#include "synth_engine.h"
#include "lowpass.h"
#include "filter.h"
/* 1d convolution */
void
convole(float *signal, float *filter, size_t signal_size, size_t filter_size, float *out) {
for (size_t i = 0; i < filter_size + signal_size; i++) {
size_t kmin, kmax, k;
out[i] = 0;
/* find overlap */
kmin = (i >= filter_size - 1) ? i - (filter_size - 1) : 0;
kmax = (i < signal_size - 1) ? i : signal_size - 1;
/* Add the overlaping values */
for (k = kmin; k <= kmax; k++) {
out[i] += signal[k] * filter[i - k];
}
}
}
float
clamp(float f)
{
if (f <= -1) return -0.9999;
if (f >= 1) return 0.9999;
return f;
}
float
adsr_amplitude(void *synthData, unsigned long long elapsed)
{
synth_t *synth = (synth_t*)synthData;
float dAmplitude = 0.0;
float dReleaseAmplitude = 0.0;
float dStartAmplitude = synth->adsr.peak;
float dLifeTime = (elapsed * (1.0 / (float)SAMPLE_RATE));
if (synth->n.noteOn != 0 && synth->n.noteOff == 0) {
if (dLifeTime < synth->adsr.a)
dAmplitude = (dLifeTime / synth->adsr.a)*(dLifeTime / synth->adsr.a) * dStartAmplitude;
if (dLifeTime >= synth->adsr.a && dLifeTime <= ( synth->adsr.a + synth->adsr.d))
dAmplitude = ((dLifeTime - synth->adsr.a) / synth->adsr.d) * (synth->adsr.s - dStartAmplitude) + dStartAmplitude;
if (dLifeTime > (synth->adsr.a + synth->adsr.d))
dAmplitude = synth->adsr.s;
}
else { // Note is off
if (dLifeTime < synth->adsr.a)
dReleaseAmplitude = (dLifeTime / synth->adsr.a)*(dLifeTime / synth->adsr.a) * dStartAmplitude;
if (dLifeTime >= synth->adsr.a && dLifeTime <= (synth->adsr.a + synth->adsr.d))
dReleaseAmplitude = ((dLifeTime - synth->adsr.a) / synth->adsr.d) * (synth->adsr.s - dStartAmplitude) + dStartAmplitude;
if (dLifeTime > (synth->adsr.a + synth->adsr.d))
dReleaseAmplitude = synth->adsr.s;
dAmplitude = (((synth->n.noteOn + dLifeTime) - synth->n.noteOff) / synth->adsr.r) * (0.0 - dReleaseAmplitude) + dReleaseAmplitude;
if (synth->adsr.r < 0) {
dAmplitude = synth->adsr.s;
}
}
// Amplitude should not be negative
if (dAmplitude <= 0.000)
dAmplitude = 0.0;
return clamp(dAmplitude);
}
float
sin_sample(float amp, float freq, unsigned long long phase, unsigned int sample_rate)
{
return amp * sinf(2.0 * M_PI * freq * ((float)phase / (float)sample_rate));
}
float
saw_sample(float amp, float freq, unsigned long long phase, unsigned int sample_rate)
{
return amp * (0.17 * (1.0 - (2.0 * M_PI * freq * fmod((float)phase, (float)(sample_rate / (freq)))) / (float)sample_rate));
}
float
sawX_sample(float amp, float freq, float sm, unsigned long long phase, unsigned int sample_rate)
{
float dOutput = 0.0;
for (float n = 1.0; n < sm; n++)
dOutput += (sinf(n * 2.0 * M_PI * freq * ((float)phase / (float)sample_rate))) / n;
return 0.5 * amp * dOutput;
}
float
sqr_sample(float amp, float freq, float duty_cycle, unsigned long long phase, unsigned int sample_rate)
{
if (duty_cycle < 0.0001 || duty_cycle > 0.9999) {
duty_cycle = 0.5;
}
return (fmod((float)phase / (float)sample_rate, 1.0 / freq) < duty_cycle * (1.0 / freq)) ? amp : -amp;
}
float
gen0(float f, unsigned long long phase, float x, unsigned int sample_rate)
{
return sqr_sample(0.1, f, 0.3, phase, sample_rate)
+ sqr_sample(0.1, f * 3.0 / 2.0 , 0.5, phase, sample_rate)
+ saw_sample(0.3, f, phase, sample_rate)
+ sin_sample(0.1, f, phase, sample_rate)
+ sin_sample(0.1, f * 5, phase, sample_rate)
/* + sin_sample(0.1, freq * 50 * 1021, phase, sample_rate) */
/* + sin_sample(0.1, freq * 50 * 3531021, phase, sample_rate) */
+ sin_sample(0.1, f * 7, phase, sample_rate);
}
float
gen1(float f, unsigned long long phase, float x, unsigned int sample_rate)
{
return sawX_sample(0.5, f, 5, phase, sample_rate)
+ saw_sample(0.3, 2 * f / 5, phase, sample_rate)
+ sin_sample(0.2, f * 5.0 / 7.0 , phase, sample_rate);
}
float
gen2(float f, unsigned long long phase, float x, unsigned int sample_rate)
{
/* return sin_sample(0.5, f * sqrt(2) , phase, sample_rate) */
/* + sin_sample(0.5, f, phase, sample_rate); */
return sawX_sample(1, f, 5, phase, sample_rate);
}
float
gen3(float f, unsigned long long phase, float x, unsigned int sample_rate)
{
/* return sawX_sample(0.7, f, 5, phase, sample_rate) */
/* + sin_sample(0.3, 4.0/17.0*f, phase, sample_rate); */
return saw_sample(0.5, f * (1 + sqrt(5)) / 2, phase, sample_rate)
+ sin_sample(0.3, f * x, phase, sample_rate)
+ sqr_sample(0.2, f * x, 0.2 * x * x, phase, sample_rate);
}
float
make_sample(unsigned long long phase, void *synthData, unsigned int sample_rate, int viz)
{
synth_t *synth = (synth_t*)synthData;
float sample = 0;
//LFO!
//if (synth->adsr.elapsed > SAMPLE_RATE / 2) synth->adsr.elapsed = 0;
if (synth->poly) {
int n = synth->notes_active;
for (int i = 0; i < n; i++) {
sample += (1.0 / n) * synth->gen[synth->geni](synth->freq[i] + synth->freq_offset, synth->freq_count[i], synth->x, sample_rate);
}
} else {
sample = synth->gen[synth->geni](synth->n.freq + synth->freq_offset, phase, synth->x, sample_rate);
}
if (!viz && synth->filter) {
// ALLL THE FILTERS
LowPass_Update(synth->resonance, (adsr_amplitude(synth, synth->adsr.elapsed) + 0.1) * round(synth->cutoff) + 1, sample_rate);
sample = LowPass_Filter(sample);
update_bw_low_pass_filter(synth->fff, SAMPLE_RATE, (adsr_amplitude(synth, synth->adsr.elapsed) + 0.1) * synth->cutoff, synth->resonance);
sample = bw_low_pass(synth->fff, sample);
}
sample = synth->gain * adsr_amplitude(synth, synth->adsr.elapsed) * sample;
// band stop for high freqs
if (!viz)
sample = bw_band_stop(synth->fff2, sample);
if (synth->clamp) sample = clamp(sample);
return sample;
}
int
sound_gen(const void *inputBuffer, void *outputBuffer,
unsigned long framesPerBuffer,
const PaStreamCallbackTimeInfo* timeInfo,
PaStreamCallbackFlags statusFlags,
void *synthData)
{
synth_t *synth = (synth_t*)synthData;
float *out = (float*)outputBuffer;
(void) timeInfo; /* Prevent unused variable warnings. */
(void) statusFlags;
(void) inputBuffer;
float s;
for( unsigned long i=0; i<framesPerBuffer; i++ ) {
//get_portaudio_frame(outputBuffer, synth);
if (!synth->active) {
*out++ = 0.0f;
*out++ = 0.0f;
continue;
}
if (adsr_amplitude(synth, synth->adsr.elapsed) == 0 && synth->n.noteOff != 0) {
//printf("SYNTH OPFF\n");
synth->active = 0;
*out++ = 0.0f;
*out++ = 0.0f;
continue;
}
s = make_sample(synth->n.elapsed, synth, SAMPLE_RATE, 0);
*out++ = s;
*out++ = s;
synth->adsr.elapsed++;
synth->n.elapsed++;
for (int j = 0; j < synth->notes_active; j++) {
synth->freq_count[j]++;
}
if (!synth->multi) {
for (int j = 0; j < synth->notes_active; j++) {
if (synth->freq_count[j] >= (1.0 / synth->freq[i]) * SAMPLE_RATE) synth->freq_count[j] = 0;
}
if (synth->n.elapsed >= (1.0 / synth->n.freq) * SAMPLE_RATE) synth->n.elapsed = 0;
} else {
}
}
return paContinue;
}
void
init_synth(synth_t * synth)
{
synth->freq_offset = 0;
synth->gain = 1;
synth->x = 1;
synth->notes_active = 0;
for (int i = 0; i<100;i++) {
synth->freq[i] = 0;
synth->freq_count[i] = 0;
}
synth->n.freq = 0;
synth->n.noteOn = 0;
synth->n.noteOff = 1;
synth->n.key = 0;
synth->n.elapsed = 0;
synth->adsr.a = 0.0;
synth->adsr.peak = 1.0f;
synth->adsr.d = 0.3;
synth->adsr.s = 0.7;
synth->adsr.r = 0.4;
synth->adsr.elapsed = 0;
synth->octave = 3;
synth->poly = 0;
synth->multi = 0;
synth->filter = 0;
synth->cutoff = 22000.0f;
synth->resonance = 1.0f;
synth->clamp = 1;
synth->gen[0] = gen0;
synth->gen[1] = gen1;
synth->gen[2] = gen2;
synth->gen[3] = gen3;
synth->geni = 0;
synth->active = 0;
synth->viz.sample_rate_divider = 1;
LowPass_Init();
synth->fff = create_bw_low_pass_filter(2, SAMPLE_RATE, 400);
synth->fff2 = create_bw_band_stop_filter(8, SAMPLE_RATE, 15000, 22000);
}