1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
|
/*
Resonant low pass filter source code.
By baltrax@hotmail.com (Zxform)
- little changes and optimizations by Brett Paterson for FMOD example.
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "lowpass.h"
/**************************************************************************
FILTER.C - Source code for filter functions
iir_filter IIR filter floats sample by sample (real time)
*************************************************************************/
FILTER iir;
/*
* --------------------------------------------------------------------
*
* iir_filter - Perform IIR filtering sample by sample on floats
*
* Implements cascaded direct form II second order sections.
* Requires FILTER structure for history and coefficients.
* The length in the filter structure specifies the number of sections.
* The size of the history array is 2*iir.length.
* The size of the coefficient array is 4*iir.length + 1 because
* the first coefficient is the overall scale factor for the filter.
* Returns one output sample for each input sample. Allocates history
* array if not previously allocated.
*
* float iir_filter(float input,FILTER *iir)
*
* float input new float input sample
* FILTER *iir pointer to FILTER structure
*
* Returns float value giving the current output.
*
* Allocation errors cause an error message and a call to exit.
* --------------------------------------------------------------------
*/
float lpf_filter(float input)
{
unsigned int i;
float *hist1_ptr,*hist2_ptr,*coef_ptr;
float output,new_hist,history1,history2;
static float dc = (float)1E-25;
input += dc;
dc = -dc;
/* allocate history array if different size than last call */
coef_ptr = iir.coef; /* coefficient pointer */
hist1_ptr = iir.history; /* first history */
hist2_ptr = hist1_ptr + 1; /* next history */
/* 1st number of coefficients array is overall input scale factor,
* or filter gain */
output = input * (*coef_ptr++);
for (i = 0 ; i < iir.length; i++)
{
history1 = *hist1_ptr; /* history values */
history2 = *hist2_ptr;
output = output - history1 * coef_ptr[0];
new_hist = output - history2 * coef_ptr[1]; /* poles */
output = new_hist + history1 * coef_ptr[2];
output = output + history2 * coef_ptr[3]; /* zeros */
coef_ptr += 4;
*hist2_ptr++ = *hist1_ptr;
*hist1_ptr++ = new_hist;
hist1_ptr++;
hist2_ptr++;
}
return(output);
}
void lpf_update(float resonance, float cutoff, int samplerate)
{
unsigned nInd;
double a0, a1, a2, b0, b1, b2;
double fs; /* Sampling frequency, cutoff frequency */
double k; /* overall gain factor */
float *coef;
k = 1.0; /* Set overall filter gain */
coef = iir.coef + 1; /* Skip k, or gain */
fs = (double)samplerate; /* Sampling frequency (Hz) */
/*
* Compute z-domain coefficients for each biquad section
* for new Cutoff Frequency and Resonance
*/
for (nInd = 0; nInd < iir.length; nInd++)
{
a0 = ProtoCoef[nInd].a0;
a1 = ProtoCoef[nInd].a1;
a2 = ProtoCoef[nInd].a2;
b0 = ProtoCoef[nInd].b0;
b1 = ProtoCoef[nInd].b1 / resonance; /* Divide by resonance or Q */
b2 = ProtoCoef[nInd].b2;
szxform(&a0, &a1, &a2, &b0, &b1, &b2, cutoff, fs, &k, coef);
coef += 4; /* Point to next filter section */
}
/* Update overall filter gain in coef array */
iir.coef[0] = (float)k;
}
/*
* --------------------------------------------------------------------
*
* initn()
*
* Example main function to show how to update filter coefficients.
* We create a 4th order filter (24 db/oct roloff), consisting
* of two second order sections.
* --------------------------------------------------------------------
*/
signed char lpf_init()
{
/*
* Setup filter s-domain coefficients
*/
/* Section 1 */
ProtoCoef[0].a0 = 1.0;
ProtoCoef[0].a1 = 0;
ProtoCoef[0].a2 = 0;
ProtoCoef[0].b0 = 1.0;
ProtoCoef[0].b1 = 0.765367;
ProtoCoef[0].b2 = 1.0;
/* Section 2 */
ProtoCoef[1].a0 = 1.0;
ProtoCoef[1].a1 = 0;
ProtoCoef[1].a2 = 0;
ProtoCoef[1].b0 = 1.0;
ProtoCoef[1].b1 = 1.847759;
ProtoCoef[1].b2 = 1.0;
iir.length = FILTER_SECTIONS; /* Number of filter sections */
/*
* Allocate array of z-domain coefficients for each filter section
* plus filter gain variable
*/
iir.coef = (float *) calloc(4 * iir.length + 1, sizeof(float));
if (!iir.coef)
{
// printf("Unable to allocate coef array, exiting\n");
return 0;
}
lpf_update(1.0, 5000.0, 44100);
/* Display filter coefficients */
// for (nInd = 0; nInd < (iir.length * 4 + 1); nInd++)
// printf("C[%d] = %15.10f\n", nInd, iir.coef[nInd]);
/*
* To process audio samples, call function iir_filter()
* for each audio sample
*/
return 1;
}
void lpf_close()
{
}
/*
* ----------------------------------------------------------
* bilinear.c
*
* Perform bilinear transformation on s-domain coefficients
* of 2nd order biquad section.
* First design an analog filter and use s-domain coefficients
* as input to szxform() to convert them to z-domain.
*
* Here's the butterworth polinomials for 2nd, 4th and 6th order sections.
* When we construct a 24 db/oct filter, we take to 2nd order
* sections and compute the coefficients separately for each section.
*
* n Polinomials
* --------------------------------------------------------------------
* 2 s^2 + 1.4142s +1
* 4 (s^2 + 0.765367s + 1) (s^2 + 1.847759s + 1)
* 6 (s^2 + 0.5176387s + 1) (s^2 + 1.414214 + 1) (s^2 + 1.931852s + 1)
*
* Where n is a filter order.
* For n=4, or two second order sections, we have following equasions for each
* 2nd order stage:
*
* (1 / (s^2 + (1/Q) * 0.765367s + 1)) * (1 / (s^2 + (1/Q) * 1.847759s + 1))
*
* Where Q is filter quality factor in the range of
* 1 to 1000. The overall filter Q is a product of all
* 2nd order stages. For example, the 6th order filter
* (3 stages, or biquads) with individual Q of 2 will
* have filter Q = 2 * 2 * 2 = 8.
*
* The nominator part is just 1.
* The denominator coefficients for stage 1 of filter are:
* b2 = 1; b1 = 0.765367; b0 = 1;
* numerator is
* a2 = 0; a1 = 0; a0 = 1;
*
* The denominator coefficients for stage 1 of filter are:
* b2 = 1; b1 = 1.847759; b0 = 1;
* numerator is
* a2 = 0; a1 = 0; a0 = 1;
*
* These coefficients are used directly by the szxform()
* and bilinear() functions. For all stages the numerator
* is the same and the only thing that is different between
* different stages is 1st order coefficient. The rest of
* coefficients are the same for any stage and equal to 1.
*
* Any filter could be constructed using this approach.
*
* References:
* Van Valkenburg, "Analog Filter Design"
* Oxford University Press 1982
* ISBN 0-19-510734-9
*
* C Language Algorithms for Digital Signal Processing
* Paul Embree, Bruce Kimble
* Prentice Hall, 1991
* ISBN 0-13-133406-9
*
* Digital Filter Designer's Handbook
* With C++ Algorithms
* Britton Rorabaugh
* McGraw Hill, 1997
* ISBN 0-07-053806-9
* ----------------------------------------------------------
*/
void prewarp(double *a0, double *a1, double *a2, double fc, double fs);
void bilinear(
double a0, double a1, double a2, /* numerator coefficients */
double b0, double b1, double b2, /* denominator coefficients */
double *k, /* overall gain factor */
double fs, /* sampling rate */
float *coef); /* pointer to 4 iir coefficients */
/*
* ----------------------------------------------------------
* Pre-warp the coefficients of a numerator or denominator.
* Note that a0 is assumed to be 1, so there is no wrapping
* of it.
* ----------------------------------------------------------
*/
void prewarp(
double *a0, double *a1, double *a2,
double fc, double fs)
{
double wp, pi;
pi = 4.0 * atan(1.0);
wp = 2.0 * fs * tan(pi * fc / fs);
*a2 = (*a2) / (wp * wp);
*a1 = (*a1) / wp;
}
/*
* ----------------------------------------------------------
* bilinear()
*
* Transform the numerator and denominator coefficients
* of s-domain biquad section into corresponding
* z-domain coefficients.
*
* Store the 4 IIR coefficients in array pointed by coef
* in following order:
* beta1, beta2 (denominator)
* alpha1, alpha2 (numerator)
*
* Arguments:
* a0-a2 - s-domain numerator coefficients
* b0-b2 - s-domain denominator coefficients
* k - filter gain factor. initially set to 1
* and modified by each biquad section in such
* a way, as to make it the coefficient by
* which to multiply the overall filter gain
* in order to achieve a desired overall filter gain,
* specified in initial value of k.
* fs - sampling rate (Hz)
* coef - array of z-domain coefficients to be filled in.
*
* Return:
* On return, set coef z-domain coefficients
* ----------------------------------------------------------
*/
void bilinear(
double a0, double a1, double a2, /* numerator coefficients */
double b0, double b1, double b2, /* denominator coefficients */
double *k, /* overall gain factor */
double fs, /* sampling rate */
float *coef /* pointer to 4 iir coefficients */
)
{
double ad, bd;
/* alpha (Numerator in s-domain) */
ad = 4. * a2 * fs * fs + 2. * a1 * fs + a0;
/* beta (Denominator in s-domain) */
bd = 4. * b2 * fs * fs + 2. * b1* fs + b0;
/* update gain constant for this section */
*k *= ad/bd;
/* Denominator */
*coef++ = (float)((2. * b0 - 8. * b2 * fs * fs) / bd); /* beta1 */
*coef++ = (float)((4. * b2 * fs * fs - 2. * b1 * fs + b0) / bd); /* beta2 */
/* Nominator */
*coef++ = (float)((2. * a0 - 8. * a2 * fs * fs) / ad); /* alpha1 */
*coef = (float)((4. * a2 * fs * fs - 2. * a1 * fs + a0) / ad); /* alpha2 */
}
/*
* ----------------------------------------------------------
* Transform from s to z domain using bilinear transform
* with prewarp.
*
* Arguments:
* For argument description look at bilinear()
*
* coef - pointer to array of floating point coefficients,
* corresponding to output of bilinear transofrm
* (z domain).
*
* Note: frequencies are in Hz.
* ----------------------------------------------------------
*/
void szxform(
double *a0, double *a1, double *a2, /* numerator coefficients */
double *b0, double *b1, double *b2, /* denominator coefficients */
double fc, /* Filter cutoff frequency */
double fs, /* sampling rate */
double *k, /* overall gain factor */
float *coef) /* pointer to 4 iir coefficients */
{
/* Calculate a1 and a2 and overwrite the original values */
prewarp(a0, a1, a2, fc, fs);
prewarp(b0, b1, b2, fc, fs);
bilinear(*a0, *a1, *a2, *b0, *b1, *b2, k, fs, coef);
}
|