summaryrefslogtreecommitdiffstats
path: root/3.2.py
blob: f7dfc04b4907780f2b07ce8e5437319e692173aa (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#!/usr/bin/python2

# Oppsieee https://github.com/mkutny/absorbing-markov-chains

# Doomsday Fuel
# =============

# Making fuel for the LAMBCHOP's reactor core is a tricky process because of
# the exotic matter involved. It starts as raw ore, then during processing,
# begins randomly changing between forms, eventually reaching a stable form.
# There may be multiple stable forms that a sample could ultimately reach, not
# all of which are useful as fuel.

# Commander Lambda has tasked you to help the scientists increase fuel creation
# efficiency by predicting the end state of a given ore sample. You have
# carefully studied the different structures that the ore can take and which
# transitions it undergoes. It appears that, while random, the probability of
# each structure transforming is fixed. That is, each time the ore is in 1
# state, it has the same probabilities of entering the next state (which might
# be the same state). You have recorded the observed transitions in a matrix.
# The others in the lab have hypothesized more exotic forms that the ore can
# become, but you haven't seen all of them.

# Write a function solution(m) that takes an array of array of nonnegative ints
# representing how many times that state has gone to the next state and return
# an array of ints for each terminal state giving the exact probabilities of
# each terminal state, represented as the numerator for each state, then the
# denominator for all of them at the end and in simplest form. The matrix is at
# most 10 by 10. It is guaranteed that no matter which state the ore is in,
# there is a path from that state to a terminal state. That is, the processing
# will always eventually end in a stable state. The ore starts in state 0. The
# denominator will fit within a signed 32-bit integer during the calculation,
# as long as the fraction is simplified regularly.

# For example, consider the matrix m:
# [
#   [0,1,0,0,0,1],  # s0, the initial state, goes to s1 and s5 with equal probability
#   [4,0,0,3,2,0],  # s1 can become s0, s3, or s4, but with different probabilities
#   [0,0,0,0,0,0],  # s2 is terminal, and unreachable (never observed in practice)
#   [0,0,0,0,0,0],  # s3 is terminal
#   [0,0,0,0,0,0],  # s4 is terminal
#   [0,0,0,0,0,0],  # s5 is terminal
# ]
# So, we can consider different paths to terminal states, such as:
# s0 -> s1 -> s3
# s0 -> s1 -> s0 -> s1 -> s0 -> s1 -> s4
# s0 -> s1 -> s0 -> s5
# Tracing the probabilities of each, we find that
# s2 has probability 0
# s3 has probability 3/14
# s4 has probability 1/7
# s5 has probability 9/14
# So, putting that together, and making a common denominator, gives an answer in the form of
# [s2.numerator, s3.numerator, s4.numerator, s5.numerator, denominator] which is
# [0, 3, 2, 9, 14].


from fractions import Fraction
from fractions import gcd

def num_of_transients(m):
    if len(m) == 0:
        raise Exception("Can't get transient states of empty matrix")

    for r in range(len(m)):
        for c in range(len(m[r])):
            if m[r][c] != 0:
                break
        else:
            return r
    raise Exception("Not a valid AMC matrix: no absorbing (terminal) states")

def decompose(m):
    t = num_of_transients(m)
    if t == 0:
        raise Exception("No transient states. At least initial state is needed.")

    Q = []
    for r in range(t):
        qRow = []
        for c in range(t):
            qRow.append(m[r][c])
        Q.append(qRow)
    if Q == []:
        raise Exception("Not a valid AMC matrix: no transient states")

    R = []
    for r in range(t):
        rRow = []
        for c in range(t, len(m[r])):
            rRow.append(m[r][c])
        R.append(rRow)
    if R == []:
        raise Exception("Not a valid AMC matrix: missing absorbing states")
    return Q, R

def identity(t):
    m = []
    for i in range(t):
        r = []
        for j in range(t):
            r.append(int(i == j))
        m.append(r)
    return m

def isZero(m):
    for r in range(len(m)):
        for c in range(len(m[r])):
            if m[r][c] != 0:
                return False
    return True

def swap(m, i, j):
    n = []
    s = len(m)

    if s != len(m[0]):
        raise Exception("Cannot swap non-square matrix")

    if i == j:
        return m

    for r in range(s):
        nRow = []
        tmpRow = m[r]
        if r == i:
            tmpRow = m[j]
        if r == j:
            tmpRow = m[i]
        for c in range(s):
            tmpEl = tmpRow[c]
            if c == i:
                tmpEl = tmpRow[j]
            if c == j:
                tmpEl = tmpRow[i]
            nRow.append(tmpEl)
        n.append(nRow)
    return n

def sort(m):
    size = len(m)

    zero_row = -1
    for r in range(size):
        sum = 0
        for c in range(size):
            sum += m[r][c]
        if sum == 0:
            zero_row = r
        if sum != 0 and zero_row > -1:
            n = swap(m, r, zero_row)
            return sort(n)
    return m

def normalize(m, use_fractions=False ):
    n = []
    for r in range(len(m)):
        sum = 0
        cols = len(m[r])
        for c in range(cols):
            sum += m[r][c]

        nRow = []

        if sum == 0:
            nRow = m[r]
        else:
            for c in range(cols):
                if use_fractions:
                    nRow.append(Fraction(m[r][c], sum))
                else:
                    nRow.append(float(m[r][c])/sum)
        n.append(nRow)
    return n

def subtract(i, q):
    if len(i) != len(i[0]) or len(q) != len(q[0]):
        raise Exception("non-square matrices")

    if len(i) != len(q) or len(i[0]) != len(q[0]):
        raise Exception("Cannot subtract matrices of different sizes")

    s = []
    for r in range(len(i)):
        sRow = []
        for c in range(len(i[r])):
            sRow.append(i[r][c] - q[r][c])
        s.append(sRow)
    return s

def multiply(a, b):
    if a == [] or b == []:
        raise Exception("Cannot multiply empty matrices")

    if len(a[0]) != len(b):
        raise Exception("Cannot multiply matrices of incompatible sizes")

    m = []
    rows = len(a)
    cols = len(b[0])
    iters = len(a[0])

    for r in range(rows):
        mRow = []
        for c in range(cols):
            sum = 0
            for i in range(iters):
                sum += a[r][i]*b[i][c]
            mRow.append(sum)
        m.append(mRow)
    return m

def transposeMatrix(m):
    t = []
    for r in range(len(m)):
        tRow = []
        for c in range(len(m[r])):
            if c == r:
                tRow.append(m[r][c])
            else:
                tRow.append(m[c][r])
        t.append(tRow)
    return t

def getMatrixMinor(m,i,j):
    return [row[:j] + row[j+1:] for row in (m[:i]+m[i+1:])]

def getMatrixDeternminant(m):
    if len(m) == 2:
        return m[0][0]*m[1][1]-m[0][1]*m[1][0]

    d = 0
    for c in range(len(m)):
        d += ((-1)**c)*m[0][c]*getMatrixDeternminant(getMatrixMinor(m,0,c))

    return d

def getMatrixInverse(m):
    d = getMatrixDeternminant(m)

    if d == 0:
        raise Exception("Cannot get inverse of matrix with zero determinant")

    if len(m) == 2:
        return [[m[1][1]/d, -1*m[0][1]/d],
                [-1*m[1][0]/d, m[0][0]/d]]

    cofactors = []
    for r in range(len(m)):
        cofactorRow = []
        for c in range(len(m)):
            minor = getMatrixMinor(m,r,c)
            cofactorRow.append(((-1)**(r+c)) * getMatrixDeternminant(minor))
        cofactors.append(cofactorRow)
    cofactors = transposeMatrix(cofactors)
    for r in range(len(cofactors)):
        for c in range(len(cofactors)):
            cofactors[r][c] = cofactors[r][c]/d
    return cofactors

def find_lcm(a):
    lcm = a[0]
    for i in a[1:]:
        lcm = lcm*i//gcd(lcm, i)
    return lcm
    
def simplify(b):
    a = [i.denominator for i in b]
    lcm = find_lcm(a)

    c = []
    for i in range(len(b)):
        c.append(lcm * b[i].numerator // b[i].denominator)
    c.append(lcm)
    return c

def solution(m):
    if len(m) == 1:
        return [1,1]
    m = sort(m)
    n = normalize(m,use_fractions=True)
    (q, r) = decompose(n)
    i = identity(len(q))
    s = subtract(i, q)
    v = getMatrixInverse(s)
    b = multiply(v, r)

    return simplify(b[0])

print(solution([[0, 2, 1, 0, 0],
                [0, 0, 0, 3, 4],
                [0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0]]))
#   [7, 6, 8, 21]

print(solution([[0, 1, 0, 0, 0, 1],
                [4, 0, 0, 3, 2, 0],
                [0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0]]))
#    [0, 3, 2, 9, 14]

print(solution([[0, 1, 31, 10, 1, 1],
                [11, 0, 1, 23, 0, 0],
                [51, 1, 0, 1, 0, 0],
                [21, 31, 51, 0, 0, 1],
                [0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0]]))

# THE TRIVIAL FucKING CASE
print(solution([[0]]))