summaryrefslogtreecommitdiffstats
path: root/src/hashmap.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/hashmap.c')
-rw-r--r--src/hashmap.c936
1 files changed, 936 insertions, 0 deletions
diff --git a/src/hashmap.c b/src/hashmap.c
new file mode 100644
index 0000000..b05231e
--- /dev/null
+++ b/src/hashmap.c
@@ -0,0 +1,936 @@
+// Copyright 2020 Joshua J Baker. All rights reserved.
+// Use of this source code is governed by an MIT-style
+// license that can be found in the LICENSE file.
+
+#include <stdio.h>
+#include <string.h>
+#include <stdlib.h>
+#include <stdint.h>
+#include <stddef.h>
+#include "hashmap.h"
+
+static void *(*_malloc)(size_t) = NULL;
+static void *(*_realloc)(void *, size_t) = NULL;
+static void (*_free)(void *) = NULL;
+
+// hashmap_set_allocator allows for configuring a custom allocator for
+// all hashmap library operations. This function, if needed, should be called
+// only once at startup and a prior to calling hashmap_new().
+void hashmap_set_allocator(void *(*malloc)(size_t), void (*free)(void*))
+{
+ _malloc = malloc;
+ _free = free;
+}
+
+#define panic(_msg_) { \
+ fprintf(stderr, "panic: %s (%s:%d)\n", (_msg_), __FILE__, __LINE__); \
+ exit(1); \
+}
+
+struct bucket {
+ uint64_t hash:48;
+ uint64_t dib:16;
+};
+
+// hashmap is an open addressed hash map using robinhood hashing.
+struct hashmap {
+ void *(*malloc)(size_t);
+ void *(*realloc)(void *, size_t);
+ void (*free)(void *);
+ bool oom;
+ size_t elsize;
+ size_t cap;
+ uint64_t seed0;
+ uint64_t seed1;
+ uint64_t (*hash)(const void *item, uint64_t seed0, uint64_t seed1);
+ int (*compare)(const void *a, const void *b, void *udata);
+ void (*elfree)(void *item);
+ void *udata;
+ size_t bucketsz;
+ size_t nbuckets;
+ size_t count;
+ size_t mask;
+ size_t growat;
+ size_t shrinkat;
+ void *buckets;
+ void *spare;
+ void *edata;
+};
+
+static struct bucket *bucket_at(struct hashmap *map, size_t index) {
+ return (struct bucket*)(((char*)map->buckets)+(map->bucketsz*index));
+}
+
+static void *bucket_item(struct bucket *entry) {
+ return ((char*)entry)+sizeof(struct bucket);
+}
+
+static uint64_t get_hash(struct hashmap *map, const void *key) {
+ return map->hash(key, map->seed0, map->seed1) << 16 >> 16;
+}
+
+// hashmap_new_with_allocator returns a new hash map using a custom allocator.
+// See hashmap_new for more information information
+struct hashmap *hashmap_new_with_allocator(
+ void *(*_malloc)(size_t),
+ void *(*_realloc)(void*, size_t),
+ void (*_free)(void*),
+ size_t elsize, size_t cap,
+ uint64_t seed0, uint64_t seed1,
+ uint64_t (*hash)(const void *item,
+ uint64_t seed0, uint64_t seed1),
+ int (*compare)(const void *a, const void *b,
+ void *udata),
+ void (*elfree)(void *item),
+ void *udata)
+{
+ _malloc = _malloc ? _malloc : malloc;
+ _realloc = _realloc ? _realloc : realloc;
+ _free = _free ? _free : free;
+ int ncap = 16;
+ if (cap < ncap) {
+ cap = ncap;
+ } else {
+ while (ncap < cap) {
+ ncap *= 2;
+ }
+ cap = ncap;
+ }
+ size_t bucketsz = sizeof(struct bucket) + elsize;
+ while (bucketsz & (sizeof(uintptr_t)-1)) {
+ bucketsz++;
+ }
+ // hashmap + spare + edata
+ size_t size = sizeof(struct hashmap)+bucketsz*2;
+ struct hashmap *map = _malloc(size);
+ if (!map) {
+ return NULL;
+ }
+ memset(map, 0, sizeof(struct hashmap));
+ map->elsize = elsize;
+ map->bucketsz = bucketsz;
+ map->seed0 = seed0;
+ map->seed1 = seed1;
+ map->hash = hash;
+ map->compare = compare;
+ map->elfree = elfree;
+ map->udata = udata;
+ map->spare = ((char*)map)+sizeof(struct hashmap);
+ map->edata = (char*)map->spare+bucketsz;
+ map->cap = cap;
+ map->nbuckets = cap;
+ map->mask = map->nbuckets-1;
+ map->buckets = _malloc(map->bucketsz*map->nbuckets);
+ if (!map->buckets) {
+ _free(map);
+ return NULL;
+ }
+ memset(map->buckets, 0, map->bucketsz*map->nbuckets);
+ map->growat = map->nbuckets*0.75;
+ map->shrinkat = map->nbuckets*0.10;
+ map->malloc = _malloc;
+ map->realloc = _realloc;
+ map->free = _free;
+ return map;
+}
+
+
+// hashmap_new returns a new hash map.
+// Param `elsize` is the size of each element in the tree. Every element that
+// is inserted, deleted, or retrieved will be this size.
+// Param `cap` is the default lower capacity of the hashmap. Setting this to
+// zero will default to 16.
+// Params `seed0` and `seed1` are optional seed values that are passed to the
+// following `hash` function. These can be any value you wish but it's often
+// best to use randomly generated values.
+// Param `hash` is a function that generates a hash value for an item. It's
+// important that you provide a good hash function, otherwise it will perform
+// poorly or be vulnerable to Denial-of-service attacks. This implementation
+// comes with two helper functions `hashmap_sip()` and `hashmap_murmur()`.
+// Param `compare` is a function that compares items in the tree. See the
+// qsort stdlib function for an example of how this function works.
+// The hashmap must be freed with hashmap_free().
+// Param `elfree` is a function that frees a specific item. This should be NULL
+// unless you're storing some kind of reference data in the hash.
+struct hashmap *hashmap_new(size_t elsize, size_t cap,
+ uint64_t seed0, uint64_t seed1,
+ uint64_t (*hash)(const void *item,
+ uint64_t seed0, uint64_t seed1),
+ int (*compare)(const void *a, const void *b,
+ void *udata),
+ void (*elfree)(void *item),
+ void *udata)
+{
+ return hashmap_new_with_allocator(
+ (_malloc?_malloc:malloc),
+ (_realloc?_realloc:realloc),
+ (_free?_free:free),
+ elsize, cap, seed0, seed1, hash, compare, elfree, udata
+ );
+}
+
+static void free_elements(struct hashmap *map) {
+ if (map->elfree) {
+ for (size_t i = 0; i < map->nbuckets; i++) {
+ struct bucket *bucket = bucket_at(map, i);
+ if (bucket->dib) map->elfree(bucket_item(bucket));
+ }
+ }
+}
+
+
+// hashmap_clear quickly clears the map.
+// Every item is called with the element-freeing function given in hashmap_new,
+// if present, to free any data referenced in the elements of the hashmap.
+// When the update_cap is provided, the map's capacity will be updated to match
+// the currently number of allocated buckets. This is an optimization to ensure
+// that this operation does not perform any allocations.
+void hashmap_clear(struct hashmap *map, bool update_cap) {
+ map->count = 0;
+ free_elements(map);
+ if (update_cap) {
+ map->cap = map->nbuckets;
+ } else if (map->nbuckets != map->cap) {
+ void *new_buckets = map->malloc(map->bucketsz*map->cap);
+ if (new_buckets) {
+ map->free(map->buckets);
+ map->buckets = new_buckets;
+ }
+ map->nbuckets = map->cap;
+ }
+ memset(map->buckets, 0, map->bucketsz*map->nbuckets);
+ map->mask = map->nbuckets-1;
+ map->growat = map->nbuckets*0.75;
+ map->shrinkat = map->nbuckets*0.10;
+}
+
+
+static bool resize(struct hashmap *map, size_t new_cap) {
+ struct hashmap *map2 = hashmap_new(map->elsize, new_cap, map->seed1,
+ map->seed1, map->hash, map->compare,
+ map->elfree, map->udata);
+ if (!map2) {
+ return false;
+ }
+ for (size_t i = 0; i < map->nbuckets; i++) {
+ struct bucket *entry = bucket_at(map, i);
+ if (!entry->dib) {
+ continue;
+ }
+ entry->dib = 1;
+ size_t j = entry->hash & map2->mask;
+ for (;;) {
+ struct bucket *bucket = bucket_at(map2, j);
+ if (bucket->dib == 0) {
+ memcpy(bucket, entry, map->bucketsz);
+ break;
+ }
+ if (bucket->dib < entry->dib) {
+ memcpy(map2->spare, bucket, map->bucketsz);
+ memcpy(bucket, entry, map->bucketsz);
+ memcpy(entry, map2->spare, map->bucketsz);
+ }
+ j = (j + 1) & map2->mask;
+ entry->dib += 1;
+ }
+ }
+ map->free(map->buckets);
+ map->buckets = map2->buckets;
+ map->nbuckets = map2->nbuckets;
+ map->mask = map2->mask;
+ map->growat = map2->growat;
+ map->shrinkat = map2->shrinkat;
+ map->free(map2);
+ return true;
+}
+
+// hashmap_set inserts or replaces an item in the hash map. If an item is
+// replaced then it is returned otherwise NULL is returned. This operation
+// may allocate memory. If the system is unable to allocate additional
+// memory then NULL is returned and hashmap_oom() returns true.
+void *hashmap_set(struct hashmap *map, void *item) {
+ if (!item) {
+ panic("item is null");
+ }
+ map->oom = false;
+ if (map->count == map->growat) {
+ if (!resize(map, map->nbuckets*2)) {
+ map->oom = true;
+ return NULL;
+ }
+ }
+
+
+ struct bucket *entry = map->edata;
+ entry->hash = get_hash(map, item);
+ entry->dib = 1;
+ memcpy(bucket_item(entry), item, map->elsize);
+
+ size_t i = entry->hash & map->mask;
+ for (;;) {
+ struct bucket *bucket = bucket_at(map, i);
+ if (bucket->dib == 0) {
+ memcpy(bucket, entry, map->bucketsz);
+ map->count++;
+ return NULL;
+ }
+ if (entry->hash == bucket->hash &&
+ map->compare(bucket_item(entry), bucket_item(bucket),
+ map->udata) == 0)
+ {
+ memcpy(map->spare, bucket_item(bucket), map->elsize);
+ memcpy(bucket_item(bucket), bucket_item(entry), map->elsize);
+ return map->spare;
+ }
+ if (bucket->dib < entry->dib) {
+ memcpy(map->spare, bucket, map->bucketsz);
+ memcpy(bucket, entry, map->bucketsz);
+ memcpy(entry, map->spare, map->bucketsz);
+ }
+ i = (i + 1) & map->mask;
+ entry->dib += 1;
+ }
+}
+
+// hashmap_get returns the item based on the provided key. If the item is not
+// found then NULL is returned.
+void *hashmap_get(struct hashmap *map, const void *key) {
+ if (!key) {
+ panic("key is null");
+ }
+ uint64_t hash = get_hash(map, key);
+ size_t i = hash & map->mask;
+ for (;;) {
+ struct bucket *bucket = bucket_at(map, i);
+ if (!bucket->dib) {
+ return NULL;
+ }
+ if (bucket->hash == hash &&
+ map->compare(key, bucket_item(bucket), map->udata) == 0)
+ {
+ return bucket_item(bucket);
+ }
+ i = (i + 1) & map->mask;
+ }
+}
+
+// hashmap_probe returns the item in the bucket at position or NULL if an item
+// is not set for that bucket. The position is 'moduloed' by the number of
+// buckets in the hashmap.
+void *hashmap_probe(struct hashmap *map, uint64_t position) {
+ size_t i = position & map->mask;
+ struct bucket *bucket = bucket_at(map, i);
+ if (!bucket->dib) {
+ return NULL;
+ }
+ return bucket_item(bucket);
+}
+
+
+// hashmap_delete removes an item from the hash map and returns it. If the
+// item is not found then NULL is returned.
+void *hashmap_delete(struct hashmap *map, void *key) {
+ if (!key) {
+ panic("key is null");
+ }
+ map->oom = false;
+ uint64_t hash = get_hash(map, key);
+ size_t i = hash & map->mask;
+ for (;;) {
+ struct bucket *bucket = bucket_at(map, i);
+ if (!bucket->dib) {
+ return NULL;
+ }
+ if (bucket->hash == hash &&
+ map->compare(key, bucket_item(bucket), map->udata) == 0)
+ {
+ memcpy(map->spare, bucket_item(bucket), map->elsize);
+ bucket->dib = 0;
+ for (;;) {
+ struct bucket *prev = bucket;
+ i = (i + 1) & map->mask;
+ bucket = bucket_at(map, i);
+ if (bucket->dib <= 1) {
+ prev->dib = 0;
+ break;
+ }
+ memcpy(prev, bucket, map->bucketsz);
+ prev->dib--;
+ }
+ map->count--;
+ if (map->nbuckets > map->cap && map->count <= map->shrinkat) {
+ // Ignore the return value. It's ok for the resize operation to
+ // fail to allocate enough memory because a shrink operation
+ // does not change the integrity of the data.
+ resize(map, map->nbuckets/2);
+ }
+ return map->spare;
+ }
+ i = (i + 1) & map->mask;
+ }
+}
+
+// hashmap_count returns the number of items in the hash map.
+size_t hashmap_count(struct hashmap *map) {
+ return map->count;
+}
+
+// hashmap_free frees the hash map
+// Every item is called with the element-freeing function given in hashmap_new,
+// if present, to free any data referenced in the elements of the hashmap.
+void hashmap_free(struct hashmap *map) {
+ if (!map) return;
+ free_elements(map);
+ map->free(map->buckets);
+ map->free(map);
+}
+
+// hashmap_oom returns true if the last hashmap_set() call failed due to the
+// system being out of memory.
+bool hashmap_oom(struct hashmap *map) {
+ return map->oom;
+}
+
+// hashmap_scan iterates over all items in the hash map
+// Param `iter` can return false to stop iteration early.
+// Returns false if the iteration has been stopped early.
+bool hashmap_scan(struct hashmap *map,
+ bool (*iter)(const void *item, void *udata), void *udata)
+{
+ for (size_t i = 0; i < map->nbuckets; i++) {
+ struct bucket *bucket = bucket_at(map, i);
+ if (bucket->dib) {
+ if (!iter(bucket_item(bucket), udata)) {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+//-----------------------------------------------------------------------------
+// SipHash reference C implementation
+//
+// Copyright (c) 2012-2016 Jean-Philippe Aumasson
+// <jeanphilippe.aumasson@gmail.com>
+// Copyright (c) 2012-2014 Daniel J. Bernstein <djb@cr.yp.to>
+//
+// To the extent possible under law, the author(s) have dedicated all copyright
+// and related and neighboring rights to this software to the public domain
+// worldwide. This software is distributed without any warranty.
+//
+// You should have received a copy of the CC0 Public Domain Dedication along
+// with this software. If not, see
+// <http://creativecommons.org/publicdomain/zero/1.0/>.
+//
+// default: SipHash-2-4
+//-----------------------------------------------------------------------------
+static uint64_t SIP64(const uint8_t *in, const size_t inlen,
+ uint64_t seed0, uint64_t seed1)
+{
+#define U8TO64_LE(p) \
+ { (((uint64_t)((p)[0])) | ((uint64_t)((p)[1]) << 8) | \
+ ((uint64_t)((p)[2]) << 16) | ((uint64_t)((p)[3]) << 24) | \
+ ((uint64_t)((p)[4]) << 32) | ((uint64_t)((p)[5]) << 40) | \
+ ((uint64_t)((p)[6]) << 48) | ((uint64_t)((p)[7]) << 56)) }
+#define U64TO8_LE(p, v) \
+ { U32TO8_LE((p), (uint32_t)((v))); \
+ U32TO8_LE((p) + 4, (uint32_t)((v) >> 32)); }
+#define U32TO8_LE(p, v) \
+ { (p)[0] = (uint8_t)((v)); \
+ (p)[1] = (uint8_t)((v) >> 8); \
+ (p)[2] = (uint8_t)((v) >> 16); \
+ (p)[3] = (uint8_t)((v) >> 24); }
+#define ROTL(x, b) (uint64_t)(((x) << (b)) | ((x) >> (64 - (b))))
+#define SIPROUND \
+ { v0 += v1; v1 = ROTL(v1, 13); \
+ v1 ^= v0; v0 = ROTL(v0, 32); \
+ v2 += v3; v3 = ROTL(v3, 16); \
+ v3 ^= v2; \
+ v0 += v3; v3 = ROTL(v3, 21); \
+ v3 ^= v0; \
+ v2 += v1; v1 = ROTL(v1, 17); \
+ v1 ^= v2; v2 = ROTL(v2, 32); }
+ uint64_t k0 = U8TO64_LE((uint8_t*)&seed0);
+ uint64_t k1 = U8TO64_LE((uint8_t*)&seed1);
+ uint64_t v3 = UINT64_C(0x7465646279746573) ^ k1;
+ uint64_t v2 = UINT64_C(0x6c7967656e657261) ^ k0;
+ uint64_t v1 = UINT64_C(0x646f72616e646f6d) ^ k1;
+ uint64_t v0 = UINT64_C(0x736f6d6570736575) ^ k0;
+ const uint8_t *end = in + inlen - (inlen % sizeof(uint64_t));
+ for (; in != end; in += 8) {
+ uint64_t m = U8TO64_LE(in);
+ v3 ^= m;
+ SIPROUND; SIPROUND;
+ v0 ^= m;
+ }
+ const int left = inlen & 7;
+ uint64_t b = ((uint64_t)inlen) << 56;
+ switch (left) {
+ case 7: b |= ((uint64_t)in[6]) << 48;
+ case 6: b |= ((uint64_t)in[5]) << 40;
+ case 5: b |= ((uint64_t)in[4]) << 32;
+ case 4: b |= ((uint64_t)in[3]) << 24;
+ case 3: b |= ((uint64_t)in[2]) << 16;
+ case 2: b |= ((uint64_t)in[1]) << 8;
+ case 1: b |= ((uint64_t)in[0]); break;
+ case 0: break;
+ }
+ v3 ^= b;
+ SIPROUND; SIPROUND;
+ v0 ^= b;
+ v2 ^= 0xff;
+ SIPROUND; SIPROUND; SIPROUND; SIPROUND;
+ b = v0 ^ v1 ^ v2 ^ v3;
+ uint64_t out = 0;
+ U64TO8_LE((uint8_t*)&out, b);
+ return out;
+}
+
+//-----------------------------------------------------------------------------
+// MurmurHash3 was written by Austin Appleby, and is placed in the public
+// domain. The author hereby disclaims copyright to this source code.
+//
+// Murmur3_86_128
+//-----------------------------------------------------------------------------
+static void MM86128(const void *key, const int len, uint32_t seed, void *out) {
+#define ROTL32(x, r) ((x << r) | (x >> (32 - r)))
+#define FMIX32(h) h^=h>>16; h*=0x85ebca6b; h^=h>>13; h*=0xc2b2ae35; h^=h>>16;
+ const uint8_t * data = (const uint8_t*)key;
+ const int nblocks = len / 16;
+ uint32_t h1 = seed;
+ uint32_t h2 = seed;
+ uint32_t h3 = seed;
+ uint32_t h4 = seed;
+ uint32_t c1 = 0x239b961b;
+ uint32_t c2 = 0xab0e9789;
+ uint32_t c3 = 0x38b34ae5;
+ uint32_t c4 = 0xa1e38b93;
+ const uint32_t * blocks = (const uint32_t *)(data + nblocks*16);
+ for (int i = -nblocks; i; i++) {
+ uint32_t k1 = blocks[i*4+0];
+ uint32_t k2 = blocks[i*4+1];
+ uint32_t k3 = blocks[i*4+2];
+ uint32_t k4 = blocks[i*4+3];
+ k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
+ h1 = ROTL32(h1,19); h1 += h2; h1 = h1*5+0x561ccd1b;
+ k2 *= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
+ h2 = ROTL32(h2,17); h2 += h3; h2 = h2*5+0x0bcaa747;
+ k3 *= c3; k3 = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
+ h3 = ROTL32(h3,15); h3 += h4; h3 = h3*5+0x96cd1c35;
+ k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
+ h4 = ROTL32(h4,13); h4 += h1; h4 = h4*5+0x32ac3b17;
+ }
+ const uint8_t * tail = (const uint8_t*)(data + nblocks*16);
+ uint32_t k1 = 0;
+ uint32_t k2 = 0;
+ uint32_t k3 = 0;
+ uint32_t k4 = 0;
+ switch(len & 15) {
+ case 15: k4 ^= tail[14] << 16;
+ case 14: k4 ^= tail[13] << 8;
+ case 13: k4 ^= tail[12] << 0;
+ k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
+ case 12: k3 ^= tail[11] << 24;
+ case 11: k3 ^= tail[10] << 16;
+ case 10: k3 ^= tail[ 9] << 8;
+ case 9: k3 ^= tail[ 8] << 0;
+ k3 *= c3; k3 = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
+ case 8: k2 ^= tail[ 7] << 24;
+ case 7: k2 ^= tail[ 6] << 16;
+ case 6: k2 ^= tail[ 5] << 8;
+ case 5: k2 ^= tail[ 4] << 0;
+ k2 *= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
+ case 4: k1 ^= tail[ 3] << 24;
+ case 3: k1 ^= tail[ 2] << 16;
+ case 2: k1 ^= tail[ 1] << 8;
+ case 1: k1 ^= tail[ 0] << 0;
+ k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
+ };
+ h1 ^= len; h2 ^= len; h3 ^= len; h4 ^= len;
+ h1 += h2; h1 += h3; h1 += h4;
+ h2 += h1; h3 += h1; h4 += h1;
+ FMIX32(h1); FMIX32(h2); FMIX32(h3); FMIX32(h4);
+ h1 += h2; h1 += h3; h1 += h4;
+ h2 += h1; h3 += h1; h4 += h1;
+ ((uint32_t*)out)[0] = h1;
+ ((uint32_t*)out)[1] = h2;
+ ((uint32_t*)out)[2] = h3;
+ ((uint32_t*)out)[3] = h4;
+}
+
+// hashmap_sip returns a hash value for `data` using SipHash-2-4.
+uint64_t hashmap_sip(const void *data, size_t len,
+ uint64_t seed0, uint64_t seed1)
+{
+ return SIP64((uint8_t*)data, len, seed0, seed1);
+}
+
+// hashmap_murmur returns a hash value for `data` using Murmur3_86_128.
+uint64_t hashmap_murmur(const void *data, size_t len,
+ uint64_t seed0, uint64_t seed1)
+{
+ char out[16];
+ MM86128(data, len, seed0, &out);
+ return *(uint64_t*)out;
+}
+
+//==============================================================================
+// TESTS AND BENCHMARKS
+// $ cc -DHASHMAP_TEST hashmap.c && ./a.out # run tests
+// $ cc -DHASHMAP_TEST -O3 hashmap.c && BENCH=1 ./a.out # run benchmarks
+//==============================================================================
+#ifdef HASHMAP_TEST
+
+static size_t deepcount(struct hashmap *map) {
+ size_t count = 0;
+ for (size_t i = 0; i < map->nbuckets; i++) {
+ if (bucket_at(map, i)->dib) {
+ count++;
+ }
+ }
+ return count;
+}
+
+
+#pragma GCC diagnostic ignored "-Wextra"
+
+
+#include <stdlib.h>
+#include <string.h>
+#include <time.h>
+#include <assert.h>
+#include <stdio.h>
+#include "hashmap.h"
+
+static bool rand_alloc_fail = false;
+static int rand_alloc_fail_odds = 3; // 1 in 3 chance malloc will fail.
+static uintptr_t total_allocs = 0;
+static uintptr_t total_mem = 0;
+
+static void *xmalloc(size_t size) {
+ if (rand_alloc_fail && rand()%rand_alloc_fail_odds == 0) {
+ return NULL;
+ }
+ void *mem = malloc(sizeof(uintptr_t)+size);
+ assert(mem);
+ *(uintptr_t*)mem = size;
+ total_allocs++;
+ total_mem += size;
+ return (char*)mem+sizeof(uintptr_t);
+}
+
+static void xfree(void *ptr) {
+ if (ptr) {
+ total_mem -= *(uintptr_t*)((char*)ptr-sizeof(uintptr_t));
+ free((char*)ptr-sizeof(uintptr_t));
+ total_allocs--;
+ }
+}
+
+static void shuffle(void *array, size_t numels, size_t elsize) {
+ char tmp[elsize];
+ char *arr = array;
+ for (size_t i = 0; i < numels - 1; i++) {
+ int j = i + rand() / (RAND_MAX / (numels - i) + 1);
+ memcpy(tmp, arr + j * elsize, elsize);
+ memcpy(arr + j * elsize, arr + i * elsize, elsize);
+ memcpy(arr + i * elsize, tmp, elsize);
+ }
+}
+
+static bool iter_ints(const void *item, void *udata) {
+ int *vals = *(int**)udata;
+ vals[*(int*)item] = 1;
+ return true;
+}
+
+static int compare_ints(const void *a, const void *b) {
+ return *(int*)a - *(int*)b;
+}
+
+static int compare_ints_udata(const void *a, const void *b, void *udata) {
+ return *(int*)a - *(int*)b;
+}
+
+static int compare_strs(const void *a, const void *b, void *udata) {
+ return strcmp(*(char**)a, *(char**)b);
+}
+
+static uint64_t hash_int(const void *item, uint64_t seed0, uint64_t seed1) {
+ return hashmap_murmur(item, sizeof(int), seed0, seed1);
+}
+
+static uint64_t hash_str(const void *item, uint64_t seed0, uint64_t seed1) {
+ return hashmap_murmur(*(char**)item, strlen(*(char**)item), seed0, seed1);
+}
+
+static void free_str(void *item) {
+ xfree(*(char**)item);
+}
+
+static void all() {
+ int seed = getenv("SEED")?atoi(getenv("SEED")):time(NULL);
+ int N = getenv("N")?atoi(getenv("N")):2000;
+ printf("seed=%d, count=%d, item_size=%zu\n", seed, N, sizeof(int));
+ srand(seed);
+
+ rand_alloc_fail = true;
+
+ // test sip and murmur hashes
+ assert(hashmap_sip("hello", 5, 1, 2) == 2957200328589801622);
+ assert(hashmap_murmur("hello", 5, 1, 2) == 1682575153221130884);
+
+ int *vals;
+ while (!(vals = xmalloc(N * sizeof(int)))) {}
+ for (int i = 0; i < N; i++) {
+ vals[i] = i;
+ }
+
+ struct hashmap *map;
+
+ while (!(map = hashmap_new(sizeof(int), 0, seed, seed,
+ hash_int, compare_ints_udata, NULL, NULL))) {}
+ shuffle(vals, N, sizeof(int));
+ for (int i = 0; i < N; i++) {
+ // // printf("== %d ==\n", vals[i]);
+ assert(map->count == i);
+ assert(map->count == hashmap_count(map));
+ assert(map->count == deepcount(map));
+ int *v;
+ assert(!hashmap_get(map, &vals[i]));
+ assert(!hashmap_delete(map, &vals[i]));
+ while (true) {
+ assert(!hashmap_set(map, &vals[i]));
+ if (!hashmap_oom(map)) {
+ break;
+ }
+ }
+
+ for (int j = 0; j < i; j++) {
+ v = hashmap_get(map, &vals[j]);
+ assert(v && *v == vals[j]);
+ }
+ while (true) {
+ v = hashmap_set(map, &vals[i]);
+ if (!v) {
+ assert(hashmap_oom(map));
+ continue;
+ } else {
+ assert(!hashmap_oom(map));
+ assert(v && *v == vals[i]);
+ break;
+ }
+ }
+ v = hashmap_get(map, &vals[i]);
+ assert(v && *v == vals[i]);
+ v = hashmap_delete(map, &vals[i]);
+ assert(v && *v == vals[i]);
+ assert(!hashmap_get(map, &vals[i]));
+ assert(!hashmap_delete(map, &vals[i]));
+ assert(!hashmap_set(map, &vals[i]));
+ assert(map->count == i+1);
+ assert(map->count == hashmap_count(map));
+ assert(map->count == deepcount(map));
+ }
+
+ int *vals2;
+ while (!(vals2 = xmalloc(N * sizeof(int)))) {}
+ memset(vals2, 0, N * sizeof(int));
+ assert(hashmap_scan(map, iter_ints, &vals2));
+ for (int i = 0; i < N; i++) {
+ assert(vals2[i] == 1);
+ }
+ xfree(vals2);
+
+ shuffle(vals, N, sizeof(int));
+ for (int i = 0; i < N; i++) {
+ int *v;
+ v = hashmap_delete(map, &vals[i]);
+ assert(v && *v == vals[i]);
+ assert(!hashmap_get(map, &vals[i]));
+ assert(map->count == N-i-1);
+ assert(map->count == hashmap_count(map));
+ assert(map->count == deepcount(map));
+ for (int j = N-1; j > i; j--) {
+ v = hashmap_get(map, &vals[j]);
+ assert(v && *v == vals[j]);
+ }
+ }
+
+ for (int i = 0; i < N; i++) {
+ while (true) {
+ assert(!hashmap_set(map, &vals[i]));
+ if (!hashmap_oom(map)) {
+ break;
+ }
+ }
+ }
+
+ assert(map->count != 0);
+ size_t prev_cap = map->cap;
+ hashmap_clear(map, true);
+ assert(prev_cap < map->cap);
+ assert(map->count == 0);
+
+
+ for (int i = 0; i < N; i++) {
+ while (true) {
+ assert(!hashmap_set(map, &vals[i]));
+ if (!hashmap_oom(map)) {
+ break;
+ }
+ }
+ }
+
+ prev_cap = map->cap;
+ hashmap_clear(map, false);
+ assert(prev_cap == map->cap);
+
+ hashmap_free(map);
+
+ xfree(vals);
+
+
+ while (!(map = hashmap_new(sizeof(char*), 0, seed, seed,
+ hash_str, compare_strs, free_str, NULL)));
+
+ for (int i = 0; i < N; i++) {
+ char *str;
+ while (!(str = xmalloc(16)));
+ sprintf(str, "s%i", i);
+ while(!hashmap_set(map, &str));
+ }
+
+ hashmap_clear(map, false);
+ assert(hashmap_count(map) == 0);
+
+ for (int i = 0; i < N; i++) {
+ char *str;
+ while (!(str = xmalloc(16)));
+ sprintf(str, "s%i", i);
+ while(!hashmap_set(map, &str));
+ }
+
+ hashmap_free(map);
+
+ if (total_allocs != 0) {
+ fprintf(stderr, "total_allocs: expected 0, got %lu\n", total_allocs);
+ exit(1);
+ }
+}
+
+#define bench(name, N, code) {{ \
+ if (strlen(name) > 0) { \
+ printf("%-14s ", name); \
+ } \
+ size_t tmem = total_mem; \
+ size_t tallocs = total_allocs; \
+ uint64_t bytes = 0; \
+ clock_t begin = clock(); \
+ for (int i = 0; i < N; i++) { \
+ (code); \
+ } \
+ clock_t end = clock(); \
+ double elapsed_secs = (double)(end - begin) / CLOCKS_PER_SEC; \
+ double bytes_sec = (double)bytes/elapsed_secs; \
+ printf("%d ops in %.3f secs, %.0f ns/op, %.0f op/sec", \
+ N, elapsed_secs, \
+ elapsed_secs/(double)N*1e9, \
+ (double)N/elapsed_secs \
+ ); \
+ if (bytes > 0) { \
+ printf(", %.1f GB/sec", bytes_sec/1024/1024/1024); \
+ } \
+ if (total_mem > tmem) { \
+ size_t used_mem = total_mem-tmem; \
+ printf(", %.2f bytes/op", (double)used_mem/N); \
+ } \
+ if (total_allocs > tallocs) { \
+ size_t used_allocs = total_allocs-tallocs; \
+ printf(", %.2f allocs/op", (double)used_allocs/N); \
+ } \
+ printf("\n"); \
+}}
+
+static void benchmarks() {
+ int seed = getenv("SEED")?atoi(getenv("SEED")):time(NULL);
+ int N = getenv("N")?atoi(getenv("N")):5000000;
+ printf("seed=%d, count=%d, item_size=%zu\n", seed, N, sizeof(int));
+ srand(seed);
+
+
+ int *vals = xmalloc(N * sizeof(int));
+ for (int i = 0; i < N; i++) {
+ vals[i] = i;
+ }
+
+ shuffle(vals, N, sizeof(int));
+
+ struct hashmap *map;
+ shuffle(vals, N, sizeof(int));
+
+ map = hashmap_new(sizeof(int), 0, seed, seed, hash_int, compare_ints_udata,
+ NULL, NULL);
+ bench("set", N, {
+ int *v = hashmap_set(map, &vals[i]);
+ assert(!v);
+ })
+ shuffle(vals, N, sizeof(int));
+ bench("get", N, {
+ int *v = hashmap_get(map, &vals[i]);
+ assert(v && *v == vals[i]);
+ })
+ shuffle(vals, N, sizeof(int));
+ bench("delete", N, {
+ int *v = hashmap_delete(map, &vals[i]);
+ assert(v && *v == vals[i]);
+ })
+ hashmap_free(map);
+
+ map = hashmap_new(sizeof(int), N, seed, seed, hash_int, compare_ints_udata,
+ NULL, NULL);
+ bench("set (cap)", N, {
+ int *v = hashmap_set(map, &vals[i]);
+ assert(!v);
+ })
+ shuffle(vals, N, sizeof(int));
+ bench("get (cap)", N, {
+ int *v = hashmap_get(map, &vals[i]);
+ assert(v && *v == vals[i]);
+ })
+ shuffle(vals, N, sizeof(int));
+ bench("delete (cap)" , N, {
+ int *v = hashmap_delete(map, &vals[i]);
+ assert(v && *v == vals[i]);
+ })
+
+ hashmap_free(map);
+
+
+ xfree(vals);
+
+ if (total_allocs != 0) {
+ fprintf(stderr, "total_allocs: expected 0, got %lu\n", total_allocs);
+ exit(1);
+ }
+}
+
+int main() {
+ hashmap_set_allocator(xmalloc, xfree);
+
+ if (getenv("BENCH")) {
+ printf("Running hashmap.c benchmarks...\n");
+ benchmarks();
+ } else {
+ printf("Running hashmap.c tests...\n");
+ all();
+ printf("PASSED\n");
+ }
+}
+
+
+#endif
+
+
+