapped_memory Persistently mapped memory
+
+Keeping your memory persistently mapped is generally OK in Vulkan.
+You don't need to unmap it before using its data on the GPU.
+The library provides a special feature designed for that:
+Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in
+VmaAllocationCreateInfo::flags stay mapped all the time,
+so you can just access CPU pointer to it any time
+without a need to call any "map" or "unmap" function.
+Example:
+
+\code
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufCreateInfo.size = sizeof(ConstantBuffer);
+bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
+ VMA_ALLOCATION_CREATE_MAPPED_BIT;
+
+VkBuffer buf;
+VmaAllocation alloc;
+VmaAllocationInfo allocInfo;
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
+
+// Buffer is already mapped. You can access its memory.
+memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));
+\endcode
+
+\note #VMA_ALLOCATION_CREATE_MAPPED_BIT by itself doesn't guarantee that the allocation will end up
+in a mappable memory type.
+For this, you need to also specify #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or
+#VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
+#VMA_ALLOCATION_CREATE_MAPPED_BIT only guarantees that if the memory is `HOST_VISIBLE`, the allocation will be mapped on creation.
+For an example of how to make use of this fact, see section \ref usage_patterns_advanced_data_uploading.
+
+\section memory_mapping_cache_control Cache flush and invalidate
+
+Memory in Vulkan doesn't need to be unmapped before using it on GPU,
+but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set,
+you need to manually **invalidate** cache before reading of mapped pointer
+and **flush** cache after writing to mapped pointer.
+Map/unmap operations don't do that automatically.
+Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`,
+`vkInvalidateMappedMemoryRanges()`, but this library provides more convenient
+functions that refer to given allocation object: vmaFlushAllocation(),
+vmaInvalidateAllocation(),
+or multiple objects at once: vmaFlushAllocations(), vmaInvalidateAllocations().
+
+Regions of memory specified for flush/invalidate must be aligned to
+`VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library.
+In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations
+within blocks are aligned to this value, so their offsets are always multiply of
+`nonCoherentAtomSize` and two different allocations never share same "line" of this size.
+
+Also, Windows drivers from all 3 PC GPU vendors (AMD, Intel, NVIDIA)
+currently provide `HOST_COHERENT` flag on all memory types that are
+`HOST_VISIBLE`, so on PC you may not need to bother.
+
+
+\page staying_within_budget Staying within budget
+
+When developing a graphics-intensive game or program, it is important to avoid allocating
+more GPU memory than it is physically available. When the memory is over-committed,
+various bad things can happen, depending on the specific GPU, graphics driver, and
+operating system:
+
+- It may just work without any problems.
+- The application may slow down because some memory blocks are moved to system RAM
+ and the GPU has to access them through PCI Express bus.
+- A new allocation may take very long time to complete, even few seconds, and possibly
+ freeze entire system.
+- The new allocation may fail with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
+- It may even result in GPU crash (TDR), observed as `VK_ERROR_DEVICE_LOST`
+ returned somewhere later.
+
+\section staying_within_budget_querying_for_budget Querying for budget
+
+To query for current memory usage and available budget, use function vmaGetHeapBudgets().
+Returned structure #VmaBudget contains quantities expressed in bytes, per Vulkan memory heap.
+
+Please note that this function returns different information and works faster than
+vmaCalculateStatistics(). vmaGetHeapBudgets() can be called every frame or even before every
+allocation, while vmaCalculateStatistics() is intended to be used rarely,
+only to obtain statistical information, e.g. for debugging purposes.
+
+It is recommended to use <b>VK_EXT_memory_budget</b> device extension to obtain information
+about the budget from Vulkan device. VMA is able to use this extension automatically.
+When not enabled, the allocator behaves same way, but then it estimates current usage
+and available budget based on its internal information and Vulkan memory heap sizes,
+which may be less precise. In order to use this extension:
+
+1. Make sure extensions VK_EXT_memory_budget and VK_KHR_get_physical_device_properties2
+ required by it are available and enable them. Please note that the first is a device
+ extension and the second is instance extension!
+2. Use flag #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT when creating #VmaAllocator object.
+3. Make sure to call vmaSetCurrentFrameIndex() every frame. Budget is queried from
+ Vulkan inside of it to avoid overhead of querying it with every allocation.
+
+\section staying_within_budget_controlling_memory_usage Controlling memory usage
+
+There are many ways in which you can try to stay within the budget.
+
+First, when making new allocation requires allocating a new memory block, the library
+tries not to exceed the budget automatically. If a block with default recommended size
+(e.g. 256 MB) would go over budget, a smaller block is allocated, possibly even
+dedicated memory for just this resource.
+
+If the size of the requested resource plus current memory usage is more than the
+budget, by default the library still tries to create it, leaving it to the Vulkan
+implementation whether the allocation succeeds or fails. You can change this behavior
+by using #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag. With it, the allocation is
+not made if it would exceed the budget or if the budget is already exceeded.
+VMA then tries to make the allocation from the next eligible Vulkan memory type.
+The all of them fail, the call then fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
+Example usage pattern may be to pass the #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag
+when creating resources that are not essential for the application (e.g. the texture
+of a specific object) and not to pass it when creating critically important resources
+(e.g. render targets).
+
+On AMD graphics cards there is a custom vendor extension available: <b>VK_AMD_memory_overallocation_behavior</b>
+that allows to control the behavior of the Vulkan implementation in out-of-memory cases -
+whether it should fail with an error code or still allow the allocation.
+Usage of this extension involves only passing extra structure on Vulkan device creation,
+so it is out of scope of this library.
+
+Finally, you can also use #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT flag to make sure
+a new allocation is created only when it fits inside one of the existing memory blocks.
+If it would require to allocate a new block, if fails instead with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
+This also ensures that the function call is very fast because it never goes to Vulkan
+to obtain a new block.
+
+\note Creating \ref custom_memory_pools with VmaPoolCreateInfo::minBlockCount
+set to more than 0 will currently try to allocate memory blocks without checking whether they
+fit within budget.
+
+
+\page resource_aliasing Resource aliasing (overlap)
+
+New explicit graphics APIs (Vulkan and Direct3D 12), thanks to manual memory
+management, give an opportunity to alias (overlap) multiple resources in the
+same region of memory - a feature not available in the old APIs (Direct3D 11, OpenGL).
+It can be useful to save video memory, but it must be used with caution.
+
+For example, if you know the flow of your whole render frame in advance, you
+are going to use some intermediate textures or buffers only during a small range of render passes,
+and you know these ranges don't overlap in time, you can bind these resources to
+the same place in memory, even if they have completely different parameters (width, height, format etc.).
+
+![Resource aliasing (overlap)](../gfx/Aliasing.png)
+
+Such scenario is possible using VMA, but you need to create your images manually.
+Then you need to calculate parameters of an allocation to be made using formula:
+
+- allocation size = max(size of each image)
+- allocation alignment = max(alignment of each image)
+- allocation memoryTypeBits = bitwise AND(memoryTypeBits of each image)
+
+Following example shows two different images bound to the same place in memory,
+allocated to fit largest of them.
+
+\code
+// A 512x512 texture to be sampled.
+VkImageCreateInfo img1CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
+img1CreateInfo.imageType = VK_IMAGE_TYPE_2D;
+img1CreateInfo.extent.width = 512;
+img1CreateInfo.extent.height = 512;
+img1CreateInfo.extent.depth = 1;
+img1CreateInfo.mipLevels = 10;
+img1CreateInfo.arrayLayers = 1;
+img1CreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;
+img1CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
+img1CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
+img1CreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
+img1CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
+
+// A full screen texture to be used as color attachment.
+VkImageCreateInfo img2CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
+img2CreateInfo.imageType = VK_IMAGE_TYPE_2D;
+img2CreateInfo.extent.width = 1920;
+img2CreateInfo.extent.height = 1080;
+img2CreateInfo.extent.depth = 1;
+img2CreateInfo.mipLevels = 1;
+img2CreateInfo.arrayLayers = 1;
+img2CreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
+img2CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
+img2CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
+img2CreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
+img2CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
+
+VkImage img1;
+res = vkCreateImage(device, &img1CreateInfo, nullptr, &img1);
+VkImage img2;
+res = vkCreateImage(device, &img2CreateInfo, nullptr, &img2);
+
+VkMemoryRequirements img1MemReq;
+vkGetImageMemoryRequirements(device, img1, &img1MemReq);
+VkMemoryRequirements img2MemReq;
+vkGetImageMemoryRequirements(device, img2, &img2MemReq);
+
+VkMemoryRequirements finalMemReq = {};
+finalMemReq.size = std::max(img1MemReq.size, img2MemReq.size);
+finalMemReq.alignment = std::max(img1MemReq.alignment, img2MemReq.alignment);
+finalMemReq.memoryTypeBits = img1MemReq.memoryTypeBits & img2MemReq.memoryTypeBits;
+// Validate if(finalMemReq.memoryTypeBits != 0)
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
+
+VmaAllocation alloc;
+res = vmaAllocateMemory(allocator, &finalMemReq, &allocCreateInfo, &alloc, nullptr);
+
+res = vmaBindImageMemory(allocator, alloc, img1);
+res = vmaBindImageMemory(allocator, alloc, img2);
+
+// You can use img1, img2 here, but not at the same time!
+
+vmaFreeMemory(allocator, alloc);
+vkDestroyImage(allocator, img2, nullptr);
+vkDestroyImage(allocator, img1, nullptr);
+\endcode
+
+VMA also provides convenience functions that create a buffer or image and bind it to memory
+represented by an existing #VmaAllocation:
+vmaCreateAliasingBuffer(), vmaCreateAliasingBuffer2(),
+vmaCreateAliasingImage(), vmaCreateAliasingImage2().
+Versions with "2" offer additional parameter `allocationLocalOffset`.
+
+Remember that using resources that alias in memory requires proper synchronization.
+You need to issue a memory barrier to make sure commands that use `img1` and `img2`
+don't overlap on GPU timeline.
+You also need to treat a resource after aliasing as uninitialized - containing garbage data.
+For example, if you use `img1` and then want to use `img2`, you need to issue
+an image memory barrier for `img2` with `oldLayout` = `VK_IMAGE_LAYOUT_UNDEFINED`.
+
+Additional considerations:
+
+- Vulkan also allows to interpret contents of memory between aliasing resources consistently in some cases.
+See chapter 11.8. "Memory Aliasing" of Vulkan specification or `VK_IMAGE_CREATE_ALIAS_BIT` flag.
+- You can create more complex layout where different images and buffers are bound
+at different offsets inside one large allocation. For example, one can imagine
+a big texture used in some render passes, aliasing with a set of many small buffers
+used between in some further passes. To bind a resource at non-zero offset in an allocation,
+use vmaBindBufferMemory2() / vmaBindImageMemory2().
+- Before allocating memory for the resources you want to alias, check `memoryTypeBits`
+returned in memory requirements of each resource to make sure the bits overlap.
+Some GPUs may expose multiple memory types suitable e.g. only for buffers or
+images with `COLOR_ATTACHMENT` usage, so the sets of memory types supported by your
+resources may be disjoint. Aliasing them is not possible in that case.
+
+
+\page custom_memory_pools Custom memory pools
+
+A memory pool contains a number of `VkDeviceMemory` blocks.
+The library automatically creates and manages default pool for each memory type available on the device.
+Default memory pool automatically grows in size.
+Size of allocated blocks is also variable and managed automatically.
+You are using default pools whenever you leave VmaAllocationCreateInfo::pool = null.
+
+You can create custom pool and allocate memory out of it.
+It can be useful if you want to:
+
+- Keep certain kind of allocations separate from others.
+- Enforce particular, fixed size of Vulkan memory blocks.
+- Limit maximum amount of Vulkan memory allocated for that pool.
+- Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool.
+- Use extra parameters for a set of your allocations that are available in #VmaPoolCreateInfo but not in
+ #VmaAllocationCreateInfo - e.g., custom minimum alignment, custom `pNext` chain.
+- Perform defragmentation on a specific subset of your allocations.
+
+To use custom memory pools:
+
+-# Fill VmaPoolCreateInfo structure.
+-# Call vmaCreatePool() to obtain #VmaPool handle.
+-# When making an allocation, set VmaAllocationCreateInfo::pool to this handle.
+ You don't need to specify any other parameters of this structure, like `usage`.
+
+Example:
+
+\code
+// Find memoryTypeIndex for the pool.
+VkBufferCreateInfo sampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+sampleBufCreateInfo.size = 0x10000; // Doesn't matter.
+sampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo sampleAllocCreateInfo = {};
+sampleAllocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
+
+uint32_t memTypeIndex;
+VkResult res = vmaFindMemoryTypeIndexForBufferInfo(allocator,
+ &sampleBufCreateInfo, &sampleAllocCreateInfo, &memTypeIndex);
+// Check res...
+
+// Create a pool that can have at most 2 blocks, 128 MiB each.
+VmaPoolCreateInfo poolCreateInfo = {};
+poolCreateInfo.memoryTypeIndex = memTypeIndex;
+poolCreateInfo.blockSize = 128ull * 1024 * 1024;
+poolCreateInfo.maxBlockCount = 2;
+
+VmaPool pool;
+res = vmaCreatePool(allocator, &poolCreateInfo, &pool);
+// Check res...
+
+// Allocate a buffer out of it.
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufCreateInfo.size = 1024;
+bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.pool = pool;
+
+VkBuffer buf;
+VmaAllocation alloc;
+res = vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, nullptr);
+// Check res...
+\endcode
+
+You have to free all allocations made from this pool before destroying it.
+
+\code
+vmaDestroyBuffer(allocator, buf, alloc);
+vmaDestroyPool(allocator, pool);
+\endcode
+
+New versions of this library support creating dedicated allocations in custom pools.
+It is supported only when VmaPoolCreateInfo::blockSize = 0.
+To use this feature, set VmaAllocationCreateInfo::pool to the pointer to your custom pool and
+VmaAllocationCreateInfo::flags to #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
+
+
+\section custom_memory_pools_MemTypeIndex Choosing memory type index
+
+When creating a pool, you must explicitly specify memory type index.
+To find the one suitable for your buffers or images, you can use helper functions
+vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo().
+You need to provide structures with example parameters of buffers or images
+that you are going to create in that pool.
+
+\code
+VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+exampleBufCreateInfo.size = 1024; // Doesn't matter
+exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
+
+uint32_t memTypeIndex;
+vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex);
+
+VmaPoolCreateInfo poolCreateInfo = {};
+poolCreateInfo.memoryTypeIndex = memTypeIndex;
+// ...
+\endcode
+
+When creating buffers/images allocated in that pool, provide following parameters:
+
+- `VkBufferCreateInfo`: Prefer to pass same parameters as above.
+ Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior.
+ Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers
+ or the other way around.
+- VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member.
+ Other members are ignored anyway.
+
+
+\section custom_memory_pools_when_not_use When not to use custom pools
+
+Custom pools are commonly overused by VMA users.
+While it may feel natural to keep some logical groups of resources separate in memory,
+in most cases it does more harm than good.
+Using custom pool shouldn't be your first choice.
+Instead, please make all allocations from default pools first and only use custom pools
+if you can prove and measure that it is beneficial in some way,
+e.g. it results in lower memory usage, better performance, etc.
+
+Using custom pools has disadvantages:
+
+- Each pool has its own collection of `VkDeviceMemory` blocks.
+ Some of them may be partially or even completely empty.
+ Spreading allocations across multiple pools increases the amount of wasted (allocated but unbound) memory.
+- You must manually choose specific memory type to be used by a custom pool (set as VmaPoolCreateInfo::memoryTypeIndex).
+ When using default pools, best memory type for each of your allocations can be selected automatically
+ using a carefully design algorithm that works across all kinds of GPUs.
+- If an allocation from a custom pool at specific memory type fails, entire allocation operation returns failure.
+ When using default pools, VMA tries another compatible memory type.
+- If you set VmaPoolCreateInfo::blockSize != 0, each memory block has the same size,
+ while default pools start from small blocks and only allocate next blocks larger and larger
+ up to the preferred block size.
+
+Many of the common concerns can be addressed in a different way than using custom pools:
+
+- If you want to keep your allocations of certain size (small versus large) or certain lifetime (transient versus long lived)
+ separate, you likely don't need to.
+ VMA uses a high quality allocation algorithm that manages memory well in various cases.
+ Please measure and check if using custom pools provides a benefit.
+- If you want to keep your images and buffers separate, you don't need to.
+ VMA respects `bufferImageGranularity` limit automatically.
+- If you want to keep your mapped and not mapped allocations separate, you don't need to.
+ VMA respects `nonCoherentAtomSize` limit automatically.
+ It also maps only those `VkDeviceMemory` blocks that need to map any allocation.
+ It even tries to keep mappable and non-mappable allocations in separate blocks to minimize the amount of mapped memory.
+- If you want to choose a custom size for the default memory block, you can set it globally instead
+ using VmaAllocatorCreateInfo::preferredLargeHeapBlockSize.
+- If you want to select specific memory type for your allocation,
+ you can set VmaAllocationCreateInfo::memoryTypeBits to `(1u << myMemoryTypeIndex)` instead.
+- If you need to create a buffer with certain minimum alignment, you can still do it
+ using default pools with dedicated function vmaCreateBufferWithAlignment().
+
+
+\section linear_algorithm Linear allocation algorithm
+
+Each Vulkan memory block managed by this library has accompanying metadata that
+keeps track of used and unused regions. By default, the metadata structure and
+algorithm tries to find best place for new allocations among free regions to
+optimize memory usage. This way you can allocate and free objects in any order.
+
+![Default allocation algorithm](../gfx/Linear_allocator_1_algo_default.png)
+
+Sometimes there is a need to use simpler, linear allocation algorithm. You can
+create custom pool that uses such algorithm by adding flag
+#VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating
+#VmaPool object. Then an alternative metadata management is used. It always
+creates new allocations after last one and doesn't reuse free regions after
+allocations freed in the middle. It results in better allocation performance and
+less memory consumed by metadata.
+
+![Linear allocation algorithm](../gfx/Linear_allocator_2_algo_linear.png)
+
+With this one flag, you can create a custom pool that can be used in many ways:
+free-at-once, stack, double stack, and ring buffer. See below for details.
+You don't need to specify explicitly which of these options you are going to use - it is detected automatically.
+
+\subsection linear_algorithm_free_at_once Free-at-once
+
+In a pool that uses linear algorithm, you still need to free all the allocations
+individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free
+them in any order. New allocations are always made after last one - free space
+in the middle is not reused. However, when you release all the allocation and
+the pool becomes empty, allocation starts from the beginning again. This way you
+can use linear algorithm to speed up creation of allocations that you are going
+to release all at once.
+
+![Free-at-once](../gfx/Linear_allocator_3_free_at_once.png)
+
+This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
+value that allows multiple memory blocks.
+
+\subsection linear_algorithm_stack Stack
+
+When you free an allocation that was created last, its space can be reused.
+Thanks to this, if you always release allocations in the order opposite to their
+creation (LIFO - Last In First Out), you can achieve behavior of a stack.
+
+![Stack](../gfx/Linear_allocator_4_stack.png)
+
+This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
+value that allows multiple memory blocks.
+
+\subsection linear_algorithm_double_stack Double stack
+
+The space reserved by a custom pool with linear algorithm may be used by two
+stacks:
+
+- First, default one, growing up from offset 0.
+- Second, "upper" one, growing down from the end towards lower offsets.
+
+To make allocation from the upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT
+to VmaAllocationCreateInfo::flags.
+
+![Double stack](../gfx/Linear_allocator_7_double_stack.png)
+
+Double stack is available only in pools with one memory block -
+VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
+
+When the two stacks' ends meet so there is not enough space between them for a
+new allocation, such allocation fails with usual
+`VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
+
+\subsection linear_algorithm_ring_buffer Ring buffer
+
+When you free some allocations from the beginning and there is not enough free space
+for a new one at the end of a pool, allocator's "cursor" wraps around to the
+beginning and starts allocation there. Thanks to this, if you always release
+allocations in the same order as you created them (FIFO - First In First Out),
+you can achieve behavior of a ring buffer / queue.
+
+![Ring buffer](../gfx/Linear_allocator_5_ring_buffer.png)
+
+Ring buffer is available only in pools with one memory block -
+VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
+
+\note \ref defragmentation is not supported in custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT.
+
+
+\page defragmentation Defragmentation
+
+Interleaved allocations and deallocations of many objects of varying size can
+cause fragmentation over time, which can lead to a situation where the library is unable
+to find a continuous range of free memory for a new allocation despite there is
+enough free space, just scattered across many small free ranges between existing
+allocations.
+
+To mitigate this problem, you can use defragmentation feature.
+It doesn't happen automatically though and needs your cooperation,
+because VMA is a low level library that only allocates memory.
+It cannot recreate buffers and images in a new place as it doesn't remember the contents of `VkBufferCreateInfo` / `VkImageCreateInfo` structures.
+It cannot copy their contents as it doesn't record any commands to a command buffer.
+
+Example:
+
+\code
+VmaDefragmentationInfo defragInfo = {};
+defragInfo.pool = myPool;
+defragInfo.flags = VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT;
+
+VmaDefragmentationContext defragCtx;
+VkResult res = vmaBeginDefragmentation(allocator, &defragInfo, &defragCtx);
+// Check res...
+
+for(;;)
+{
+ VmaDefragmentationPassMoveInfo pass;
+ res = vmaBeginDefragmentationPass(allocator, defragCtx, &pass);
+ if(res == VK_SUCCESS)
+ break;
+ else if(res != VK_INCOMPLETE)
+ // Handle error...
+
+ for(uint32_t i = 0; i < pass.moveCount; ++i)
+ {
+ // Inspect pass.pMoves[i].srcAllocation, identify what buffer/image it represents.
+ VmaAllocationInfo allocInfo;
+ vmaGetAllocationInfo(allocator, pass.pMoves[i].srcAllocation, &allocInfo);
+ MyEngineResourceData* resData = (MyEngineResourceData*)allocInfo.pUserData;
+
+ // Recreate and bind this buffer/image at: pass.pMoves[i].dstMemory, pass.pMoves[i].dstOffset.
+ VkImageCreateInfo imgCreateInfo = ...
+ VkImage newImg;
+ res = vkCreateImage(device, &imgCreateInfo, nullptr, &newImg);
+ // Check res...
+ res = vmaBindImageMemory(allocator, pass.pMoves[i].dstTmpAllocation, newImg);
+ // Check res...
+
+ // Issue a vkCmdCopyBuffer/vkCmdCopyImage to copy its content to the new place.
+ vkCmdCopyImage(cmdBuf, resData->img, ..., newImg, ...);
+ }
+
+ // Make sure the copy commands finished executing.
+ vkWaitForFences(...);
+
+ // Destroy old buffers/images bound with pass.pMoves[i].srcAllocation.
+ for(uint32_t i = 0; i < pass.moveCount; ++i)
+ {
+ // ...
+ vkDestroyImage(device, resData->img, nullptr);
+ }
+
+ // Update appropriate descriptors to point to the new places...
+
+ res = vmaEndDefragmentationPass(allocator, defragCtx, &pass);
+ if(res == VK_SUCCESS)
+ break;
+ else if(res != VK_INCOMPLETE)
+ // Handle error...
+}
+
+vmaEndDefragmentation(allocator, defragCtx, nullptr);
+\endcode
+
+Although functions like vmaCreateBuffer(), vmaCreateImage(), vmaDestroyBuffer(), vmaDestroyImage()
+create/destroy an allocation and a buffer/image at once, these are just a shortcut for
+creating the resource, allocating memory, and binding them together.
+Defragmentation works on memory allocations only. You must handle the rest manually.
+Defragmentation is an iterative process that should repreat "passes" as long as related functions
+return `VK_INCOMPLETE` not `VK_SUCCESS`.
+In each pass:
+
+1. vmaBeginDefragmentationPass() function call:
+ - Calculates and returns the list of allocations to be moved in this pass.
+ Note this can be a time-consuming process.
+ - Reserves destination memory for them by creating temporary destination allocations
+ that you can query for their `VkDeviceMemory` + offset using vmaGetAllocationInfo().
+2. Inside the pass, **you should**:
+ - Inspect the returned list of allocations to be moved.
+ - Create new buffers/images and bind them at the returned destination temporary allocations.
+ - Copy data from source to destination resources if necessary.
+ - Destroy the source buffers/images, but NOT their allocations.
+3. vmaEndDefragmentationPass() function call:
+ - Frees the source memory reserved for the allocations that are moved.
+ - Modifies source #VmaAllocation objects that are moved to point to the destination reserved memory.
+ - Frees `VkDeviceMemory` blocks that became empty.
+
+Unlike in previous iterations of the defragmentation API, there is no list of "movable" allocations passed as a parameter.
+Defragmentation algorithm tries to move all suitable allocations.
+You can, however, refuse to move some of them inside a defragmentation pass, by setting
+`pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE.
+This is not recommended and may result in suboptimal packing of the allocations after defragmentation.
+If you cannot ensure any allocation can be moved, it is better to keep movable allocations separate in a custom pool.
+
+Inside a pass, for each allocation that should be moved:
+
+- You should copy its data from the source to the destination place by calling e.g. `vkCmdCopyBuffer()`, `vkCmdCopyImage()`.
+ - You need to make sure these commands finished executing before destroying the source buffers/images and before calling vmaEndDefragmentationPass().
+- If a resource doesn't contain any meaningful data, e.g. it is a transient color attachment image to be cleared,
+ filled, and used temporarily in each rendering frame, you can just recreate this image
+ without copying its data.
+- If the resource is in `HOST_VISIBLE` and `HOST_CACHED` memory, you can copy its data on the CPU
+ using `memcpy()`.
+- If you cannot move the allocation, you can set `pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE.
+ This will cancel the move.
+ - vmaEndDefragmentationPass() will then free the destination memory
+ not the source memory of the allocation, leaving it unchanged.
+- If you decide the allocation is unimportant and can be destroyed instead of moved (e.g. it wasn't used for long time),
+ you can set `pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY.
+ - vmaEndDefragmentationPass() will then free both source and destination memory, and will destroy the source #VmaAllocation object.
+
+You can defragment a specific custom pool by setting VmaDefragmentationInfo::pool
+(like in the example above) or all the default pools by setting this member to null.
+
+Defragmentation is always performed in each pool separately.
+Allocations are never moved between different Vulkan memory types.
+The size of the destination memory reserved for a moved allocation is the same as the original one.
+Alignment of an allocation as it was determined using `vkGetBufferMemoryRequirements()` etc. is also respected after defragmentation.
+Buffers/images should be recreated with the same `VkBufferCreateInfo` / `VkImageCreateInfo` parameters as the original ones.
+
+You can perform the defragmentation incrementally to limit the number of allocations and bytes to be moved
+in each pass, e.g. to call it in sync with render frames and not to experience too big hitches.
+See members: VmaDefragmentationInfo::maxBytesPerPass, VmaDefragmentationInfo::maxAllocationsPerPass.
+
+It is also safe to perform the defragmentation asynchronously to render frames and other Vulkan and VMA
+usage, possibly from multiple threads, with the exception that allocations
+returned in VmaDefragmentationPassMoveInfo::pMoves shouldn't be destroyed until the defragmentation pass is ended.
+
+<b>Mapping</b> is preserved on allocations that are moved during defragmentation.
+Whether through #VMA_ALLOCATION_CREATE_MAPPED_BIT or vmaMapMemory(), the allocations
+are mapped at their new place. Of course, pointer to the mapped data changes, so it needs to be queried
+using VmaAllocationInfo::pMappedData.
+
+\note Defragmentation is not supported in custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT.
+
+
+\page statistics Statistics
+
+This library contains several functions that return information about its internal state,
+especially the amount of memory allocated from Vulkan.
+
+\section statistics_numeric_statistics Numeric statistics
+
+If you need to obtain basic statistics about memory usage per heap, together with current budget,
+you can call function vmaGetHeapBudgets() and inspect structure #VmaBudget.
+This is useful to keep track of memory usage and stay within budget
+(see also \ref staying_within_budget).
+Example:
+
+\code
+uint32_t heapIndex = ...
+
+VmaBudget budgets[VK_MAX_MEMORY_HEAPS];
+vmaGetHeapBudgets(allocator, budgets);
+
+printf("My heap currently has %u allocations taking %llu B,\n",
+ budgets[heapIndex].statistics.allocationCount,
+ budgets[heapIndex].statistics.allocationBytes);
+printf("allocated out of %u Vulkan device memory blocks taking %llu B,\n",
+ budgets[heapIndex].statistics.blockCount,
+ budgets[heapIndex].statistics.blockBytes);
+printf("Vulkan reports total usage %llu B with budget %llu B.\n",
+ budgets[heapIndex].usage,
+ budgets[heapIndex].budget);
+\endcode
+
+You can query for more detailed statistics per memory heap, type, and totals,
+including minimum and maximum allocation size and unused range size,
+by calling function vmaCalculateStatistics() and inspecting structure #VmaTotalStatistics.
+This function is slower though, as it has to traverse all the internal data structures,
+so it should be used only for debugging purposes.
+
+You can query for statistics of a custom pool using function vmaGetPoolStatistics()
+or vmaCalculatePoolStatistics().
+
+You can query for information about a specific allocation using function vmaGetAllocationInfo().
+It fill structure #VmaAllocationInfo.
+
+\section statistics_json_dump JSON dump
+
+You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString().
+The result is guaranteed to be correct JSON.
+It uses ANSI encoding.
+Any strings provided by user (see [Allocation names](@ref allocation_names))
+are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding,
+this JSON string can be treated as using this encoding.
+It must be freed using function vmaFreeStatsString().
+
+The format of this JSON string is not part of official documentation of the library,
+but it will not change in backward-incompatible way without increasing library major version number
+and appropriate mention in changelog.
+
+The JSON string contains all the data that can be obtained using vmaCalculateStatistics().
+It can also contain detailed map of allocated memory blocks and their regions -
+free and occupied by allocations.
+This allows e.g. to visualize the memory or assess fragmentation.
+
+
+\page allocation_annotation Allocation names and user data
+
+\section allocation_user_data Allocation user data
+
+You can annotate allocations with your own information, e.g. for debugging purposes.
+To do that, fill VmaAllocationCreateInfo::pUserData field when creating
+an allocation. It is an opaque `void*` pointer. You can use it e.g. as a pointer,
+some handle, index, key, ordinal number or any other value that would associate
+the allocation with your custom metadata.
+It is useful to identify appropriate data structures in your engine given #VmaAllocation,
+e.g. when doing \ref defragmentation.
+
+\code
+VkBufferCreateInfo bufCreateInfo = ...
+
+MyBufferMetadata* pMetadata = CreateBufferMetadata();
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
+allocCreateInfo.pUserData = pMetadata;
+
+VkBuffer buffer;
+VmaAllocation allocation;
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buffer, &allocation, nullptr);
+\endcode
+
+The pointer may be later retrieved as VmaAllocationInfo::pUserData:
+
+\code
+VmaAllocationInfo allocInfo;
+vmaGetAllocationInfo(allocator, allocation, &allocInfo);
+MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData;
+\endcode
+
+It can also be changed using function vmaSetAllocationUserData().
+
+Values of (non-zero) allocations' `pUserData` are printed in JSON report created by
+vmaBuildStatsString() in hexadecimal form.
+
+\section allocation_names Allocation names
+
+An allocation can also carry a null-terminated string, giving a name to the allocation.
+To set it, call vmaSetAllocationName().
+The library creates internal copy of the string, so the pointer you pass doesn't need
+to be valid for whole lifetime of the allocation. You can free it after the call.
+
+\code
+std::string imageName = "Texture: ";
+imageName += fileName;
+vmaSetAllocationName(allocator, allocation, imageName.c_str());
+\endcode
+
+The string can be later retrieved by inspecting VmaAllocationInfo::pName.
+It is also printed in JSON report created by vmaBuildStatsString().
+
+\note Setting string name to VMA allocation doesn't automatically set it to the Vulkan buffer or image created with it.
+You must do it manually using an extension like VK_EXT_debug_utils, which is independent of this library.
+
+
+\page virtual_allocator Virtual allocator
+
+As an extra feature, the core allocation algorithm of the library is exposed through a simple and convenient API of "virtual allocator".
+It doesn't allocate any real GPU memory. It just keeps track of used and free regions of a "virtual block".
+You can use it to allocate your own memory or other objects, even completely unrelated to Vulkan.
+A common use case is sub-allocation of pieces of one large GPU buffer.
+
+\section virtual_allocator_creating_virtual_block Creating virtual block
+
+To use this functionality, there is no main "allocator" object.
+You don't need to have #VmaAllocator object created.
+All you need to do is to create a separate #VmaVirtualBlock object for each block of memory you want to be managed by the allocator:
+
+-# Fill in #VmaVirtualBlockCreateInfo structure.
+-# Call vmaCreateVirtualBlock(). Get new #VmaVirtualBlock object.
+
+Example:
+
+\code
+VmaVirtualBlockCreateInfo blockCreateInfo = {};
+blockCreateInfo.size = 1048576; // 1 MB
+
+VmaVirtualBlock block;
+VkResult res = vmaCreateVirtualBlock(&blockCreateInfo, &block);
+\endcode
+
+\section virtual_allocator_making_virtual_allocations Making virtual allocations
+
+#VmaVirtualBlock object contains internal data structure that keeps track of free and occupied regions
+using the same code as the main Vulkan memory allocator.
+Similarly to #VmaAllocation for standard GPU allocations, there is #VmaVirtualAllocation type
+that represents an opaque handle to an allocation within the virtual block.
+
+In order to make such allocation:
+
+-# Fill in #VmaVirtualAllocationCreateInfo structure.
+-# Call vmaVirtualAllocate(). Get new #VmaVirtualAllocation object that represents the allocation.
+ You can also receive `VkDeviceSize offset` that was assigned to the allocation.
+
+Example:
+
+\code
+VmaVirtualAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.size = 4096; // 4 KB
+
+VmaVirtualAllocation alloc;
+VkDeviceSize offset;
+res = vmaVirtualAllocate(block, &allocCreateInfo, &alloc, &offset);
+if(res == VK_SUCCESS)
+{
+ // Use the 4 KB of your memory starting at offset.
+}
+else
+{
+ // Allocation failed - no space for it could be found. Handle this error!
+}
+\endcode
+
+\section virtual_allocator_deallocation Deallocation
+
+When no longer needed, an allocation can be freed by calling vmaVirtualFree().
+You can only pass to this function an allocation that was previously returned by vmaVirtualAllocate()
+called for the same #VmaVirtualBlock.
+
+When whole block is no longer needed, the block object can be released by calling vmaDestroyVirtualBlock().
+All allocations must be freed before the block is destroyed, which is checked internally by an assert.
+However, if you don't want to call vmaVirtualFree() for each allocation, you can use vmaClearVirtualBlock() to free them all at once -
+a feature not available in normal Vulkan memory allocator. Example:
+
+\code
+vmaVirtualFree(block, alloc);
+vmaDestroyVirtualBlock(block);
+\endcode
+
+\section virtual_allocator_allocation_parameters Allocation parameters
+
+You can attach a custom pointer to each allocation by using vmaSetVirtualAllocationUserData().
+Its default value is null.
+It can be used to store any data that needs to be associated with that allocation - e.g. an index, a handle, or a pointer to some
+larger data structure containing more information. Example:
+
+\code
+struct CustomAllocData
+{
+ std::string m_AllocName;
+};
+CustomAllocData* allocData = new CustomAllocData();
+allocData->m_AllocName = "My allocation 1";
+vmaSetVirtualAllocationUserData(block, alloc, allocData);
+\endcode
+
+The pointer can later be fetched, along with allocation offset and size, by passing the allocation handle to function
+vmaGetVirtualAllocationInfo() and inspecting returned structure #VmaVirtualAllocationInfo.
+If you allocated a new object to be used as the custom pointer, don't forget to delete that object before freeing the allocation!
+Example:
+
+\code
+VmaVirtualAllocationInfo allocInfo;
+vmaGetVirtualAllocationInfo(block, alloc, &allocInfo);
+delete (CustomAllocData*)allocInfo.pUserData;
+
+vmaVirtualFree(block, alloc);
+\endcode
+
+\section virtual_allocator_alignment_and_units Alignment and units
+
+It feels natural to express sizes and offsets in bytes.
+If an offset of an allocation needs to be aligned to a multiply of some number (e.g. 4 bytes), you can fill optional member
+VmaVirtualAllocationCreateInfo::alignment to request it. Example:
+
+\code
+VmaVirtualAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.size = 4096; // 4 KB
+allocCreateInfo.alignment = 4; // Returned offset must be a multiply of 4 B
+
+VmaVirtualAllocation alloc;
+res = vmaVirtualAllocate(block, &allocCreateInfo, &alloc, nullptr);
+\endcode
+
+Alignments of different allocations made from one block may vary.
+However, if all alignments and sizes are always multiply of some size e.g. 4 B or `sizeof(MyDataStruct)`,
+you can express all sizes, alignments, and offsets in multiples of that size instead of individual bytes.
+It might be more convenient, but you need to make sure to use this new unit consistently in all the places:
+
+- VmaVirtualBlockCreateInfo::size
+- VmaVirtualAllocationCreateInfo::size and VmaVirtualAllocationCreateInfo::alignment
+- Using offset returned by vmaVirtualAllocate() or in VmaVirtualAllocationInfo::offset
+
+\section virtual_allocator_statistics Statistics
+
+You can obtain statistics of a virtual block using vmaGetVirtualBlockStatistics()
+(to get brief statistics that are fast to calculate)
+or vmaCalculateVirtualBlockStatistics() (to get more detailed statistics, slower to calculate).
+The functions fill structures #VmaStatistics, #VmaDetailedStatistics respectively - same as used by the normal Vulkan memory allocator.
+Example:
+
+\code
+VmaStatistics stats;
+vmaGetVirtualBlockStatistics(block, &stats);
+printf("My virtual block has %llu bytes used by %u virtual allocations\n",
+ stats.allocationBytes, stats.allocationCount);
+\endcode
+
+You can also request a full list of allocations and free regions as a string in JSON format by calling
+vmaBuildVirtualBlockStatsString().
+Returned string must be later freed using vmaFreeVirtualBlockStatsString().
+The format of this string differs from the one returned by the main Vulkan allocator, but it is similar.
+
+\section virtual_allocator_additional_considerations Additional considerations
+
+The "virtual allocator" functionality is implemented on a level of individual memory blocks.
+Keeping track of a whole collection of blocks, allocating new ones when out of free space,
+deleting empty ones, and deciding which one to try first for a new allocation must be implemented by the user.
+
+Alternative allocation algorithms are supported, just like in custom pools of the real GPU memory.
+See enum #VmaVirtualBlockCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT).
+You can find their description in chapter \ref custom_memory_pools.
+Allocation strategies are also supported.
+See enum #VmaVirtualAllocationCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT).
+
+Following features are supported only by the allocator of the real GPU memory and not by virtual allocations:
+buffer-image granularity, `VMA_DEBUG_MARGIN`, `VMA_MIN_ALIGNMENT`.
+
+
+\page debugging_memory_usage Debugging incorrect memory usage
+
+If you suspect a bug with memory usage, like usage of uninitialized memory or
+memory being overwritten out of bounds of an allocation,
+you can use debug features of this library to verify this.
+
+\section debugging_memory_usage_initialization Memory initialization
+
+If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used,
+you can enable automatic memory initialization to verify this.
+To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1.
+
+\code
+#define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1
+#include "vk_mem_alloc.h"
+\endcode
+
+It makes memory of new allocations initialized to bit pattern `0xDCDCDCDC`.
+Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`.
+Memory is automatically mapped and unmapped if necessary.
+
+If you find these values while debugging your program, good chances are that you incorrectly
+read Vulkan memory that is allocated but not initialized, or already freed, respectively.
+
+Memory initialization works only with memory types that are `HOST_VISIBLE` and with allocations that can be mapped.
+It works also with dedicated allocations.
+
+\section debugging_memory_usage_margins Margins
+
+By default, allocations are laid out in memory blocks next to each other if possible
+(considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`).
+
+![Allocations without margin](../gfx/Margins_1.png)
+
+Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified
+number of bytes as a margin after every allocation.
+
+\code
+#define VMA_DEBUG_MARGIN 16
+#include "vk_mem_alloc.h"
+\endcode
+
+![Allocations with margin](../gfx/Margins_2.png)
+
+If your bug goes away after enabling margins, it means it may be caused by memory
+being overwritten outside of allocation boundaries. It is not 100% certain though.
+Change in application behavior may also be caused by different order and distribution
+of allocations across memory blocks after margins are applied.
+
+Margins work with all types of memory.
+
+Margin is applied only to allocations made out of memory blocks and not to dedicated
+allocations, which have their own memory block of specific size.
+It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag
+or those automatically decided to put into dedicated allocations, e.g. due to its
+large size or recommended by VK_KHR_dedicated_allocation extension.
+
+Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space.
+
+Note that enabling margins increases memory usage and fragmentation.
+
+Margins do not apply to \ref virtual_allocator.
+
+\section debugging_memory_usage_corruption_detection Corruption detection
+
+You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation
+of contents of the margins.
+
+\code
+#define VMA_DEBUG_MARGIN 16
+#define VMA_DEBUG_DETECT_CORRUPTION 1
+#include "vk_mem_alloc.h"
+\endcode
+
+When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN`
+(it must be multiply of 4) after every allocation is filled with a magic number.
+This idea is also know as "canary".
+Memory is automatically mapped and unmapped if necessary.
+
+This number is validated automatically when the allocation is destroyed.
+If it is not equal to the expected value, `VMA_ASSERT()` is executed.
+It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation,
+which indicates a serious bug.
+
+You can also explicitly request checking margins of all allocations in all memory blocks
+that belong to specified memory types by using function vmaCheckCorruption(),
+or in memory blocks that belong to specified custom pool, by using function
+vmaCheckPoolCorruption().
+
+Margin validation (corruption detection) works only for memory types that are
+`HOST_VISIBLE` and `HOST_COHERENT`.
+
+
+\section debugging_memory_usage_leak_detection Leak detection features
+
+At allocation and allocator destruction time VMA checks for unfreed and unmapped blocks using
+`VMA_ASSERT_LEAK()`. This macro defaults to an assertion, triggering a typically fatal error in Debug
+builds, and doing nothing in Release builds. You can provide your own definition of `VMA_ASSERT_LEAK()`
+to change this behavior.
+
+At memory block destruction time VMA lists out all unfreed allocations using the `VMA_LEAK_LOG_FORMAT()`
+macro, which defaults to `VMA_DEBUG_LOG_FORMAT`, which in turn defaults to a no-op.
+If you're having trouble with leaks - for example, the aforementioned assertion triggers, but you don't
+quite know \em why -, overriding this macro to print out the the leaking blocks, combined with assigning
+individual names to allocations using vmaSetAllocationName(), can greatly aid in fixing them.
+
+\page other_api_interop Interop with other graphics APIs
+
+VMA provides some features that help with interoperability with other graphics APIs, e.g. OpenGL.
+
+\section opengl_interop_exporting_memory Exporting memory
+
+If you want to attach `VkExportMemoryAllocateInfoKHR` or other structure to `pNext` chain of memory allocations made by the library:
+
+You can create \ref custom_memory_pools for such allocations.
+Define and fill in your `VkExportMemoryAllocateInfoKHR` structure and attach it to VmaPoolCreateInfo::pMemoryAllocateNext
+while creating the custom pool.
+Please note that the structure must remain alive and unchanged for the whole lifetime of the #VmaPool,
+not only while creating it, as no copy of the structure is made,
+but its original pointer is used for each allocation instead.
+
+If you want to export all memory allocated by VMA from certain memory types,
+also dedicated allocations or other allocations made from default pools,
+an alternative solution is to fill in VmaAllocatorCreateInfo::pTypeExternalMemoryHandleTypes.
+It should point to an array with `VkExternalMemoryHandleTypeFlagsKHR` to be automatically passed by the library
+through `VkExportMemoryAllocateInfoKHR` on each allocation made from a specific memory type.
+Please note that new versions of the library also support dedicated allocations created in custom pools.
+
+You should not mix these two methods in a way that allows to apply both to the same memory type.
+Otherwise, `VkExportMemoryAllocateInfoKHR` structure would be attached twice to the `pNext` chain of `VkMemoryAllocateInfo`.
+
+
+\section opengl_interop_custom_alignment Custom alignment
+
+Buffers or images exported to a different API like OpenGL may require a different alignment,
+higher than the one used by the library automatically, queried from functions like `vkGetBufferMemoryRequirements`.
+To impose such alignment:
+
+You can create \ref custom_memory_pools for such allocations.
+Set VmaPoolCreateInfo::minAllocationAlignment member to the minimum alignment required for each allocation
+to be made out of this pool.
+The alignment actually used will be the maximum of this member and the alignment returned for the specific buffer or image
+from a function like `vkGetBufferMemoryRequirements`, which is called by VMA automatically.
+
+If you want to create a buffer with a specific minimum alignment out of default pools,
+use special function vmaCreateBufferWithAlignment(), which takes additional parameter `minAlignment`.
+
+Note the problem of alignment affects only resources placed inside bigger `VkDeviceMemory` blocks and not dedicated
+allocations, as these, by definition, always have alignment = 0 because the resource is bound to the beginning of its dedicated block.
+You can ensure that an allocation is created as dedicated by using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
+Contrary to Direct3D 12, Vulkan doesn't have a concept of alignment of the entire memory block passed on its allocation.
+
+\section opengl_interop_extended_allocation_information Extended allocation information
+
+If you want to rely on VMA to allocate your buffers and images inside larger memory blocks,
+but you need to know the size of the entire block and whether the allocation was made
+with its own dedicated memory, use function vmaGetAllocationInfo2() to retrieve
+extended allocation information in structure #VmaAllocationInfo2.
+
+
+
+\page usage_patterns Recommended usage patterns
+
+Vulkan gives great flexibility in memory allocation.
+This chapter shows the most common patterns.
+
+See also slides from talk:
+[Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New)
+
+
+\section usage_patterns_gpu_only GPU-only resource
+
+<b>When:</b>
+Any resources that you frequently write and read on GPU,
+e.g. images used as color attachments (aka "render targets"), depth-stencil attachments,
+images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)").
+
+<b>What to do:</b>
+Let the library select the optimal memory type, which will likely have `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
+
+\code
+VkImageCreateInfo imgCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
+imgCreateInfo.imageType = VK_IMAGE_TYPE_2D;
+imgCreateInfo.extent.width = 3840;
+imgCreateInfo.extent.height = 2160;
+imgCreateInfo.extent.depth = 1;
+imgCreateInfo.mipLevels = 1;
+imgCreateInfo.arrayLayers = 1;
+imgCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
+imgCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
+imgCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
+imgCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
+imgCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
+allocCreateInfo.priority = 1.0f;
+
+VkImage img;
+VmaAllocation alloc;
+vmaCreateImage(allocator, &imgCreateInfo, &allocCreateInfo, &img, &alloc, nullptr);
+\endcode
+
+<b>Also consider:</b>
+Consider creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT,
+especially if they are large or if you plan to destroy and recreate them with different sizes
+e.g. when display resolution changes.
+Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later.
+When VK_EXT_memory_priority extension is enabled, it is also worth setting high priority to such allocation
+to decrease chances to be evicted to system memory by the operating system.
+
+\section usage_patterns_staging_copy_upload Staging copy for upload
+
+<b>When:</b>
+A "staging" buffer than you want to map and fill from CPU code, then use as a source of transfer
+to some GPU resource.
+
+<b>What to do:</b>
+Use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT.
+Let the library select the optimal memory type, which will always have `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`.
+
+\code
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufCreateInfo.size = 65536;
+bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
+ VMA_ALLOCATION_CREATE_MAPPED_BIT;
+
+VkBuffer buf;
+VmaAllocation alloc;
+VmaAllocationInfo allocInfo;
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
+
+...
+
+memcpy(allocInfo.pMappedData, myData, myDataSize);
+\endcode
+
+<b>Also consider:</b>
+You can map the allocation using vmaMapMemory() or you can create it as persistenly mapped
+using #VMA_ALLOCATION_CREATE_MAPPED_BIT, as in the example above.
+
+
+\section usage_patterns_readback Readback
+
+<b>When:</b>
+Buffers for data written by or transferred from the GPU that you want to read back on the CPU,
+e.g. results of some computations.
+
+<b>What to do:</b>
+Use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
+Let the library select the optimal memory type, which will always have `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`
+and `VK_MEMORY_PROPERTY_HOST_CACHED_BIT`.
+
+\code
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufCreateInfo.size = 65536;
+bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT |
+ VMA_ALLOCATION_CREATE_MAPPED_BIT;
+
+VkBuffer buf;
+VmaAllocation alloc;
+VmaAllocationInfo allocInfo;
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
+
+...
+
+const float* downloadedData = (const float*)allocInfo.pMappedData;
+\endcode
+
+
+\section usage_patterns_advanced_data_uploading Advanced data uploading
+
+For resources that you frequently write on CPU via mapped pointer and
+frequently read on GPU e.g. as a uniform buffer (also called "dynamic"), multiple options are possible:
+
+-# Easiest solution is to have one copy of the resource in `HOST_VISIBLE` memory,
+ even if it means system RAM (not `DEVICE_LOCAL`) on systems with a discrete graphics card,
+ and make the device reach out to that resource directly.
+ - Reads performed by the device will then go through PCI Express bus.
+ The performance of this access may be limited, but it may be fine depending on the size
+ of this resource (whether it is small enough to quickly end up in GPU cache) and the sparsity
+ of access.
+-# On systems with unified memory (e.g. AMD APU or Intel integrated graphics, mobile chips),
+ a memory type may be available that is both `HOST_VISIBLE` (available for mapping) and `DEVICE_LOCAL`
+ (fast to access from the GPU). Then, it is likely the best choice for such type of resource.
+-# Systems with a discrete graphics card and separate video memory may or may not expose
+ a memory type that is both `HOST_VISIBLE` and `DEVICE_LOCAL`, also known as Base Address Register (BAR).
+ If they do, it represents a piece of VRAM (or entire VRAM, if ReBAR is enabled in the motherboard BIOS)
+ that is available to CPU for mapping.
+ - Writes performed by the host to that memory go through PCI Express bus.
+ The performance of these writes may be limited, but it may be fine, especially on PCIe 4.0,
+ as long as rules of using uncached and write-combined memory are followed - only sequential writes and no reads.
+-# Finally, you may need or prefer to create a separate copy of the resource in `DEVICE_LOCAL` memory,
+ a separate "staging" copy in `HOST_VISIBLE` memory and perform an explicit transfer command between them.
+
+Thankfully, VMA offers an aid to create and use such resources in the the way optimal
+for the current Vulkan device. To help the library make the best choice,
+use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT together with
+#VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT.
+It will then prefer a memory type that is both `DEVICE_LOCAL` and `HOST_VISIBLE` (integrated memory or BAR),
+but if no such memory type is available or allocation from it fails
+(PC graphics cards have only 256 MB of BAR by default, unless ReBAR is supported and enabled in BIOS),
+it will fall back to `DEVICE_LOCAL` memory for fast GPU access.
+It is then up to you to detect that the allocation ended up in a memory type that is not `HOST_VISIBLE`,
+so you need to create another "staging" allocation and perform explicit transfers.
+
+\code
+VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+bufCreateInfo.size = 65536;
+bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
+ VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT |
+ VMA_ALLOCATION_CREATE_MAPPED_BIT;
+
+VkBuffer buf;
+VmaAllocation alloc;
+VmaAllocationInfo allocInfo;
+vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
+
+VkMemoryPropertyFlags memPropFlags;
+vmaGetAllocationMemoryProperties(allocator, alloc, &memPropFlags);
+
+if(memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)
+{
+ // Allocation ended up in a mappable memory and is already mapped - write to it directly.
+
+ // [Executed in runtime]:
+ memcpy(allocInfo.pMappedData, myData, myDataSize);
+}
+else
+{
+ // Allocation ended up in a non-mappable memory - need to transfer.
+ VkBufferCreateInfo stagingBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
+ stagingBufCreateInfo.size = 65536;
+ stagingBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
+
+ VmaAllocationCreateInfo stagingAllocCreateInfo = {};
+ stagingAllocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
+ stagingAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
+ VMA_ALLOCATION_CREATE_MAPPED_BIT;
+
+ VkBuffer stagingBuf;
+ VmaAllocation stagingAlloc;
+ VmaAllocationInfo stagingAllocInfo;
+ vmaCreateBuffer(allocator, &stagingBufCreateInfo, &stagingAllocCreateInfo,
+ &stagingBuf, &stagingAlloc, stagingAllocInfo);
+
+ // [Executed in runtime]:
+ memcpy(stagingAllocInfo.pMappedData, myData, myDataSize);
+ vmaFlushAllocation(allocator, stagingAlloc, 0, VK_WHOLE_SIZE);
+ //vkCmdPipelineBarrier: VK_ACCESS_HOST_WRITE_BIT --> VK_ACCESS_TRANSFER_READ_BIT
+ VkBufferCopy bufCopy = {
+ 0, // srcOffset
+ 0, // dstOffset,
+ myDataSize); // size
+ vkCmdCopyBuffer(cmdBuf, stagingBuf, buf, 1, &bufCopy);
+}
+\endcode
+
+\section usage_patterns_other_use_cases Other use cases
+
+Here are some other, less obvious use cases and their recommended settings:
+
+- An image that is used only as transfer source and destination, but it should stay on the device,
+ as it is used to temporarily store a copy of some texture, e.g. from the current to the next frame,
+ for temporal antialiasing or other temporal effects.
+ - Use `VkImageCreateInfo::usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT`
+ - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO
+- An image that is used only as transfer source and destination, but it should be placed
+ in the system RAM despite it doesn't need to be mapped, because it serves as a "swap" copy to evict
+ least recently used textures from VRAM.
+ - Use `VkImageCreateInfo::usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT`
+ - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO_PREFER_HOST,
+ as VMA needs a hint here to differentiate from the previous case.
+- A buffer that you want to map and write from the CPU, directly read from the GPU
+ (e.g. as a uniform or vertex buffer), but you have a clear preference to place it in device or
+ host memory due to its large size.
+ - Use `VkBufferCreateInfo::usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT`
+ - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE or #VMA_MEMORY_USAGE_AUTO_PREFER_HOST
+ - Use VmaAllocationCreateInfo::flags = #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT
+
+
+\page configuration Configuration
+
+Please check "CONFIGURATION SECTION" in the code to find macros that you can define
+before each include of this file or change directly in this file to provide
+your own implementation of basic facilities like assert, `min()` and `max()` functions,
+mutex, atomic etc.
+The library uses its own implementation of containers by default, but you can switch to using
+STL containers instead.
+
+For example, define `VMA_ASSERT(expr)` before including the library to provide
+custom implementation of the assertion, compatible with your project.
+By default it is defined to standard C `assert(expr)` in `_DEBUG` configuration
+and empty otherwise.
+
+\section config_Vulkan_functions Pointers to Vulkan functions
+
+There are multiple ways to import pointers to Vulkan functions in the library.
+In the simplest case you don't need to do anything.
+If the compilation or linking of your program or the initialization of the #VmaAllocator
+doesn't work for you, you can try to reconfigure it.
+
+First, the allocator tries to fetch pointers to Vulkan functions linked statically,
+like this:
+
+\code
+m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory;
+\endcode
+
+If you want to disable this feature, set configuration macro: `#define VMA_STATIC_VULKAN_FUNCTIONS 0`.
+
+Second, you can provide the pointers yourself by setting member VmaAllocatorCreateInfo::pVulkanFunctions.
+You can fetch them e.g. using functions `vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` or
+by using a helper library like [volk](https://github.com/zeux/volk).
+
+Third, VMA tries to fetch remaining pointers that are still null by calling
+`vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` on its own.
+You need to only fill in VmaVulkanFunctions::vkGetInstanceProcAddr and VmaVulkanFunctions::vkGetDeviceProcAddr.
+Other pointers will be fetched automatically.
+If you want to disable this feature, set configuration macro: `#define VMA_DYNAMIC_VULKAN_FUNCTIONS 0`.
+
+Finally, all the function pointers required by the library (considering selected
+Vulkan version and enabled extensions) are checked with `VMA_ASSERT` if they are not null.
+
+
+\section custom_memory_allocator Custom host memory allocator
+
+If you use custom allocator for CPU memory rather than default operator `new`
+and `delete` from C++, you can make this library using your allocator as well
+by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These
+functions will be passed to Vulkan, as well as used by the library itself to
+make any CPU-side allocations.
+
+\section allocation_callbacks Device memory allocation callbacks
+
+The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally.
+You can setup callbacks to be informed about these calls, e.g. for the purpose
+of gathering some statistics. To do it, fill optional member
+VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
+
+\section heap_memory_limit Device heap memory limit
+
+When device memory of certain heap runs out of free space, new allocations may
+fail (returning error code) or they may succeed, silently pushing some existing_
+memory blocks from GPU VRAM to system RAM (which degrades performance). This
+behavior is implementation-dependent - it depends on GPU vendor and graphics
+driver.
+
+On AMD cards it can be controlled while creating Vulkan device object by using
+VK_AMD_memory_overallocation_behavior extension, if available.
+
+Alternatively, if you want to test how your program behaves with limited amount of Vulkan device
+memory available without switching your graphics card to one that really has
+smaller VRAM, you can use a feature of this library intended for this purpose.
+To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit.
+
+
+
+\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation
+
+VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve
+performance on some GPUs. It augments Vulkan API with possibility to query
+driver whether it prefers particular buffer or image to have its own, dedicated
+allocation (separate `VkDeviceMemory` block) for better efficiency - to be able
+to do some internal optimizations. The extension is supported by this library.
+It will be used automatically when enabled.
+
+It has been promoted to core Vulkan 1.1, so if you use eligible Vulkan version
+and inform VMA about it by setting VmaAllocatorCreateInfo::vulkanApiVersion,
+you are all set.
+
+Otherwise, if you want to use it as an extension:
+
+1 . When creating Vulkan device, check if following 2 device extensions are
+supported (call `vkEnumerateDeviceExtensionProperties()`).
+If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`).
+
+- VK_KHR_get_memory_requirements2
+- VK_KHR_dedicated_allocation
+
+If you enabled these extensions:
+
+2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating
+your #VmaAllocator to inform the library that you enabled required extensions
+and you want the library to use them.
+
+\code
+allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT;
+
+vmaCreateAllocator(&allocatorInfo, &allocator);
+\endcode
+
+That is all. The extension will be automatically used whenever you create a
+buffer using vmaCreateBuffer() or image using vmaCreateImage().
+
+When using the extension together with Vulkan Validation Layer, you will receive
+warnings like this:
+
+_vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer._
+
+It is OK, you should just ignore it. It happens because you use function
+`vkGetBufferMemoryRequirements2KHR()` instead of standard
+`vkGetBufferMemoryRequirements()`, while the validation layer seems to be
+unaware of it.
+
+To learn more about this extension, see:
+
+- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap50.html#VK_KHR_dedicated_allocation)
+- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5)
+
+
+
+\page vk_ext_memory_priority VK_EXT_memory_priority
+
+VK_EXT_memory_priority is a device extension that allows to pass additional "priority"
+value to Vulkan memory allocations that the implementation may use prefer certain
+buffers and images that are critical for performance to stay in device-local memory
+in cases when the memory is over-subscribed, while some others may be moved to the system memory.
+
+VMA offers convenient usage of this extension.
+If you enable it, you can pass "priority" parameter when creating allocations or custom pools
+and the library automatically passes the value to Vulkan using this extension.
+
+If you want to use this extension in connection with VMA, follow these steps:
+
+\section vk_ext_memory_priority_initialization Initialization
+
+1) Call `vkEnumerateDeviceExtensionProperties` for the physical device.
+Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_EXT_memory_priority".
+
+2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.
+Attach additional structure `VkPhysicalDeviceMemoryPriorityFeaturesEXT` to `VkPhysicalDeviceFeatures2::pNext` to be returned.
+Check if the device feature is really supported - check if `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority` is true.
+
+3) While creating device with `vkCreateDevice`, enable this extension - add "VK_EXT_memory_priority"
+to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.
+
+4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.
+Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.
+Enable this device feature - attach additional structure `VkPhysicalDeviceMemoryPriorityFeaturesEXT` to
+`VkPhysicalDeviceFeatures2::pNext` chain and set its member `memoryPriority` to `VK_TRUE`.
+
+5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you
+have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT
+to VmaAllocatorCreateInfo::flags.
+
+\section vk_ext_memory_priority_usage Usage
+
+When using this extension, you should initialize following member:
+
+- VmaAllocationCreateInfo::priority when creating a dedicated allocation with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
+- VmaPoolCreateInfo::priority when creating a custom pool.
+
+It should be a floating-point value between `0.0f` and `1.0f`, where recommended default is `0.5f`.
+Memory allocated with higher value can be treated by the Vulkan implementation as higher priority
+and so it can have lower chances of being pushed out to system memory, experiencing degraded performance.
+
+It might be a good idea to create performance-critical resources like color-attachment or depth-stencil images
+as dedicated and set high priority to them. For example:
+
+\code
+VkImageCreateInfo imgCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
+imgCreateInfo.imageType = VK_IMAGE_TYPE_2D;
+imgCreateInfo.extent.width = 3840;
+imgCreateInfo.extent.height = 2160;
+imgCreateInfo.extent.depth = 1;
+imgCreateInfo.mipLevels = 1;
+imgCreateInfo.arrayLayers = 1;
+imgCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
+imgCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
+imgCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
+imgCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
+imgCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
+
+VmaAllocationCreateInfo allocCreateInfo = {};
+allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
+allocCreateInfo.flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
+allocCreateInfo.priority = 1.0f;
+
+VkImage img;
+VmaAllocation alloc;
+vmaCreateImage(allocator, &imgCreateInfo, &allocCreateInfo, &img, &alloc, nullptr);
+\endcode
+
+`priority` member is ignored in the following situations:
+
+- Allocations created in custom pools: They inherit the priority, along with all other allocation parameters
+ from the parameters passed in #VmaPoolCreateInfo when the pool was created.
+- Allocations created in default pools: They inherit the priority from the parameters
+ VMA used when creating default pools, which means `priority == 0.5f`.
+
+
+\page vk_amd_device_coherent_memory VK_AMD_device_coherent_memory
+
+VK_AMD_device_coherent_memory is a device extension that enables access to
+additional memory types with `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and
+`VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flag. It is useful mostly for
+allocation of buffers intended for writing "breadcrumb markers" in between passes
+or draw calls, which in turn are useful for debugging GPU crash/hang/TDR cases.
+
+When the extension is available but has not been enabled, Vulkan physical device
+still exposes those memory types, but their usage is forbidden. VMA automatically
+takes care of that - it returns `VK_ERROR_FEATURE_NOT_PRESENT` when an attempt
+to allocate memory of such type is made.
+
+If you want to use this extension in connection with VMA, follow these steps:
+
+\section vk_amd_device_coherent_memory_initialization Initialization
+
+1) Call `vkEnumerateDeviceExtensionProperties` for the physical device.
+Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_AMD_device_coherent_memory".
+
+2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.
+Attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to `VkPhysicalDeviceFeatures2::pNext` to be returned.
+Check if the device feature is really supported - check if `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true.
+
+3) While creating device with `vkCreateDevice`, enable this extension - add "VK_AMD_device_coherent_memory"
+to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.
+
+4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.
+Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.
+Enable this device feature - attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to
+`VkPhysicalDeviceFeatures2::pNext` and set its member `deviceCoherentMemory` to `VK_TRUE`.
+
+5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you
+have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT
+to VmaAllocatorCreateInfo::flags.
+
+\section vk_amd_device_coherent_memory_usage Usage
+
+After following steps described above, you can create VMA allocations and custom pools
+out of the special `DEVICE_COHERENT` and `DEVICE_UNCACHED` memory types on eligible
+devices. There are multiple ways to do it, for example:
+
+- You can request or prefer to allocate out of such memory types by adding
+ `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` to VmaAllocationCreateInfo::requiredFlags
+ or VmaAllocationCreateInfo::preferredFlags. Those flags can be freely mixed with
+ other ways of \ref choosing_memory_type, like setting VmaAllocationCreateInfo::usage.
+- If you manually found memory type index to use for this purpose, force allocation
+ from this specific index by setting VmaAllocationCreateInfo::memoryTypeBits `= 1u << index`.
+
+\section vk_amd_device_coherent_memory_more_information More information
+
+To learn more about this extension, see [VK_AMD_device_coherent_memory in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_AMD_device_coherent_memory.html)
+
+Example use of this extension can be found in the code of the sample and test suite
+accompanying this library.
+
+
+\page enabling_buffer_device_address Enabling buffer device address
+
+Device extension VK_KHR_buffer_device_address
+allow to fetch raw GPU pointer to a buffer and pass it for usage in a shader code.
+It has been promoted to core Vulkan 1.2.
+
+If you want to use this feature in connection with VMA, follow these steps:
+
+\section enabling_buffer_device_address_initialization Initialization
+
+1) (For Vulkan version < 1.2) Call `vkEnumerateDeviceExtensionProperties` for the physical device.
+Check if the extension is supported - if returned array of `VkExtensionProperties` contains
+"VK_KHR_buffer_device_address".
+
+2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.
+Attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to `VkPhysicalDeviceFeatures2::pNext` to be returned.
+Check if the device feature is really supported - check if `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress` is true.
+
+3) (For Vulkan version < 1.2) While creating device with `vkCreateDevice`, enable this extension - add
+"VK_KHR_buffer_device_address" to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.
+
+4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.
+Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.
+Enable this device feature - attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to
+`VkPhysicalDeviceFeatures2::pNext` and set its member `bufferDeviceAddress` to `VK_TRUE`.
+
+5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you
+have enabled this feature - add #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT
+to VmaAllocatorCreateInfo::flags.
+
+\section enabling_buffer_device_address_usage Usage
+
+After following steps described above, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*` using VMA.
+The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT*` to
+allocated memory blocks wherever it might be needed.
+
+Please note that the library supports only `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*`.
+The second part of this functionality related to "capture and replay" is not supported,
+as it is intended for usage in debugging tools like RenderDoc, not in everyday Vulkan usage.
+
+\section enabling_buffer_device_address_more_information More information
+
+To learn more about this extension, see [VK_KHR_buffer_device_address in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap46.html#VK_KHR_buffer_device_address)
+
+Example use of this extension can be found in the code of the sample and test suite
+accompanying this library.
+
+\page general_considerations General considerations
+
+\section general_considerations_thread_safety Thread safety
+
+- The library has no global state, so separate #VmaAllocator objects can be used
+ independently.
+ There should be no need to create multiple such objects though - one per `VkDevice` is enough.
+- By default, all calls to functions that take #VmaAllocator as first parameter
+ are safe to call from multiple threads simultaneously because they are
+ synchronized internally when needed.
+ This includes allocation and deallocation from default memory pool, as well as custom #VmaPool.
+- When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT
+ flag, calls to functions that take such #VmaAllocator object must be
+ synchronized externally.
+- Access to a #VmaAllocation object must be externally synchronized. For example,
+ you must not call vmaGetAllocationInfo() and vmaMapMemory() from different
+ threads at the same time if you pass the same #VmaAllocation object to these
+ functions.
+- #VmaVirtualBlock is not safe to be used from multiple threads simultaneously.
+
+\section general_considerations_versioning_and_compatibility Versioning and compatibility
+
+The library uses [**Semantic Versioning**](https://semver.org/),
+which means version numbers follow convention: Major.Minor.Patch (e.g. 2.3.0), where:
+
+- Incremented Patch version means a release is backward- and forward-compatible,
+ introducing only some internal improvements, bug fixes, optimizations etc.
+ or changes that are out of scope of the official API described in this documentation.
+- Incremented Minor version means a release is backward-compatible,
+ so existing code that uses the library should continue to work, while some new
+ symbols could have been added: new structures, functions, new values in existing
+ enums and bit flags, new structure members, but not new function parameters.
+- Incrementing Major version means a release could break some backward compatibility.
+
+All changes between official releases are documented in file "CHANGELOG.md".
+
+\warning Backward compatibility is considered on the level of C++ source code, not binary linkage.
+Adding new members to existing structures is treated as backward compatible if initializing
+the new members to binary zero results in the old behavior.
+You should always fully initialize all library structures to zeros and not rely on their
+exact binary size.
+
+\section general_considerations_validation_layer_warnings Validation layer warnings
+
+When using this library, you can meet following types of warnings issued by
+Vulkan validation layer. They don't necessarily indicate a bug, so you may need
+to just ignore them.
+
+- *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.*
+ - It happens when VK_KHR_dedicated_allocation extension is enabled.
+ `vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it.
+- *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.*
+ - It happens when you map a buffer or image, because the library maps entire
+ `VkDeviceMemory` block, where different types of images and buffers may end
+ up together, especially on GPUs with unified memory like Intel.
+- *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.*
+ - It may happen when you use [defragmentation](@ref defragmentation).
+
+\section general_considerations_allocation_algorithm Allocation algorithm
+
+The library uses following algorithm for allocation, in order:
+
+-# Try to find free range of memory in existing blocks.
+-# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size.
+-# If failed, try to create such block with size / 2, size / 4, size / 8.
+-# If failed, try to allocate separate `VkDeviceMemory` for this allocation,
+ just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
+-# If failed, choose other memory type that meets the requirements specified in
+ VmaAllocationCreateInfo and go to point 1.
+-# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
+
+\section general_considerations_features_not_supported Features not supported
+
+Features deliberately excluded from the scope of this library:
+
+-# **Data transfer.** Uploading (streaming) and downloading data of buffers and images
+ between CPU and GPU memory and related synchronization is responsibility of the user.
+ Defining some "texture" object that would automatically stream its data from a
+ staging copy in CPU memory to GPU memory would rather be a feature of another,
+ higher-level library implemented on top of VMA.
+ VMA doesn't record any commands to a `VkCommandBuffer`. It just allocates memory.
+-# **Recreation of buffers and images.** Although the library has functions for
+ buffer and image creation: vmaCreateBuffer(), vmaCreateImage(), you need to
+ recreate these objects yourself after defragmentation. That is because the big
+ structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in
+ #VmaAllocation object.
+-# **Handling CPU memory allocation failures.** When dynamically creating small C++
+ objects in CPU memory (not Vulkan memory), allocation failures are not checked
+ and handled gracefully, because that would complicate code significantly and
+ is usually not needed in desktop PC applications anyway.
+ Success of an allocation is just checked with an assert.
+-# **Code free of any compiler warnings.** Maintaining the library to compile and
+ work correctly on so many different platforms is hard enough. Being free of
+ any warnings, on any version of any compiler, is simply not feasible.
+ There are many preprocessor macros that make some variables unused, function parameters unreferenced,
+ or conditional expressions constant in some configurations.
+ The code of this library should not be bigger or more complicated just to silence these warnings.
+ It is recommended to disable such warnings instead.
+-# This is a C++ library with C interface. **Bindings or ports to any other programming languages** are welcome as external projects but
+ are not going to be included into this repository.
+*/
diff --git a/src/vkutil.h b/src/vkutil.h
new file mode 100644
index 0000000..7ab19a0
--- /dev/null
+++ b/src/vkutil.h
@@ -0,0 +1,58 @@
+#ifndef _VKUTIL_H
+#define _VKUTIL_H
+
+/**
+ * vkutil.h -- helper functions and macros for working with vulkan in C
+ */
+
+#include <stdio.h>
+#include <stdarg.h>
+
+#include <vulkan/vulkan.h>
+#include <vulkan/vk_enum_string_helper.h> // for string_VkResult
+
+#define VK_ARRAY_LEN(arr) sizeof((arr))/sizeof((arr)[0])
+
+#define VK_CHECK(x) \
+do { \
+ VkResult err = x; \
+ if (err) { \
+ fprintf(stderr, "%s:%d:0: vulkan error: %s \n", \
+ __FILE__+3, __LINE__, string_VkResult(err)); \
+ abort(); \
+ } \
+} while (0)
+
+typedef enum {
+ VK_INFO = 0,
+ VK_WARN,
+ VK_ERROR,
+} log_type;
+
+void
+vk_log(log_type t, const char * f, ...)
+{
+#ifdef VKDEBUG
+ va_list args;
+ va_start(args, f);
+ switch (t) {
+ case VK_INFO:
+ printf("INFO: ");
+ vprintf(f, args);
+ break;
+ case VK_WARN:
+ fprintf(stderr, "WARN: ");
+ vfprintf(stderr, f, args);
+ break;
+ case VK_ERROR:
+ fprintf(stderr, "ERROR: ");
+ vfprintf(stderr, f, args);
+ break;
+ }
+ va_end(args);
+#else
+ return;
+#endif
+}
+
+#endif /* _VKUTIL_H */