diff options
author | grm <grm@eyesin.space> | 2024-05-19 04:06:41 +0300 |
---|---|---|
committer | grm <grm@eyesin.space> | 2024-05-19 04:06:41 +0300 |
commit | 5f0de3a300e4c432272285de84b298ab29f1c07a (patch) | |
tree | e6f614b0e2c5e05bed95705778a0d5d5dedbe446 /src | |
download | cgame-5f0de3a300e4c432272285de84b298ab29f1c07a.tar.gz cgame-5f0de3a300e4c432272285de84b298ab29f1c07a.tar.bz2 cgame-5f0de3a300e4c432272285de84b298ab29f1c07a.zip |
aait
Diffstat (limited to 'src')
-rw-r--r-- | src/Makefile.am | 19 | ||||
-rw-r--r-- | src/cplusplus.cpp | 5 | ||||
-rw-r--r-- | src/cplusplus.h | 14 | ||||
-rw-r--r-- | src/game.c | 1601 | ||||
-rw-r--r-- | src/shader.frag | 9 | ||||
-rw-r--r-- | src/shader.vert | 17 | ||||
-rw-r--r-- | src/state.h | 112 | ||||
-rw-r--r-- | src/vk_mem_alloc.h | 18676 | ||||
-rw-r--r-- | src/vkutil.h | 58 |
9 files changed, 20511 insertions, 0 deletions
diff --git a/src/Makefile.am b/src/Makefile.am new file mode 100644 index 0000000..44c7cc1 --- /dev/null +++ b/src/Makefile.am @@ -0,0 +1,19 @@ +bin_PROGRAMS = game + +common_sources = state.h + +# -fwhole-program allows cross-file inlining, but only works when you put all +# the source files on one gcc command-line. -flto is another way to get the +# same effect. (Link-Time Optimization). clang supports -flto but not +# -fwhole-program. + +# If your program doesn't depend on strict FP rounding +# behaviour, use -ffast-math. If it does, you can usually still use +# -fno-math-errno and stuff like that, without enabling +# -funsafe-math-optimizations. Some FP code can get big speedups from +# fast-math, like auto-vectorization. +AM_CFLAGS = -march=native -fno-math-errno -funroll-loops -flto -pthread -ggdb -DVKDEBUG +# AM_CFLAGS = -O0 -march=native -fno-math-errno -funroll-loops -flto -pthread -ggdb -fsanitize=address + +game_SOURCES = game.c cplusplus.cpp $(common_sources) +game_LDADD = -lSDL2 -lm -lSDL2_image -lvulkan -lshaderc_shared -lstdc++ diff --git a/src/cplusplus.cpp b/src/cplusplus.cpp new file mode 100644 index 0000000..4441cc2 --- /dev/null +++ b/src/cplusplus.cpp @@ -0,0 +1,5 @@ +// not needed yet -- add custom cpp functions first +// #include "cplusplus.h" + +#define VMA_IMPLEMENTATION +#include "vk_mem_alloc.h" diff --git a/src/cplusplus.h b/src/cplusplus.h new file mode 100644 index 0000000..1e5f962 --- /dev/null +++ b/src/cplusplus.h @@ -0,0 +1,14 @@ +#ifndef CPLUSPLUS_H +#define CPLUSPLUS_H + +#ifdef __cplusplus +extern "C" { +#endif + +// cpp funcs + +#ifdef __cplusplus +} +#endif + +#endif // CPLUSPLUS_H diff --git a/src/game.c b/src/game.c new file mode 100644 index 0000000..d6ec303 --- /dev/null +++ b/src/game.c @@ -0,0 +1,1601 @@ +#include <limits.h> +#include <stdbool.h> +#include <stdlib.h> +#include <time.h> + +#include <shaderc/shaderc.h> + +#define SDL_MAIN_HANDLED +#define VK_USE_PLATFORM_XCB_KHR +#include <SDL2/SDL.h> +#include <SDL2/SDL_image.h> +#include <SDL2/SDL_vulkan.h> + +#include <vulkan/vulkan.h> +#include <vulkan/vk_enum_string_helper.h> // for string_VkResult + +#define VMA_STATIC_VULKAN_FUNCTIONS 0 +#define VMA_DYNAMIC_VULKAN_FUNCTIONS 1 +#include "vk_mem_alloc.h" + +//#include "cplusplus.h" +#include "vkutil.h" +#include "state.h" + +// embedded clgm library +#define CGLM_FORCE_DEPTH_ZERO_TO_ONE +#include "../lib/cglm/include/cglm/cglm.h" + +uint32_t currentFrame = 0; +state_t s; + +const uint32_t validationLayerCount = 1; +const char *const validationLayers[] = { + "VK_LAYER_KHRONOS_validation" +}; + +const uint32_t deviceExtensionCount = 1; +const char *const deviceExtensions[] = { + VK_KHR_SWAPCHAIN_EXTENSION_NAME, +}; + +#ifdef VKDEBUG + const bool enableValidationLayers = true; +#else + const bool enableValidationLayers = false; +#endif + +typedef struct { + float x; + float y; +} V2; + +typedef struct { + float x; + float y; + float z; +} V3; + +typedef struct { + V2 pos; + V3 color; +} Vertex; + +/* Vertex vertices[] = { */ +/* (Vertex) { (V2) {-0.2f, -0.5f}, (V3) {0.0f, 1.0f, 0.0f}}, */ +/* (Vertex) { (V2) {0.5f, 0.3f}, (V3) {0.0f, 0.0f, 1.0f}}, */ +/* (Vertex) { (V2) {-0.5f, 0.7f}, (V3) {1.0f, 0.0f, 0.0f}}, */ + +/* (Vertex) { (V2) {0.2f, -0.5f}, (V3) {0.0f, 0.0f, 1.0f}}, */ +/* (Vertex) { (V2) {0.5f, 0.7f}, (V3) {1.0f, 0.0f, 0.0f}}, */ +/* (Vertex) { (V2) {-0.5f, 0.3f}, (V3) {0.0f, 1.0f, 0.0f}}, */ + +/* (Vertex) { (V2) {0.0f, -0.5f}, (V3) {1.0f, 0.0f, 0.0f}}, */ +/* (Vertex) { (V2) {0.5f, 0.5f}, (V3) {0.0f, 1.0f, 0.0f}}, */ +/* (Vertex) { (V2) {-0.5f, 0.5f}, (V3) {0.0f, 0.0f, 1.0f}}, */ +/* }; */ +/* const int VERTICES_SIZE = VK_ARRAY_LEN(vertices); */ + +/* const uint16_t indices[] = { */ +/* 0, 1, 2, 3, 4, 5, 6, 7, 8, */ +/* }; */ +/* const int INDICES_SIZE = VK_ARRAY_LEN(indices); */ + +Vertex vertices[] = { + (Vertex) { (V2) {-0.5f, -0.5f}, (V3) {1.0f, 0.0f, 0.0f}}, + (Vertex) { (V2) {0.5f, -0.5f}, (V3) {0.0f, 1.0f, 0.0f}}, + (Vertex) { (V2) {0.5f, 0.5f}, (V3) {0.0f, 0.0f, 1.0f}}, + (Vertex) { (V2) {-0.5f, 0.5f}, (V3) {1.0f, 1.0f, 1.0f}}, +}; +const int VERTICES_SIZE = VK_ARRAY_LEN(vertices); + +const uint16_t indices[] = { + 0, 1, 2, 2, 3, 0 +}; +const int INDICES_SIZE = VK_ARRAY_LEN(indices); + +bool +init() +{ + if (SDL_Init(SDL_INIT_VIDEO) < 0) { + vk_log(VK_INFO, "SDL could not initialize! SDL_Error: %s\n", SDL_GetError()); + return false; + } + + s.sdl_window = SDL_CreateWindow("Vulkanizater", + SDL_WINDOWPOS_UNDEFINED, + SDL_WINDOWPOS_UNDEFINED, + s.window_w, + s.window_h, + SDL_WINDOW_SHOWN | SDL_WINDOW_RESIZABLE | SDL_WINDOW_VULKAN); + if (s.sdl_window == NULL) { + vk_log(VK_INFO, "Window could not be created! SDL_Error: %s\n", SDL_GetError()); + return false; + } + + return true; +} + +void +closeSDL() +{ + SDL_DestroyWindow(s.sdl_window); + s.sdl_window = NULL; + SDL_Quit(); +} + +bool +checkValidationLayerSupport() +{ + uint32_t layerCount; + vkEnumerateInstanceLayerProperties(&layerCount, NULL); + + VkLayerProperties availableLayers[layerCount]; + vkEnumerateInstanceLayerProperties(&layerCount, availableLayers); + + for (uint32_t i = 0; i < validationLayerCount; i++) { + bool layerFound = false; + + for (uint32_t j = 0; j < layerCount; j++) { + if (strcmp(validationLayers[i], availableLayers[j].layerName) == 0) { + layerFound = true; + break; + } + } + + if (!layerFound) { + return false; + } + } + + return true; +} + +static VKAPI_ATTR VkBool32 VKAPI_CALL +debugCallback(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, + VkDebugUtilsMessageTypeFlagsEXT messageType, + const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, + void* pUserData) +{ + vk_log(VK_ERROR, "validation layer: %s\n", pCallbackData->pMessage); + return VK_FALSE; +} + +void +vulkan_setup_debug_messenger() +{ + if (!enableValidationLayers) return; + VkDebugUtilsMessengerCreateInfoEXT createInfo = {0}; + createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT; + createInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT; + createInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT; + createInfo.pfnUserCallback = debugCallback; + createInfo.pUserData = NULL; // Optional + + + // TODO: func pointers returned are NULL + s.pfnCreateDebugUtilsMessengerEXT = (PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(s.vk_instance, "vkCreateDebugUtilsMessengerEXT"); + s.pfnDestroyDebugUtilsMessengerEXT = (PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(s.vk_instance, "vkDestroyDebugUtilsMessengerEXT"); + + VkResult result = s.pfnCreateDebugUtilsMessengerEXT(s.vk_instance, &createInfo, NULL, &s.vk_debug_messenger); + if (result != VK_SUCCESS) { + vk_log(VK_WARN, "failed to set up debug messenger! %s\n", string_VkResult(result)); + } else { + vk_log(VK_INFO, "Debug messanger created!\n"); + } +} + +void +vulkan_create_instance() +{ + if (enableValidationLayers && !checkValidationLayerSupport()) { + vk_log(VK_ERROR, "validation layers requested, but not available!\n"); + } + + uint32_t instanceVersion; + VkResult result = vkEnumerateInstanceVersion(&instanceVersion); + if (result == VK_SUCCESS) { + if (instanceVersion < VK_MAKE_API_VERSION(0, 1, 3, 0)) { + vk_log(VK_ERROR, "Vulkan version 1.3 or greater required!\n"); + exit(1); + } + vk_log(VK_INFO, "Vulkan version found (%d) %d.%d.%d\n", + VK_API_VERSION_VARIANT(instanceVersion), + VK_API_VERSION_MAJOR(instanceVersion), + VK_API_VERSION_MINOR(instanceVersion), + VK_API_VERSION_PATCH(instanceVersion)); + } else { + vk_log(VK_ERROR, "Failed to retrieve vulkan version, is vulkan supported in this system? %s\n", string_VkResult(result)); + exit(1); + } + + // Load Vulkan and create instance + VkApplicationInfo appInfo = { + .sType = VK_STRUCTURE_TYPE_APPLICATION_INFO, + .pApplicationName = "Vulkan Application", + .applicationVersion = VK_MAKE_API_VERSION(0, 1, 3, 0), + .pEngineName = NULL, + .engineVersion = VK_MAKE_API_VERSION(0, 1, 3, 0), + .apiVersion = VK_MAKE_API_VERSION(0, 1, 3, 0), + }; + + uint32_t sdlExtensionCount = 0; + + if (SDL_Vulkan_GetInstanceExtensions(s.sdl_window, &sdlExtensionCount, NULL) == SDL_FALSE) { + vk_log(VK_ERROR, "SDL_Vulkan_GetInstanceExtensions failed: %s\n", SDL_GetError()); + } + + // make space for debug extenetion + if (enableValidationLayers) { + sdlExtensionCount++; + } + + const char* sdlExtensions[sdlExtensionCount]; + + if (SDL_Vulkan_GetInstanceExtensions(s.sdl_window, &sdlExtensionCount, sdlExtensions) == SDL_FALSE) { + vk_log(VK_ERROR, "SDL_Vulkan_GetInstanceExtensions failed: %s\n", SDL_GetError()); + } + + // add debug extenetion + if (enableValidationLayers) { + sdlExtensions[sdlExtensionCount] = VK_EXT_DEBUG_UTILS_EXTENSION_NAME; + } + + vk_log(VK_INFO, "The sdl extensions:\n"); + for (uint32_t i = 0; i < sdlExtensionCount; i++) { + vk_log(VK_INFO, "\t%s\n", sdlExtensions[i]); + } + + VkInstanceCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, + .pApplicationInfo = &appInfo, + .enabledExtensionCount = sdlExtensionCount, + .ppEnabledExtensionNames = sdlExtensions, + .enabledLayerCount = 0, + }; + + if (enableValidationLayers) { + createInfo.enabledLayerCount = validationLayerCount; + createInfo.ppEnabledLayerNames = validationLayers; + } + + if (vkCreateInstance(&createInfo, NULL, &s.vk_instance) != VK_SUCCESS) { + vk_log(VK_ERROR, "Can't start vulkan instance\n"); + } + vk_log(VK_INFO, "Vulkan instance created\n"); +} + +VkExtent2D +chooseSwapExtent(const VkSurfaceCapabilitiesKHR * capabilities) +{ + if (capabilities->currentExtent.width != UINT32_MAX) { + return capabilities->currentExtent; + } else { + int width, height; + SDL_GetWindowSize(s.sdl_window, &width, &height); + + VkExtent2D actualExtent; + actualExtent.width = (uint32_t) width; + actualExtent.height = (uint32_t) height; + + // Manual implementation of std::clamp since it is not available in C + actualExtent.width = (actualExtent.width < capabilities->minImageExtent.width) ? capabilities->minImageExtent.width : + (actualExtent.width > capabilities->maxImageExtent.width) ? capabilities->maxImageExtent.width : + actualExtent.width; + + actualExtent.height = (actualExtent.height < capabilities->minImageExtent.height) ? capabilities->minImageExtent.height : + (actualExtent.height > capabilities->maxImageExtent.height) ? capabilities->maxImageExtent.height : + actualExtent.height; + + return actualExtent; + } +} + +VkSurfaceFormatKHR +chooseSwapSurfaceFormat(const VkSurfaceFormatKHR * availableFormats, uint32_t formatCount) +{ + for (uint32_t i = 0 ; i < formatCount; i ++) { + if (availableFormats[i].format == VK_FORMAT_B8G8R8A8_SRGB && + availableFormats[i].colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) { + return availableFormats[i]; + } + } + + // if it fails pick the first one + return availableFormats[0]; +} + +VkPresentModeKHR +chooseSwapPresentMode(const VkPresentModeKHR * presentModes, uint32_t presentModeCount) +{ + for (uint32_t i = 0 ; i < presentModeCount; i ++) { + if (presentModes[i] == VK_PRESENT_MODE_MAILBOX_KHR) { + return presentModes[i]; + } + } + + // if it fails pick the the FIFO one + return VK_PRESENT_MODE_FIFO_KHR; +} + +typedef struct SwapChainSupportDetails { + VkSurfaceCapabilitiesKHR capabilities; + VkSurfaceFormatKHR formats[100]; + uint32_t formatCount; + VkPresentModeKHR presentModes[100]; + uint32_t presentModeCount; +} SwapChainSupportDetails; + +SwapChainSupportDetails +querySwapChainSupport(VkPhysicalDevice device) +{ + SwapChainSupportDetails details; + + vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, s.vk_surface, &details.capabilities); + + vkGetPhysicalDeviceSurfaceFormatsKHR(device, s.vk_surface, &details.formatCount, NULL); + + if (details.formatCount != 0) { + // todo alloc format arrray + vkGetPhysicalDeviceSurfaceFormatsKHR(device, s.vk_surface, &details.formatCount, details.formats); + } + + vkGetPhysicalDeviceSurfacePresentModesKHR(device, s.vk_surface, &details.presentModeCount, NULL); + + if (details.presentModeCount != 0) { + // todo alloc presentModes array + vkGetPhysicalDeviceSurfacePresentModesKHR(device, s.vk_surface, &details.presentModeCount, details.presentModes); + } + + return details; +} + +typedef struct QueueFamilyIndices { + uint32_t graphicsFamily; + bool graphicsFlag; + uint32_t presentFamily; + bool presentFlag; +} QueueFamilyIndices; + +bool +vulkan_queue_family_check_flags(QueueFamilyIndices x) +{ + return x.graphicsFlag && x.presentFlag; +} + +QueueFamilyIndices vulkan_find_queue_families(VkPhysicalDevice device) { + QueueFamilyIndices indices; + indices.graphicsFlag = false; + indices.presentFlag = false; + + uint32_t queueFamilyCount = 0; + vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, NULL); + + VkQueueFamilyProperties queueFamilies[queueFamilyCount]; + vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies); + + for (uint32_t i = 0; i < queueFamilyCount; i++) { + if (queueFamilies[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) { + indices.graphicsFamily = i; + indices.graphicsFlag = true; + } + + VkBool32 presentSupport = false; + vkGetPhysicalDeviceSurfaceSupportKHR(device, i, s.vk_surface, &presentSupport); + if (presentSupport) { + indices.presentFamily = i; + indices.presentFlag = true; + } + + if (vulkan_queue_family_check_flags(indices)) break; + } + + return indices; +} + +bool +vulkan_check_device_extension_support(VkPhysicalDevice device) +{ + uint32_t extensionCount; + vkEnumerateDeviceExtensionProperties(device, NULL, &extensionCount, NULL); + + VkExtensionProperties availableExtensions[extensionCount]; + vkEnumerateDeviceExtensionProperties(device, NULL, &extensionCount, availableExtensions); + + uint32_t flag = 0; + + for (uint32_t i = 0; i < deviceExtensionCount; i++) { + for (uint32_t j = 0; j < extensionCount; j++) { + if (strcmp(deviceExtensions[i], availableExtensions[j].extensionName) == 0) { + flag++; + break; + } + } + } + + return flag == deviceExtensionCount; +} + +bool +vulkan_is_device_suitable(VkPhysicalDevice device) +{ + QueueFamilyIndices indices = vulkan_find_queue_families(device); + bool extensionsSupported = vulkan_check_device_extension_support(device); + + bool swapChainAdequate = false; + if (extensionsSupported) { + SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device); + swapChainAdequate = !(swapChainSupport.formatCount == 0) && !(swapChainSupport.presentModeCount == 0); + } + + return vulkan_queue_family_check_flags(indices) && extensionsSupported && swapChainAdequate; +} + +void +vulkan_pick_physical_device() +{ + uint32_t deviceCount = 0; + vkEnumeratePhysicalDevices(s.vk_instance, &deviceCount, NULL); + if (deviceCount == 0) { + vk_log(VK_INFO, "failed to find GPUs with Vulkan support!\n"); + } + + VkPhysicalDevice devices[deviceCount]; + vkEnumeratePhysicalDevices(s.vk_instance, &deviceCount, devices); + + for (uint32_t i = 0; i < deviceCount; i++) { + if (vulkan_is_device_suitable(devices[i])) { + s.vk_physical_device = devices[i]; + break; + } + } + + if (s.vk_physical_device == VK_NULL_HANDLE) { + vk_log(VK_ERROR, "failed to find a suitable GPU!\n"); + } + + VkPhysicalDeviceProperties deviceProperties; + vkGetPhysicalDeviceProperties(s.vk_physical_device, &deviceProperties); + vk_log(VK_INFO, "Picked [%s] physical device.\n", deviceProperties.deviceName); + + uint32_t extensionCount = 0; + vkEnumerateInstanceExtensionProperties(NULL, &extensionCount, NULL); + VkExtensionProperties extensions[extensionCount]; + VkResult result = vkEnumerateInstanceExtensionProperties(NULL, &extensionCount, extensions); + + vk_log(VK_INFO, "Vulkan enabled extensions: %s\n", string_VkResult(result)); + for (uint32_t i = 0; i < extensionCount; i++) { + vk_log(VK_INFO, "\t%s\n", extensions[i].extensionName); + } + +} + +void +vulkan_create_logical_device() +{ + QueueFamilyIndices indices = vulkan_find_queue_families(s.vk_physical_device); + + // TODO CREATE MULPILE QUEUES + // https://vulkan-tutorial.com/en/Drawing_a_triangle/Presentation/Window_surface#page_Creating-the-presentation-queue + + VkDeviceQueueCreateInfo queueCreateInfo = { + .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, + .queueFamilyIndex = indices.graphicsFamily, + .queueCount = 1, + }; + + float queuePriority = 1.0f; + queueCreateInfo.pQueuePriorities = &queuePriority; + + VkPhysicalDeviceFeatures deviceFeatures = {0}; + vkGetPhysicalDeviceFeatures(s.vk_physical_device, &deviceFeatures); +#ifndef NDEBUG + /* Disable robust buffer access when building without debug */ + deviceFeatures.robustBufferAccess = VK_FALSE; +#endif + + VkPhysicalDeviceDynamicRenderingFeaturesKHR dynamic_rendering_feature = { + .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES_KHR, + .dynamicRendering = VK_TRUE, + }; + + VkDeviceCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, + .pQueueCreateInfos = &queueCreateInfo, + .queueCreateInfoCount = 1, + .pNext = &dynamic_rendering_feature, + .pEnabledFeatures = &deviceFeatures, + .enabledExtensionCount = deviceExtensionCount, + .ppEnabledExtensionNames = deviceExtensions, + .enabledLayerCount = 0, + }; + + if (vkCreateDevice(s.vk_physical_device, &createInfo, NULL, &s.vk_device) != VK_SUCCESS) { + vk_log(VK_ERROR, "failed to create logical device!\n"); + } + vk_log(VK_INFO, "Vulkan logical device created\n"); + + vkGetDeviceQueue(s.vk_device, indices.graphicsFamily, 0, &s.vk_graphics_queue); + vkGetDeviceQueue(s.vk_device, indices.presentFamily, 0, &s.vk_present_queue); +} + +void +handle_input(bool * quit) +{ + SDL_Event e; + + while (SDL_PollEvent(&e) != 0) { + // User requests quit + if (e.type == SDL_QUIT) { + *quit = true; + } + // User presses a key + else if (e.type == SDL_KEYDOWN) { + switch (e.key.keysym.sym) { + case SDLK_UP: + s.x += .1f; + break; + case SDLK_DOWN: + s.x -= .1f; + break; + case SDLK_LEFT: + break; + case SDLK_RIGHT: + break; + } + } + else if (e.type == SDL_MOUSEWHEEL) { + if(e.wheel.y > 0) // scroll up + { + s.zoom += 1; + } + else if(e.wheel.y < 0) // scroll down + { + s.zoom -= 1; + if (s.zoom == -100) s.zoom = 1; + } + } + } +} + +void +vulkan_create_surface() +{ + if (SDL_Vulkan_CreateSurface(s.sdl_window, s.vk_instance, &s.vk_surface) == SDL_FALSE) { + vk_log(VK_INFO, "Failed to create surface\n"); + } else { + vk_log(VK_INFO, "Vulkan surface created\n"); + } +} + +void +vulkan_create_swap_chain() +{ + SwapChainSupportDetails swapChainSupport = querySwapChainSupport(s.vk_physical_device); + + VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats, swapChainSupport.formatCount); + VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes, swapChainSupport.presentModeCount); + VkExtent2D extent = chooseSwapExtent(&swapChainSupport.capabilities); + + uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1; + + if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) { + imageCount = swapChainSupport.capabilities.maxImageCount; + } + + VkSwapchainCreateInfoKHR createInfo = { + .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR, + .surface = s.vk_surface, + .minImageCount = imageCount, + .imageFormat = surfaceFormat.format, + .imageColorSpace = surfaceFormat.colorSpace, + .imageExtent = extent, + .imageArrayLayers = 1, + .imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, + }; + + QueueFamilyIndices indices = vulkan_find_queue_families(s.vk_physical_device); + + uint32_t queueFamilyIndices[] = {indices.graphicsFamily, indices.presentFamily}; + + if (indices.graphicsFamily != indices.presentFamily) { + createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT; + createInfo.queueFamilyIndexCount = 2; + createInfo.pQueueFamilyIndices = queueFamilyIndices; + } else { + createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; + createInfo.queueFamilyIndexCount = 0; // Optional + createInfo.pQueueFamilyIndices = NULL; // Optional + } + + createInfo.preTransform = swapChainSupport.capabilities.currentTransform; + createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; + createInfo.presentMode = presentMode; + createInfo.clipped = VK_TRUE; + createInfo.oldSwapchain = VK_NULL_HANDLE; + + VK_CHECK(vkCreateSwapchainKHR(s.vk_device, &createInfo, NULL, &s.vk_swap_chain)); + /* if (result != VK_SUCCESS) { */ + /* vk_log(VK_ERROR, "ERROR: failed to create swap chain! %s\n", string_VkResult(result)); */ + /* } */ + + vkGetSwapchainImagesKHR(s.vk_device, s.vk_swap_chain, &s.vk_swap_chain_image_count, NULL); + //vk_log(VK_INFO, "vk_swap_chain_images count: %d\n", s.vk_swap_chain_image_count); + // todo alloc space for images + vkGetSwapchainImagesKHR(s.vk_device, s.vk_swap_chain, &s.vk_swap_chain_image_count, s.vk_swap_chain_images); + + s.vk_swap_chain_image_format = surfaceFormat.format; + s.vk_swap_chain_extent = extent; + + vk_log(VK_INFO, "Vulkan swapchain created!\n"); +} + +void +vulkan_create_image_views() +{ + for (size_t i = 0; i < s.vk_swap_chain_image_count; i++) { + VkImageViewCreateInfo createInfo = { + .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, + .image = s.vk_swap_chain_images[i], + .viewType = VK_IMAGE_VIEW_TYPE_2D, + .format = s.vk_swap_chain_image_format, + .components.r = VK_COMPONENT_SWIZZLE_IDENTITY, + .components.g = VK_COMPONENT_SWIZZLE_IDENTITY, + .components.b = VK_COMPONENT_SWIZZLE_IDENTITY, + .components.a = VK_COMPONENT_SWIZZLE_IDENTITY, + .subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, + .subresourceRange.baseMipLevel = 0, + .subresourceRange.levelCount = 1, + .subresourceRange.baseArrayLayer = 0, + .subresourceRange.layerCount = 1, + }; + + if (vkCreateImageView(s.vk_device, &createInfo, NULL, &s.vk_swap_chain_image_views[i]) != VK_SUCCESS) { + vk_log(VK_ERROR, "failed to create image views!\n"); + } + } + vk_log(VK_INFO, "Vulkan image views created!\n"); +} + +VkShaderModule +createShaderModule(const char * code, long size) +{ + VkShaderModuleCreateInfo createInfo = {0}; + createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; + createInfo.codeSize = size; + createInfo.pCode = (const uint32_t *)code; + + VkShaderModule shaderModule; + if (vkCreateShaderModule(s.vk_device, &createInfo, NULL, &shaderModule) != VK_SUCCESS) { + vk_log(VK_ERROR, "failed to create shader module!\n"); + } + + return shaderModule; +} + +shaderc_compilation_result_t +load_compile_shader_data(const char * path, shaderc_shader_kind shader_kind) +{ + FILE* file = fopen(path, "r"); + if (!file) { + vk_log(VK_ERROR, "SHADER COMPILATION: Failed to open file: %s\n", path); + return NULL; + } + + fseek(file, 0, SEEK_END); + long glsl_length = ftell(file); + fseek(file, 0, SEEK_SET); + + char* glsl_src = (char*)malloc(glsl_length + 1); + if (!glsl_src) { + vk_log(VK_ERROR, "SHADER COMPILATION: Failed to allocate memory\n"); + fclose(file); + return NULL; + } + + fread(glsl_src, 1, glsl_length, file); + glsl_src[glsl_length] = '\0'; + fclose(file); + + shaderc_compiler_t compiler = shaderc_compiler_initialize(); + if (!compiler) { + vk_log(VK_ERROR, "SHADER COMPILATION: Failed to initialize shader compiler\n"); + free(glsl_src); + return NULL; + } + + shaderc_compile_options_t options = shaderc_compile_options_initialize(); + shaderc_compilation_result_t result = shaderc_compile_into_spv(compiler, + glsl_src, + glsl_length, + shader_kind, + path, "main", options); + + if (shaderc_result_get_compilation_status(result) != shaderc_compilation_status_success) { + vk_log(VK_ERROR, "SHADER COMPILATION: error: %s\n", shaderc_result_get_error_message(result)); + shaderc_result_release(result); + shaderc_compiler_release(compiler); + free(glsl_src); + return NULL; + } + + shaderc_compiler_release(compiler); + free(glsl_src); + + return result; +} + +void +vulkan_create_graphics_pipeline() +{ + shaderc_compilation_result_t vert_result = load_compile_shader_data("shader.vert", shaderc_vertex_shader); + if (!vert_result) { + vk_log(VK_ERROR, "Can't load vertex shader"); + } + shaderc_compilation_result_t frag_result = load_compile_shader_data("shader.frag", shaderc_fragment_shader); + if (!frag_result) { + vk_log(VK_ERROR, "Can't load fragment shader"); + } + + const char * vert_data = shaderc_result_get_bytes(vert_result); + long vert_size = shaderc_result_get_length(vert_result); + const char * frag_data = shaderc_result_get_bytes(frag_result); + long frag_size = shaderc_result_get_length(frag_result); + + vk_log(VK_INFO, "Shaders loaded\n"); + + VkShaderModule vertShaderModule = createShaderModule(vert_data, vert_size); + VkShaderModule fragShaderModule = createShaderModule(frag_data, frag_size); + + VkPipelineShaderStageCreateInfo vertShaderStageInfo = {0}; + vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; + vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT; + vertShaderStageInfo.module = vertShaderModule; + vertShaderStageInfo.pName = "main"; + + VkPipelineShaderStageCreateInfo fragShaderStageInfo = {0}; + fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; + fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT; + fragShaderStageInfo.module = fragShaderModule; + fragShaderStageInfo.pName = "main"; + + VkPipelineShaderStageCreateInfo shaderStages[] = {vertShaderStageInfo, fragShaderStageInfo}; + + VkDynamicState dynamicStates[] = { + VK_DYNAMIC_STATE_VIEWPORT, + VK_DYNAMIC_STATE_SCISSOR + }; + + VkPipelineDynamicStateCreateInfo dynamicState = {0}; + dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; + dynamicState.dynamicStateCount = 2; + dynamicState.pDynamicStates = dynamicStates; + + VkVertexInputBindingDescription bindingDescription = {0}; + bindingDescription.binding = 0; + bindingDescription.stride = sizeof(Vertex); + bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX; + + VkVertexInputAttributeDescription attributeDescriptions[2] = {0}; + attributeDescriptions[0].binding = 0; + attributeDescriptions[0].location = 0; + attributeDescriptions[0].format = VK_FORMAT_R32G32_SFLOAT; + attributeDescriptions[0].offset = offsetof(Vertex, pos); + + attributeDescriptions[1].binding = 0; + attributeDescriptions[1].location = 1; + attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT; + attributeDescriptions[1].offset = offsetof(Vertex, color); + + VkPipelineVertexInputStateCreateInfo vertexInputInfo = {0}; + vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; + vertexInputInfo.vertexBindingDescriptionCount = 1; + vertexInputInfo.pVertexBindingDescriptions = &bindingDescription; + vertexInputInfo.vertexAttributeDescriptionCount = 2; + vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions; + + VkPipelineInputAssemblyStateCreateInfo inputAssembly = {}; + inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; + inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; + inputAssembly.primitiveRestartEnable = VK_FALSE; + + VkViewport viewport = {0}; + viewport.x = 0.0f; + viewport.y = 0.0f; + viewport.width = (float) s.vk_swap_chain_extent.width; + viewport.height = (float) s.vk_swap_chain_extent.height; + viewport.minDepth = 0.0f; + viewport.maxDepth = 1.0f; + + VkRect2D scissor = {0}; + scissor.offset = (VkOffset2D){0, 0}; + scissor.extent = s.vk_swap_chain_extent; + + VkPipelineViewportStateCreateInfo viewportState = { + .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, + .viewportCount = 1, + .pViewports = &viewport, + .scissorCount = 1, + .pScissors = &scissor, + }; + + VkPipelineRasterizationStateCreateInfo rasterizer = {0}; + rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; + rasterizer.depthClampEnable = VK_FALSE; + rasterizer.rasterizerDiscardEnable = VK_FALSE; + rasterizer.polygonMode = VK_POLYGON_MODE_FILL; + rasterizer.lineWidth = 1.0f; + rasterizer.cullMode = VK_CULL_MODE_NONE; +// rasterizer.cullMode = VK_CULL_MODE_BACK_BIT; + rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; + rasterizer.depthBiasEnable = VK_FALSE; + rasterizer.depthBiasConstantFactor = 0.0f; // Optional + rasterizer.depthBiasClamp = 0.0f; // Optional + rasterizer.depthBiasSlopeFactor = 0.0f; // Optional + + VkPipelineMultisampleStateCreateInfo multisampling = {0}; + multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; + multisampling.sampleShadingEnable = VK_FALSE; + multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; + multisampling.minSampleShading = 1.0f; // Optional + multisampling.pSampleMask = NULL; // Optional + multisampling.alphaToCoverageEnable = VK_FALSE; // Optional + multisampling.alphaToOneEnable = VK_FALSE; // Optional + + VkPipelineColorBlendAttachmentState colorBlendAttachment = {0}; + colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; + colorBlendAttachment.blendEnable = VK_TRUE; + colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA; + colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; + colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD; + colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; + colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; + colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD; + /* colorBlendAttachment.blendEnable = VK_FALSE; */ + /* colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; // Optional */ + /* colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional */ + /* colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD; // Optional */ + /* colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; // Optional */ + /* colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional */ + /* colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD; // Optional */ + + VkPipelineColorBlendStateCreateInfo colorBlending = {0}; + colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; + colorBlending.logicOpEnable = VK_FALSE; + colorBlending.logicOp = VK_LOGIC_OP_COPY; // Optional + colorBlending.attachmentCount = 1; + colorBlending.pAttachments = &colorBlendAttachment; + colorBlending.blendConstants[0] = 0.0f; // Optional + colorBlending.blendConstants[1] = 0.0f; // Optional + colorBlending.blendConstants[2] = 0.0f; // Optional + colorBlending.blendConstants[3] = 0.0f; // Optional + + VkPipelineLayoutCreateInfo pipelineLayoutInfo = {0}; + pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; + pipelineLayoutInfo.setLayoutCount = 1; + pipelineLayoutInfo.pSetLayouts = &s.vk_descriptor_set_layout; + pipelineLayoutInfo.pushConstantRangeCount = 0; // Optional + pipelineLayoutInfo.pPushConstantRanges = NULL; // Optional + + if (vkCreatePipelineLayout(s.vk_device, &pipelineLayoutInfo, NULL, &s.vk_pipeline_layout) != VK_SUCCESS) { + vk_log(VK_ERROR, "failed to create pipeline layout!\n"); + } + + VkGraphicsPipelineCreateInfo pipelineInfo = {0}; + pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; + pipelineInfo.stageCount = 2; + pipelineInfo.pStages = shaderStages; + + pipelineInfo.pVertexInputState = &vertexInputInfo; + pipelineInfo.pInputAssemblyState = &inputAssembly; + pipelineInfo.pViewportState = &viewportState; + pipelineInfo.pRasterizationState = &rasterizer; + pipelineInfo.pMultisampleState = &multisampling; + pipelineInfo.pDepthStencilState = NULL; // Optional + pipelineInfo.pColorBlendState = &colorBlending; + pipelineInfo.pDynamicState = &dynamicState; + pipelineInfo.layout = s.vk_pipeline_layout; + pipelineInfo.renderPass = s.vk_render_pass; + pipelineInfo.subpass = 0; + pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; // Optional + pipelineInfo.basePipelineIndex = -1; // Optional + + if (vkCreateGraphicsPipelines(s.vk_device, VK_NULL_HANDLE, 1, &pipelineInfo, NULL, &s.vk_graphics_pipeline) != VK_SUCCESS) { + vk_log(VK_ERROR, "failed to create graphics pipeline!\n"); + } + + shaderc_result_release(vert_result); + shaderc_result_release(frag_result); + + vkDestroyShaderModule(s.vk_device, fragShaderModule, NULL); + vkDestroyShaderModule(s.vk_device, vertShaderModule, NULL); +} + +void +vulkan_create_render_pass() +{ + VkAttachmentDescription colorAttachment = {0}; + colorAttachment.format = s.vk_swap_chain_image_format; + colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT; + colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; + colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; + colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; + colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; + colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; + colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; + + VkAttachmentReference colorAttachmentRef = {0}; + colorAttachmentRef.attachment = 0; + colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; + + VkSubpassDescription subpass = {0}; + subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; + subpass.colorAttachmentCount = 1; + subpass.pColorAttachments = &colorAttachmentRef; + + VkSubpassDependency dependency = {0}; + dependency.srcSubpass = VK_SUBPASS_EXTERNAL; + dependency.dstSubpass = 0; + dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; + dependency.srcAccessMask = 0; + dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; + dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; + + VkRenderPassCreateInfo renderPassInfo = {0}; + renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; + renderPassInfo.attachmentCount = 1; + renderPassInfo.pAttachments = &colorAttachment; + renderPassInfo.subpassCount = 1; + renderPassInfo.pSubpasses = &subpass; + renderPassInfo.dependencyCount = 1; + renderPassInfo.pDependencies = &dependency; + + if (vkCreateRenderPass(s.vk_device, &renderPassInfo, NULL, &s.vk_render_pass) != VK_SUCCESS) { + vk_log(VK_ERROR, "failed to create render pass!\n"); + } +} + +void +vulkan_create_framebuffers() +{ + s.vk_swap_chain_framebuffers_count = s.vk_swap_chain_image_count; + for (size_t i = 0; i < s.vk_swap_chain_image_count; i++) { + VkImageView attachments[] = { + s.vk_swap_chain_image_views[i] + }; + + VkFramebufferCreateInfo framebufferInfo = {0}; + framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; + framebufferInfo.renderPass = s.vk_render_pass; + framebufferInfo.attachmentCount = 1; + framebufferInfo.pAttachments = attachments; + framebufferInfo.width = s.vk_swap_chain_extent.width; + framebufferInfo.height = s.vk_swap_chain_extent.height; + framebufferInfo.layers = 1; + + if (vkCreateFramebuffer(s.vk_device, &framebufferInfo, NULL, &s.vk_swap_chain_framebuffers[i]) != VK_SUCCESS) { + vk_log(VK_ERROR, "failed to create framebuffer!\n"); + } + } + +} + +void +vulkan_create_command_pool() +{ + QueueFamilyIndices queueFamilyIndices = vulkan_find_queue_families(s.vk_physical_device); + + VkCommandPoolCreateInfo poolInfo = {0}; + poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; + poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; + poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily; + + if (vkCreateCommandPool(s.vk_device, &poolInfo, NULL, &s.vk_command_pool) != VK_SUCCESS) { + vk_log(VK_ERROR, "failed to create command pool!\n"); + } + +} + +void +vulkan_create_command_buffer() +{ + VkCommandBufferAllocateInfo allocInfo = {0}; + allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; + allocInfo.commandPool = s.vk_command_pool; + allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; + allocInfo.commandBufferCount = MAX_FRAMES_IN_FLIGHT; + + if (vkAllocateCommandBuffers(s.vk_device, &allocInfo, s.vk_command_buffers) != VK_SUCCESS) { + vk_log(VK_ERROR, "failed to allocate command buffers!\n"); + } +} + +void +recordCommandBuffer(VkCommandBuffer commandBuffer, uint32_t imageIndex) +{ + VkCommandBufferBeginInfo beginInfo = {0}; + beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; + beginInfo.flags = 0; // Optional + beginInfo.pInheritanceInfo = NULL; // Optional + + if (vkBeginCommandBuffer(commandBuffer, &beginInfo) != VK_SUCCESS) { + vk_log(VK_ERROR, "failed to begin recording command buffer!\n"); + } + + VkRenderPassBeginInfo renderPassInfo = {0}; + renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; + renderPassInfo.renderPass = s.vk_render_pass; + renderPassInfo.framebuffer = s.vk_swap_chain_framebuffers[imageIndex]; + renderPassInfo.renderArea.offset = (VkOffset2D){0, 0}; + renderPassInfo.renderArea.extent = s.vk_swap_chain_extent; + + VkClearValue clearColor = {{{0.0f, 0.0f, 0.0f, 1.0f}}}; + renderPassInfo.clearValueCount = 1; + renderPassInfo.pClearValues = &clearColor; + + // TODO DYNAMIC RENDERING + /* VkRenderingAttachmentInfo colorAttachment = {}; */ + /* colorAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO; */ + /* colorAttachment.imageView = s.vk_swap_chain_image_views[imageIndex]; */ + /* colorAttachment.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; */ + /* colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; */ + /* colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; */ + /* //colorAttachment.clearValue.color = clearColor; */ + + /* VkRenderingInfo renderingInfo = {}; */ + /* renderingInfo.sType = VK_STRUCTURE_TYPE_RENDERING_INFO; */ + /* renderingInfo.renderArea = (VkRect2D){ {0, 0}, {(float)(s.vk_swap_chain_extent.width), (float)(s.vk_swap_chain_extent.height)} }; */ + /* renderingInfo.layerCount = 1; */ + /* renderingInfo.colorAttachmentCount = 1; */ + /* renderingInfo.pColorAttachments = &colorAttachment; */ + + /* vkCmdBeginRendering(commandBuffer, &renderingInfo); */ + /* .... */ + /* vkCmdEndRendering(commandBuffer); */ + + vkCmdBeginRenderPass(commandBuffer, &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE); + + vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, s.vk_graphics_pipeline); + + VkViewport viewport = {0}; + viewport.x = 0.0f; + viewport.y = 0.0f; + viewport.width = (float)(s.vk_swap_chain_extent.width); + viewport.height = (float)(s.vk_swap_chain_extent.height); + viewport.minDepth = 0.0f; + viewport.maxDepth = 1.0f; + vkCmdSetViewport(commandBuffer, 0, 1, &viewport); + + VkRect2D scissor = {0}; + scissor.offset = (VkOffset2D){0, 0}; + scissor.extent = s.vk_swap_chain_extent; + vkCmdSetScissor(commandBuffer, 0, 1, &scissor); + + VkBuffer vertexBuffers[] = {s.vk_vertex_buffer}; + VkDeviceSize offsets[] = {0}; + vkCmdBindVertexBuffers(commandBuffer, 0, 1, vertexBuffers, offsets); + vkCmdBindIndexBuffer(commandBuffer, s.vk_index_buffer, 0, VK_INDEX_TYPE_UINT16); + vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, s.vk_pipeline_layout, 0, 1, &s.vk_descriptor_sets[currentFrame], 0, NULL); + + vkCmdDrawIndexed(commandBuffer, INDICES_SIZE, 1, 0, 0, 0); + + vkCmdEndRenderPass(commandBuffer); + + if (vkEndCommandBuffer(commandBuffer) != VK_SUCCESS) { + vk_log(VK_ERROR, "failed to record command buffer!\n"); + } +} + +void +vulkan_create_sync_objects() +{ + VkSemaphoreCreateInfo semaphoreInfo = {0}; + semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; + + VkFenceCreateInfo fenceInfo = {0}; + fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; + fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT; + + for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) { + if (vkCreateSemaphore(s.vk_device, &semaphoreInfo, NULL, &s.imageAvailableSemaphores[i]) != VK_SUCCESS || + vkCreateSemaphore(s.vk_device, &semaphoreInfo, NULL, &s.renderFinishedSemaphores[i]) != VK_SUCCESS || + vkCreateFence(s.vk_device, &fenceInfo, NULL, &s.inFlightFences[i]) != VK_SUCCESS) { + vk_log(VK_ERROR, "failed to create semaphores!\n"); + } + } +} + +uint32_t +findMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags properties) +{ + VkPhysicalDeviceMemoryProperties memProperties; + vkGetPhysicalDeviceMemoryProperties(s.vk_physical_device, &memProperties); + + for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) { + if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags & properties) == properties) { + return i; + } + } + + vk_log(VK_ERROR, "failed to find suitable memory type!\n"); + return 9999; +} + +void +createBuffer(VkDeviceSize size, + VkBufferUsageFlags usage, + VkMemoryPropertyFlags properties, + VkBuffer *buffer, VkDeviceMemory *bufferMemory) +{ + VkBufferCreateInfo bufferInfo = {0}; + bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; + bufferInfo.size = size; + bufferInfo.usage = usage; + bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; + + if (vkCreateBuffer(s.vk_device, &bufferInfo, NULL, buffer) != VK_SUCCESS) { + vk_log(VK_ERROR, "failed to create buffer!\n"); + } + + VkMemoryRequirements memRequirements; + vkGetBufferMemoryRequirements(s.vk_device, *buffer, &memRequirements); + + VkMemoryAllocateInfo allocInfo = {0}; + allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; + allocInfo.allocationSize = memRequirements.size; + allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties); + + // TODO: allocations limited by hardware + if (vkAllocateMemory(s.vk_device, &allocInfo, NULL, bufferMemory) != VK_SUCCESS) { + vk_log(VK_ERROR, "failed to allocate buffer memory!\n"); + } + + vkBindBufferMemory(s.vk_device, *buffer, *bufferMemory, 0); +} + +/* void */ +/* vulkan_create_vertex_buffer() */ +/* { */ +/* VkDeviceSize bufferSize = sizeof(vertices[0]) * VERTICES_SIZE; */ +/* createBuffer(bufferSize, */ +/* VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, */ +/* VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, */ +/* &s.vk_vertex_buffer, &s.vk_vertex_buffer_memory); */ + +/* void* data; */ +/* vkMapMemory(s.vk_device, s.vk_vertex_buffer_memory, 0, bufferSize, 0, &data); */ +/* memcpy(data, vertices, (size_t) bufferSize); */ +/* vkUnmapMemory(s.vk_device, s.vk_vertex_buffer_memory); */ +/* } */ +void +copyBuffer(VkBuffer srcBuffer, VkBuffer dstBuffer, VkDeviceSize size) { + VkCommandBufferAllocateInfo allocInfo = {0}; + allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; + allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; + allocInfo.commandPool = s.vk_command_pool; + allocInfo.commandBufferCount = 1; + + VkCommandBuffer commandBuffer; + vkAllocateCommandBuffers(s.vk_device, &allocInfo, &commandBuffer); + + VkCommandBufferBeginInfo beginInfo = {0}; + beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; + beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; + + vkBeginCommandBuffer(commandBuffer, &beginInfo); + VkBufferCopy copyRegion = {0}; + copyRegion.srcOffset = 0; // Optional + copyRegion.dstOffset = 0; // Optional + copyRegion.size = size; + vkCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, 1, ©Region); + vkEndCommandBuffer(commandBuffer); + + VkSubmitInfo submitInfo = {0}; + submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; + submitInfo.commandBufferCount = 1; + submitInfo.pCommandBuffers = &commandBuffer; + + vkQueueSubmit(s.vk_graphics_queue, 1, &submitInfo, VK_NULL_HANDLE); + vkQueueWaitIdle(s.vk_graphics_queue); + + vkFreeCommandBuffers(s.vk_device, s.vk_command_pool, 1, &commandBuffer); +} + + + +void +vulkan_create_vertex_buffer() +{ + VkDeviceSize bufferSize = sizeof(vertices[0]) * VERTICES_SIZE; + + VkBuffer stagingBuffer; + VkDeviceMemory stagingBufferMemory; + + createBuffer(bufferSize, + VK_BUFFER_USAGE_TRANSFER_SRC_BIT, + VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, + &stagingBuffer, &stagingBufferMemory); + + void* data; + vkMapMemory(s.vk_device, stagingBufferMemory, 0, bufferSize, 0, &data); + memcpy(data, vertices, (size_t) bufferSize); + vkUnmapMemory(s.vk_device, stagingBufferMemory); + + createBuffer(bufferSize, + VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, + VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, + &s.vk_vertex_buffer, &s.vk_vertex_buffer_memory); + + copyBuffer(stagingBuffer, s.vk_vertex_buffer, bufferSize); + + vkDestroyBuffer(s.vk_device, stagingBuffer, NULL); + vkFreeMemory(s.vk_device, stagingBufferMemory, NULL); +} + +void +vulkan_create_index_buffer() +{ + VkDeviceSize bufferSize = sizeof(indices[0]) * INDICES_SIZE; + + VkBuffer stagingBuffer; + VkDeviceMemory stagingBufferMemory; + + createBuffer(bufferSize, + VK_BUFFER_USAGE_TRANSFER_SRC_BIT, + VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, + &stagingBuffer, &stagingBufferMemory); + + void* data; + vkMapMemory(s.vk_device, stagingBufferMemory, 0, bufferSize, 0, &data); + memcpy(data, indices, (size_t) bufferSize); + vkUnmapMemory(s.vk_device, stagingBufferMemory); + + createBuffer(bufferSize, + VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT, + VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, + &s.vk_index_buffer, &s.vk_index_buffer_memory); + + copyBuffer(stagingBuffer, s.vk_index_buffer, bufferSize); + + vkDestroyBuffer(s.vk_device, stagingBuffer, NULL); + vkFreeMemory(s.vk_device, stagingBufferMemory, NULL); +} + +void +vulkan_create_descriptor_set_layout() +{ + VkDescriptorSetLayoutBinding uboLayoutBinding = {0}; + uboLayoutBinding.binding = 0; + uboLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; + uboLayoutBinding.descriptorCount = 1; + uboLayoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT; + uboLayoutBinding.pImmutableSamplers = NULL; // optional + + VkDescriptorSetLayoutCreateInfo layoutInfo = {0}; + layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; + layoutInfo.bindingCount = 1; + layoutInfo.pBindings = &uboLayoutBinding; + + if (vkCreateDescriptorSetLayout(s.vk_device, &layoutInfo, NULL, &s.vk_descriptor_set_layout) != VK_SUCCESS) { + vk_log(VK_ERROR, "failed to create descriptor set layout!\n"); + } +} + +void +vulkan_create_uniform_buffers() +{ + VkDeviceSize bufferSize = sizeof(UniformBufferObject); + + for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) { + createBuffer(bufferSize, + VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, + VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, + &s.vk_uniform_buffers[i], &s.vk_uniform_buffers_memory[i]); + + vkMapMemory(s.vk_device, s.vk_uniform_buffers_memory[i], 0, bufferSize, 0, &s.vk_uniform_buffers_mapped[i]); + } +} + +void +vulkan_create_descriptor_pool() +{ + VkDescriptorPoolSize poolSize = {0}; + poolSize.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; + poolSize.descriptorCount = MAX_FRAMES_IN_FLIGHT; + + VkDescriptorPoolCreateInfo poolInfo = {0}; + poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO; + poolInfo.poolSizeCount = 1; + poolInfo.pPoolSizes = &poolSize; + poolInfo.maxSets = MAX_FRAMES_IN_FLIGHT; + + if (vkCreateDescriptorPool(s.vk_device, &poolInfo, NULL, &s.vk_descriptor_pool) != VK_SUCCESS) { + vk_log(VK_ERROR, "failed to create descriptor pool!\n"); + } + +} + +void +vulkan_create_descriptor_sets() +{ + VkDescriptorSetLayout layouts[MAX_FRAMES_IN_FLIGHT] = {0}; + + for (int i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) { + layouts[i] = s.vk_descriptor_set_layout; + } + + VkDescriptorSetAllocateInfo allocInfo = {0}; + allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO; + allocInfo.descriptorPool = s.vk_descriptor_pool; + allocInfo.descriptorSetCount = MAX_FRAMES_IN_FLIGHT; + allocInfo.pSetLayouts = layouts; + + if (vkAllocateDescriptorSets(s.vk_device, &allocInfo, s.vk_descriptor_sets) != VK_SUCCESS) { + vk_log(VK_ERROR, "failed to allocate descriptor sets!\n"); + } + + for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) { + VkDescriptorBufferInfo bufferInfo = {0}; + bufferInfo.buffer = s.vk_uniform_buffers[i]; + bufferInfo.offset = 0; + bufferInfo.range = sizeof(UniformBufferObject); + + VkWriteDescriptorSet descriptorWrite = {0}; + descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; + descriptorWrite.dstSet = s.vk_descriptor_sets[i]; + descriptorWrite.dstBinding = 0; + descriptorWrite.dstArrayElement = 0; + descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; + descriptorWrite.descriptorCount = 1; + descriptorWrite.pBufferInfo = &bufferInfo; + descriptorWrite.pImageInfo = NULL; // Optional + descriptorWrite.pTexelBufferView = NULL; // Optional + + vkUpdateDescriptorSets(s.vk_device, 1, &descriptorWrite, 0, NULL); + } +} + +void +init_vulkan() +{ + vk_log(VK_WARN, "====================================\n"); + vk_log(VK_WARN, " DEBUG ON \n"); + vk_log(VK_WARN, "====================================\n"); + + vulkan_create_instance(); + // vulkan_setup_debug_messenger(); + vulkan_create_surface(); + vulkan_pick_physical_device(); + vulkan_create_logical_device(); + vulkan_create_swap_chain(); + vulkan_create_image_views(); + vulkan_create_render_pass(); + vulkan_create_descriptor_set_layout(); + vulkan_create_graphics_pipeline(); + vulkan_create_framebuffers(); + vulkan_create_command_pool(); + vulkan_create_vertex_buffer(); + vulkan_create_index_buffer(); + vulkan_create_uniform_buffers(); + vulkan_create_descriptor_pool(); + vulkan_create_descriptor_sets(); + vulkan_create_command_buffer(); + vulkan_create_sync_objects(); +} + +void +cleanupSwapChain() +{ + for (size_t i = 0; i < s.vk_swap_chain_image_count; i++) { + vkDestroyFramebuffer(s.vk_device, s.vk_swap_chain_framebuffers[i], NULL); + } + for (uint32_t i = 0; i < s.vk_swap_chain_image_count; i++) { + vkDestroyImageView(s.vk_device, s.vk_swap_chain_image_views[i], NULL); + } + vkDestroySwapchainKHR(s.vk_device, s.vk_swap_chain, NULL); +} + +void +recreateSwapChain() +{ + vkDeviceWaitIdle(s.vk_device); + + cleanupSwapChain(); + + vulkan_create_swap_chain(); + vulkan_create_image_views(); + vulkan_create_framebuffers(); +} + +void +close_vulkan() +{ + vkDeviceWaitIdle(s.vk_device); + // Cleanup + for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) { + vkDestroySemaphore(s.vk_device, s.imageAvailableSemaphores[i], NULL); + vkDestroySemaphore(s.vk_device, s.renderFinishedSemaphores[i], NULL); + vkDestroyFence(s.vk_device, s.inFlightFences[i], NULL); + } + + vkDestroyCommandPool(s.vk_device, s.vk_command_pool, NULL); + + cleanupSwapChain(); + + for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) { + vkDestroyBuffer(s.vk_device, s.vk_uniform_buffers[i], NULL); + vkFreeMemory(s.vk_device, s.vk_uniform_buffers_memory[i], NULL); + } + vkDestroyDescriptorPool(s.vk_device, s.vk_descriptor_pool, NULL); + vkDestroyDescriptorSetLayout(s.vk_device, s.vk_descriptor_set_layout, NULL); + + vkDestroyBuffer(s.vk_device, s.vk_vertex_buffer, NULL); + vkFreeMemory(s.vk_device, s.vk_vertex_buffer_memory, NULL); + + vkDestroyBuffer(s.vk_device, s.vk_index_buffer, NULL); + vkFreeMemory(s.vk_device, s.vk_index_buffer_memory, NULL); + + vkDestroyPipeline(s.vk_device, s.vk_graphics_pipeline, NULL); + vkDestroyRenderPass(s.vk_device, s.vk_render_pass, NULL); + vkDestroyPipelineLayout(s.vk_device, s.vk_pipeline_layout, NULL); + vkDestroyDevice(s.vk_device, NULL); + vkDestroySurfaceKHR(s.vk_instance, s.vk_surface, NULL); + /* if (enableValidationLayers) { */ + /* DestroyDebugUtilsMessengerEXT(s.vk_instance, s.vk_debug_messenger, NULL); */ + /* } */ + vkDestroyInstance(s.vk_instance, NULL); +} + +float +current_time() +{ + static struct timespec startTime; + static int isStartTimeInitialized = 0; + + if (!isStartTimeInitialized) { + clock_gettime(CLOCK_MONOTONIC, &startTime); + isStartTimeInitialized = 1; + } + + struct timespec currentTime; + clock_gettime(CLOCK_MONOTONIC, ¤tTime); + + return (currentTime.tv_sec - startTime.tv_sec) + + (currentTime.tv_nsec - startTime.tv_nsec) / 1e9f; +} + +void +updateUniformBuffer(uint32_t currentImage) +{ + + float time = current_time(); + + UniformBufferObject ubo = {0}; + glm_mat4_identity(ubo.model); + glm_rotate(ubo.model, glm_rad(100 * time * glm_rad(90.0f)), GLM_ZUP); + + vec3 eye = {1.0f + s.x, 1.0f + s.x, 1.0f + s.x}; // GLM_VEC3_ONE_INIT; + vec3 center = GLM_VEC3_ZERO_INIT; + vec3 up = {0.0f, 0.0f, 1.0f};//GLM_ZUP; + glm_lookat(eye, center, up, ubo.view); + + float aspect = s.vk_swap_chain_extent.width / (float)s.vk_swap_chain_extent.height; + glm_perspective(glm_rad(55.0f - s.zoom ), aspect, 0.1f, 100.0f, ubo.proj); + + // Inverting the Y axis for Vulkan + ubo.proj[1][1] *= -1; + + memcpy(s.vk_uniform_buffers_mapped[currentImage], &ubo, sizeof(ubo)); +} + +void +draw_frame() { + vkWaitForFences(s.vk_device, 1, &s.inFlightFences[currentFrame], VK_TRUE, UINT64_MAX); + + uint32_t imageIndex; + VkResult result = vkAcquireNextImageKHR(s.vk_device, s.vk_swap_chain, UINT64_MAX, s.imageAvailableSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex); + + if (result == VK_ERROR_OUT_OF_DATE_KHR) { + recreateSwapChain(); + return; + } else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) { + vk_log(VK_ERROR, "failed to acquire swap chain image!\n"); + } + + updateUniformBuffer(currentFrame); + + vkResetFences(s.vk_device, 1, &s.inFlightFences[currentFrame]); + + vkResetCommandBuffer(s.vk_command_buffers[currentFrame], 0); + recordCommandBuffer(s.vk_command_buffers[currentFrame], imageIndex); + + + VkSubmitInfo submitInfo = {0}; + submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; + + VkSemaphore waitSemaphores[] = {s.imageAvailableSemaphores[currentFrame]}; + VkPipelineStageFlags waitStages[] = {VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT}; + submitInfo.waitSemaphoreCount = 1; + submitInfo.pWaitSemaphores = waitSemaphores; + submitInfo.pWaitDstStageMask = waitStages; + submitInfo.commandBufferCount = 1; + submitInfo.pCommandBuffers = &s.vk_command_buffers[currentFrame]; + + VkSemaphore signalSemaphores[] = {s.renderFinishedSemaphores[currentFrame]}; + submitInfo.signalSemaphoreCount = 1; + submitInfo.pSignalSemaphores = signalSemaphores; + + if (vkQueueSubmit(s.vk_graphics_queue, 1, &submitInfo, s.inFlightFences[currentFrame]) != VK_SUCCESS) { + vk_log(VK_ERROR, "failed to submit draw command buffer!\n"); + } + + VkSwapchainKHR swapChains[] = {s.vk_swap_chain}; + VkPresentInfoKHR presentInfo = {0}; + presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR; + presentInfo.waitSemaphoreCount = 1; + presentInfo.pWaitSemaphores = signalSemaphores; + presentInfo.swapchainCount = 1; + presentInfo.pSwapchains = swapChains; + presentInfo.pImageIndices = &imageIndex; + presentInfo.pResults = NULL; + + result = vkQueuePresentKHR(s.vk_present_queue, &presentInfo); + + if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR) { + recreateSwapChain(); + } else if (result != VK_SUCCESS) { + vk_log(VK_ERROR, "failed to present swap chain image!\n"); + } + + currentFrame = (currentFrame + 1) % MAX_FRAMES_IN_FLIGHT; +} + +int +main(int argc, char* args[]) +{ + init_state(&s); + if (!init()) { + vk_log(VK_INFO, "Failed to initialize!\n"); + } + else { + init_vulkan(); + + bool quit = false; + + + /* VMA POC */ + /* VmaVulkanFunctions vulkanFunctions = {0}; */ + /* vulkanFunctions.vkGetInstanceProcAddr = &vkGetInstanceProcAddr; */ + /* vulkanFunctions.vkGetDeviceProcAddr = &vkGetDeviceProcAddr; */ + + /* VmaAllocatorCreateInfo allocatorCreateInfo = {0}; */ + /* allocatorCreateInfo.flags = VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT; */ + /* allocatorCreateInfo.vulkanApiVersion = VK_API_VERSION_1_2; */ + /* allocatorCreateInfo.physicalDevice = s.vk_physical_device; */ + /* allocatorCreateInfo.device = s.vk_device; */ + /* allocatorCreateInfo.instance = s.vk_instance; */ + /* allocatorCreateInfo.pVulkanFunctions = &vulkanFunctions; */ + + /* VmaAllocator allocator; */ + /* vmaCreateAllocator(&allocatorCreateInfo, &allocator); */ + + /* // Entire program... */ + + /* // At the end, don't forget to: */ + /* vmaDestroyAllocator(allocator); */ + + // Game loop + while (!quit) { + handle_input(&quit); + draw_frame(); + //SDL_Delay(16); + } + + close_vulkan(); + } + + // Free resources and close SDL + closeSDL(); + + return 0; +} diff --git a/src/shader.frag b/src/shader.frag new file mode 100644 index 0000000..7c5b0e7 --- /dev/null +++ b/src/shader.frag @@ -0,0 +1,9 @@ +#version 450 + +layout(location = 0) in vec3 fragColor; + +layout(location = 0) out vec4 outColor; + +void main() { + outColor = vec4(fragColor, 1.0); +} diff --git a/src/shader.vert b/src/shader.vert new file mode 100644 index 0000000..7ce15ef --- /dev/null +++ b/src/shader.vert @@ -0,0 +1,17 @@ +#version 450 + +layout(binding = 0) uniform UniformBufferObject { + mat4 model; + mat4 view; + mat4 proj; +} ubo; + +layout(location = 0) in vec2 inPosition; +layout(location = 1) in vec3 inColor; + +layout(location = 0) out vec3 fragColor; + +void main() { + gl_Position = ubo.proj * ubo.view * ubo.model * vec4(inPosition, 0.0, 1.0); + fragColor = inColor; +} diff --git a/src/state.h b/src/state.h new file mode 100644 index 0000000..cd5f44e --- /dev/null +++ b/src/state.h @@ -0,0 +1,112 @@ +#include <SDL2/SDL.h> + +#include "cq.h" +#include "../lib/cglm/include/cglm/cglm.h" + +#pragma once + +#define MAX_FRAMES_IN_FLIGHT 2 + +typedef struct { + mat4 model; + mat4 view; + mat4 proj; +} UniformBufferObject; + +typedef struct { + +} frame_data; + +typedef struct state { + int window_w, window_h; + int cell_w, cell_h; + int grid_w, grid_h; + int char_w, char_h; + int char_x, char_y; + + UniformBufferObject ubo; + + float x; + int zoom; + + SDL_Window* sdl_window; + + VkInstance vk_instance; + VkDebugUtilsMessengerEXT vk_debug_messenger; + PFN_vkCreateDebugUtilsMessengerEXT pfnCreateDebugUtilsMessengerEXT; + PFN_vkDestroyDebugUtilsMessengerEXT pfnDestroyDebugUtilsMessengerEXT; + + VkPhysicalDevice vk_physical_device; + VkDevice vk_device; + VkQueue vk_graphics_queue; + VkSurfaceKHR vk_surface; + VkQueue vk_present_queue; + + VkSwapchainKHR vk_swap_chain; + uint32_t vk_swap_chain_image_count; + // LIST vk_swap_chain_images; // VkImage + VkImage vk_swap_chain_images[1024]; + VkFormat vk_swap_chain_image_format; + VkExtent2D vk_swap_chain_extent; + + //LIST vk_swap_chain_image_views; // VkImageView + VkImageView vk_swap_chain_image_views[1000]; + + VkRenderPass vk_render_pass; + + VkDescriptorSetLayout vk_descriptor_set_layout; + VkPipelineLayout vk_pipeline_layout; + VkPipeline vk_graphics_pipeline; + + VkFramebuffer vk_swap_chain_framebuffers[1000]; + uint32_t vk_swap_chain_framebuffers_count; + + VkCommandPool vk_command_pool; + VkCommandBuffer vk_command_buffers[MAX_FRAMES_IN_FLIGHT]; + + VkSemaphore imageAvailableSemaphores[MAX_FRAMES_IN_FLIGHT]; + VkSemaphore renderFinishedSemaphores[MAX_FRAMES_IN_FLIGHT]; + VkFence inFlightFences[MAX_FRAMES_IN_FLIGHT]; + + VkBuffer vk_uniform_buffers[MAX_FRAMES_IN_FLIGHT]; + VkDeviceMemory vk_uniform_buffers_memory[MAX_FRAMES_IN_FLIGHT]; + void * vk_uniform_buffers_mapped[MAX_FRAMES_IN_FLIGHT]; + + VkBuffer vk_vertex_buffer; + VkDeviceMemory vk_vertex_buffer_memory; + + VkBuffer vk_index_buffer; + VkDeviceMemory vk_index_buffer_memory; + + VkDescriptorPool vk_descriptor_pool; + VkDescriptorSet vk_descriptor_sets[MAX_FRAMES_IN_FLIGHT]; + + LIST test; +} state_t ; + +void +init_state(state_t * s) +{ + s->window_w = 800; + s->window_h = 600; + s->cell_w = 10; + s->cell_h = 10; + s->grid_w = 0; + s->grid_h = 0; + s->char_w = 0; + s->char_h = 0; + s->char_x = 0; + s->char_y = 0; + + s->zoom = 10; + s->x = 0.0f; + + s->sdl_window = NULL; + + s->vk_swap_chain_image_count = 0; + s->vk_physical_device = VK_NULL_HANDLE; + + s->vk_swap_chain_framebuffers_count = 0; + + list_init(VkImage *, s->test, 1024); +} diff --git a/src/vk_mem_alloc.h b/src/vk_mem_alloc.h new file mode 100644 index 0000000..711f486 --- /dev/null +++ b/src/vk_mem_alloc.h @@ -0,0 +1,18676 @@ +// +// Copyright (c) 2017-2024 Advanced Micro Devices, Inc. All rights reserved. +// +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files (the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +// THE SOFTWARE. +// + +#ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H +#define AMD_VULKAN_MEMORY_ALLOCATOR_H + +/** \mainpage Vulkan Memory Allocator + +<b>Version 3.1.0-development</b> + +Copyright (c) 2017-2024 Advanced Micro Devices, Inc. All rights reserved. \n +License: MIT \n +See also: [product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/), +[repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator) + + +<b>API documentation divided into groups:</b> [Topics](topics.html) + +<b>General documentation chapters:</b> + +- <b>User guide</b> + - \subpage quick_start + - [Project setup](@ref quick_start_project_setup) + - [Initialization](@ref quick_start_initialization) + - [Resource allocation](@ref quick_start_resource_allocation) + - \subpage choosing_memory_type + - [Usage](@ref choosing_memory_type_usage) + - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags) + - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types) + - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools) + - [Dedicated allocations](@ref choosing_memory_type_dedicated_allocations) + - \subpage memory_mapping + - [Copy functions](@ref memory_mapping_copy_functions) + - [Mapping functions](@ref memory_mapping_mapping_functions) + - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory) + - [Cache flush and invalidate](@ref memory_mapping_cache_control) + - \subpage staying_within_budget + - [Querying for budget](@ref staying_within_budget_querying_for_budget) + - [Controlling memory usage](@ref staying_within_budget_controlling_memory_usage) + - \subpage resource_aliasing + - \subpage custom_memory_pools + - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex) + - [When not to use custom pools](@ref custom_memory_pools_when_not_use) + - [Linear allocation algorithm](@ref linear_algorithm) + - [Free-at-once](@ref linear_algorithm_free_at_once) + - [Stack](@ref linear_algorithm_stack) + - [Double stack](@ref linear_algorithm_double_stack) + - [Ring buffer](@ref linear_algorithm_ring_buffer) + - \subpage defragmentation + - \subpage statistics + - [Numeric statistics](@ref statistics_numeric_statistics) + - [JSON dump](@ref statistics_json_dump) + - \subpage allocation_annotation + - [Allocation user data](@ref allocation_user_data) + - [Allocation names](@ref allocation_names) + - \subpage virtual_allocator + - \subpage debugging_memory_usage + - [Memory initialization](@ref debugging_memory_usage_initialization) + - [Margins](@ref debugging_memory_usage_margins) + - [Corruption detection](@ref debugging_memory_usage_corruption_detection) + - [Leak detection features](@ref debugging_memory_usage_leak_detection) + - \subpage other_api_interop +- \subpage usage_patterns + - [GPU-only resource](@ref usage_patterns_gpu_only) + - [Staging copy for upload](@ref usage_patterns_staging_copy_upload) + - [Readback](@ref usage_patterns_readback) + - [Advanced data uploading](@ref usage_patterns_advanced_data_uploading) + - [Other use cases](@ref usage_patterns_other_use_cases) +- \subpage configuration + - [Pointers to Vulkan functions](@ref config_Vulkan_functions) + - [Custom host memory allocator](@ref custom_memory_allocator) + - [Device memory allocation callbacks](@ref allocation_callbacks) + - [Device heap memory limit](@ref heap_memory_limit) +- <b>Extension support</b> + - \subpage vk_khr_dedicated_allocation + - \subpage enabling_buffer_device_address + - \subpage vk_ext_memory_priority + - \subpage vk_amd_device_coherent_memory +- \subpage general_considerations + - [Thread safety](@ref general_considerations_thread_safety) + - [Versioning and compatibility](@ref general_considerations_versioning_and_compatibility) + - [Validation layer warnings](@ref general_considerations_validation_layer_warnings) + - [Allocation algorithm](@ref general_considerations_allocation_algorithm) + - [Features not supported](@ref general_considerations_features_not_supported) + +\defgroup group_init Library initialization + +\brief API elements related to the initialization and management of the entire library, especially #VmaAllocator object. + +\defgroup group_alloc Memory allocation + +\brief API elements related to the allocation, deallocation, and management of Vulkan memory, buffers, images. +Most basic ones being: vmaCreateBuffer(), vmaCreateImage(). + +\defgroup group_virtual Virtual allocator + +\brief API elements related to the mechanism of \ref virtual_allocator - using the core allocation algorithm +for user-defined purpose without allocating any real GPU memory. + +\defgroup group_stats Statistics + +\brief API elements that query current status of the allocator, from memory usage, budget, to full dump of the internal state in JSON format. +See documentation chapter: \ref statistics. +*/ + + +#ifdef __cplusplus +extern "C" { +#endif + +#include <vulkan/vulkan.h> + +#if !defined(VMA_VULKAN_VERSION) + #if defined(VK_VERSION_1_3) + #define VMA_VULKAN_VERSION 1003000 + #elif defined(VK_VERSION_1_2) + #define VMA_VULKAN_VERSION 1002000 + #elif defined(VK_VERSION_1_1) + #define VMA_VULKAN_VERSION 1001000 + #else + #define VMA_VULKAN_VERSION 1000000 + #endif +#endif + +#if defined(__ANDROID__) && defined(VK_NO_PROTOTYPES) && VMA_STATIC_VULKAN_FUNCTIONS + extern PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr; + extern PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr; + extern PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties; + extern PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties; + extern PFN_vkAllocateMemory vkAllocateMemory; + extern PFN_vkFreeMemory vkFreeMemory; + extern PFN_vkMapMemory vkMapMemory; + extern PFN_vkUnmapMemory vkUnmapMemory; + extern PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges; + extern PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges; + extern PFN_vkBindBufferMemory vkBindBufferMemory; + extern PFN_vkBindImageMemory vkBindImageMemory; + extern PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements; + extern PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements; + extern PFN_vkCreateBuffer vkCreateBuffer; + extern PFN_vkDestroyBuffer vkDestroyBuffer; + extern PFN_vkCreateImage vkCreateImage; + extern PFN_vkDestroyImage vkDestroyImage; + extern PFN_vkCmdCopyBuffer vkCmdCopyBuffer; + #if VMA_VULKAN_VERSION >= 1001000 + extern PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2; + extern PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2; + extern PFN_vkBindBufferMemory2 vkBindBufferMemory2; + extern PFN_vkBindImageMemory2 vkBindImageMemory2; + extern PFN_vkGetPhysicalDeviceMemoryProperties2 vkGetPhysicalDeviceMemoryProperties2; + #endif // #if VMA_VULKAN_VERSION >= 1001000 +#endif // #if defined(__ANDROID__) && VMA_STATIC_VULKAN_FUNCTIONS && VK_NO_PROTOTYPES + +#if !defined(VMA_DEDICATED_ALLOCATION) + #if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation + #define VMA_DEDICATED_ALLOCATION 1 + #else + #define VMA_DEDICATED_ALLOCATION 0 + #endif +#endif + +#if !defined(VMA_BIND_MEMORY2) + #if VK_KHR_bind_memory2 + #define VMA_BIND_MEMORY2 1 + #else + #define VMA_BIND_MEMORY2 0 + #endif +#endif + +#if !defined(VMA_MEMORY_BUDGET) + #if VK_EXT_memory_budget && (VK_KHR_get_physical_device_properties2 || VMA_VULKAN_VERSION >= 1001000) + #define VMA_MEMORY_BUDGET 1 + #else + #define VMA_MEMORY_BUDGET 0 + #endif +#endif + +// Defined to 1 when VK_KHR_buffer_device_address device extension or equivalent core Vulkan 1.2 feature is defined in its headers. +#if !defined(VMA_BUFFER_DEVICE_ADDRESS) + #if VK_KHR_buffer_device_address || VMA_VULKAN_VERSION >= 1002000 + #define VMA_BUFFER_DEVICE_ADDRESS 1 + #else + #define VMA_BUFFER_DEVICE_ADDRESS 0 + #endif +#endif + +// Defined to 1 when VK_EXT_memory_priority device extension is defined in Vulkan headers. +#if !defined(VMA_MEMORY_PRIORITY) + #if VK_EXT_memory_priority + #define VMA_MEMORY_PRIORITY 1 + #else + #define VMA_MEMORY_PRIORITY 0 + #endif +#endif + +// Defined to 1 when VK_KHR_maintenance4 device extension is defined in Vulkan headers. +#if !defined(VMA_KHR_MAINTENANCE4) + #if VK_KHR_maintenance4 + #define VMA_KHR_MAINTENANCE4 1 + #else + #define VMA_KHR_MAINTENANCE4 0 + #endif +#endif + +// Defined to 1 when VK_KHR_maintenance5 device extension is defined in Vulkan headers. +#if !defined(VMA_KHR_MAINTENANCE5) + #if VK_KHR_maintenance5 + #define VMA_KHR_MAINTENANCE5 1 + #else + #define VMA_KHR_MAINTENANCE5 0 + #endif +#endif + + +// Defined to 1 when VK_KHR_external_memory device extension is defined in Vulkan headers. +#if !defined(VMA_EXTERNAL_MEMORY) + #if VK_KHR_external_memory + #define VMA_EXTERNAL_MEMORY 1 + #else + #define VMA_EXTERNAL_MEMORY 0 + #endif +#endif + +// Define these macros to decorate all public functions with additional code, +// before and after returned type, appropriately. This may be useful for +// exporting the functions when compiling VMA as a separate library. Example: +// #define VMA_CALL_PRE __declspec(dllexport) +// #define VMA_CALL_POST __cdecl +#ifndef VMA_CALL_PRE + #define VMA_CALL_PRE +#endif +#ifndef VMA_CALL_POST + #define VMA_CALL_POST +#endif + +// Define this macro to decorate pNext pointers with an attribute specifying the Vulkan +// structure that will be extended via the pNext chain. +#ifndef VMA_EXTENDS_VK_STRUCT + #define VMA_EXTENDS_VK_STRUCT(vkStruct) +#endif + +// Define this macro to decorate pointers with an attribute specifying the +// length of the array they point to if they are not null. +// +// The length may be one of +// - The name of another parameter in the argument list where the pointer is declared +// - The name of another member in the struct where the pointer is declared +// - The name of a member of a struct type, meaning the value of that member in +// the context of the call. For example +// VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount"), +// this means the number of memory heaps available in the device associated +// with the VmaAllocator being dealt with. +#ifndef VMA_LEN_IF_NOT_NULL + #define VMA_LEN_IF_NOT_NULL(len) +#endif + +// The VMA_NULLABLE macro is defined to be _Nullable when compiling with Clang. +// see: https://clang.llvm.org/docs/AttributeReference.html#nullable +#ifndef VMA_NULLABLE + #ifdef __clang__ + #define VMA_NULLABLE _Nullable + #else + #define VMA_NULLABLE + #endif +#endif + +// The VMA_NOT_NULL macro is defined to be _Nonnull when compiling with Clang. +// see: https://clang.llvm.org/docs/AttributeReference.html#nonnull +#ifndef VMA_NOT_NULL + #ifdef __clang__ + #define VMA_NOT_NULL _Nonnull + #else + #define VMA_NOT_NULL + #endif +#endif + +// If non-dispatchable handles are represented as pointers then we can give +// then nullability annotations +#ifndef VMA_NOT_NULL_NON_DISPATCHABLE + #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__) + #define VMA_NOT_NULL_NON_DISPATCHABLE VMA_NOT_NULL + #else + #define VMA_NOT_NULL_NON_DISPATCHABLE + #endif +#endif + +#ifndef VMA_NULLABLE_NON_DISPATCHABLE + #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__) + #define VMA_NULLABLE_NON_DISPATCHABLE VMA_NULLABLE + #else + #define VMA_NULLABLE_NON_DISPATCHABLE + #endif +#endif + +#ifndef VMA_STATS_STRING_ENABLED + #define VMA_STATS_STRING_ENABLED 1 +#endif + +//////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////// +// +// INTERFACE +// +//////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////// + +// Sections for managing code placement in file, only for development purposes e.g. for convenient folding inside an IDE. +#ifndef _VMA_ENUM_DECLARATIONS + +/** +\addtogroup group_init +@{ +*/ + +/// Flags for created #VmaAllocator. +typedef enum VmaAllocatorCreateFlagBits +{ + /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you. + + Using this flag may increase performance because internal mutexes are not used. + */ + VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001, + /** \brief Enables usage of VK_KHR_dedicated_allocation extension. + + The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`. + When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1. + + Using this extension will automatically allocate dedicated blocks of memory for + some buffers and images instead of suballocating place for them out of bigger + memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT + flag) when it is recommended by the driver. It may improve performance on some + GPUs. + + You may set this flag only if you found out that following device extensions are + supported, you enabled them while creating Vulkan device passed as + VmaAllocatorCreateInfo::device, and you want them to be used internally by this + library: + + - VK_KHR_get_memory_requirements2 (device extension) + - VK_KHR_dedicated_allocation (device extension) + + When this flag is set, you can experience following warnings reported by Vulkan + validation layer. You can ignore them. + + > vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer. + */ + VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002, + /** + Enables usage of VK_KHR_bind_memory2 extension. + + The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`. + When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1. + + You may set this flag only if you found out that this device extension is supported, + you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, + and you want it to be used internally by this library. + + The extension provides functions `vkBindBufferMemory2KHR` and `vkBindImageMemory2KHR`, + which allow to pass a chain of `pNext` structures while binding. + This flag is required if you use `pNext` parameter in vmaBindBufferMemory2() or vmaBindImageMemory2(). + */ + VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT = 0x00000004, + /** + Enables usage of VK_EXT_memory_budget extension. + + You may set this flag only if you found out that this device extension is supported, + you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, + and you want it to be used internally by this library, along with another instance extension + VK_KHR_get_physical_device_properties2, which is required by it (or Vulkan 1.1, where this extension is promoted). + + The extension provides query for current memory usage and budget, which will probably + be more accurate than an estimation used by the library otherwise. + */ + VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT = 0x00000008, + /** + Enables usage of VK_AMD_device_coherent_memory extension. + + You may set this flag only if you: + + - found out that this device extension is supported and enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device, + - checked that `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true and set it while creating the Vulkan device, + - want it to be used internally by this library. + + The extension and accompanying device feature provide access to memory types with + `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flags. + They are useful mostly for writing breadcrumb markers - a common method for debugging GPU crash/hang/TDR. + + When the extension is not enabled, such memory types are still enumerated, but their usage is illegal. + To protect from this error, if you don't create the allocator with this flag, it will refuse to allocate any memory or create a custom pool in such memory type, + returning `VK_ERROR_FEATURE_NOT_PRESENT`. + */ + VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT = 0x00000010, + /** + Enables usage of "buffer device address" feature, which allows you to use function + `vkGetBufferDeviceAddress*` to get raw GPU pointer to a buffer and pass it for usage inside a shader. + + You may set this flag only if you: + + 1. (For Vulkan version < 1.2) Found as available and enabled device extension + VK_KHR_buffer_device_address. + This extension is promoted to core Vulkan 1.2. + 2. Found as available and enabled device feature `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress`. + + When this flag is set, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT` using VMA. + The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT` to + allocated memory blocks wherever it might be needed. + + For more information, see documentation chapter \ref enabling_buffer_device_address. + */ + VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT = 0x00000020, + /** + Enables usage of VK_EXT_memory_priority extension in the library. + + You may set this flag only if you found available and enabled this device extension, + along with `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority == VK_TRUE`, + while creating Vulkan device passed as VmaAllocatorCreateInfo::device. + + When this flag is used, VmaAllocationCreateInfo::priority and VmaPoolCreateInfo::priority + are used to set priorities of allocated Vulkan memory. Without it, these variables are ignored. + + A priority must be a floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations. + Larger values are higher priority. The granularity of the priorities is implementation-dependent. + It is automatically passed to every call to `vkAllocateMemory` done by the library using structure `VkMemoryPriorityAllocateInfoEXT`. + The value to be used for default priority is 0.5. + For more details, see the documentation of the VK_EXT_memory_priority extension. + */ + VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT = 0x00000040, + /** + Enables usage of VK_KHR_maintenance4 extension in the library. + + You may set this flag only if you found available and enabled this device extension, + while creating Vulkan device passed as VmaAllocatorCreateInfo::device. + */ + VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE4_BIT = 0x00000080, + /** + Enables usage of VK_KHR_maintenance5 extension in the library. + + You should set this flag if you found available and enabled this device extension, + while creating Vulkan device passed as VmaAllocatorCreateInfo::device. + */ + VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT = 0x00000100, + + VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaAllocatorCreateFlagBits; +/// See #VmaAllocatorCreateFlagBits. +typedef VkFlags VmaAllocatorCreateFlags; + +/** @} */ + +/** +\addtogroup group_alloc +@{ +*/ + +/// \brief Intended usage of the allocated memory. +typedef enum VmaMemoryUsage +{ + /** No intended memory usage specified. + Use other members of VmaAllocationCreateInfo to specify your requirements. + */ + VMA_MEMORY_USAGE_UNKNOWN = 0, + /** + \deprecated Obsolete, preserved for backward compatibility. + Prefers `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. + */ + VMA_MEMORY_USAGE_GPU_ONLY = 1, + /** + \deprecated Obsolete, preserved for backward compatibility. + Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT`. + */ + VMA_MEMORY_USAGE_CPU_ONLY = 2, + /** + \deprecated Obsolete, preserved for backward compatibility. + Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, prefers `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. + */ + VMA_MEMORY_USAGE_CPU_TO_GPU = 3, + /** + \deprecated Obsolete, preserved for backward compatibility. + Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, prefers `VK_MEMORY_PROPERTY_HOST_CACHED_BIT`. + */ + VMA_MEMORY_USAGE_GPU_TO_CPU = 4, + /** + \deprecated Obsolete, preserved for backward compatibility. + Prefers not `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. + */ + VMA_MEMORY_USAGE_CPU_COPY = 5, + /** + Lazily allocated GPU memory having `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`. + Exists mostly on mobile platforms. Using it on desktop PC or other GPUs with no such memory type present will fail the allocation. + + Usage: Memory for transient attachment images (color attachments, depth attachments etc.), created with `VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT`. + + Allocations with this usage are always created as dedicated - it implies #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. + */ + VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED = 6, + /** + Selects best memory type automatically. + This flag is recommended for most common use cases. + + When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT), + you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT + in VmaAllocationCreateInfo::flags. + + It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g. + vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo() + and not with generic memory allocation functions. + */ + VMA_MEMORY_USAGE_AUTO = 7, + /** + Selects best memory type automatically with preference for GPU (device) memory. + + When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT), + you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT + in VmaAllocationCreateInfo::flags. + + It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g. + vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo() + and not with generic memory allocation functions. + */ + VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE = 8, + /** + Selects best memory type automatically with preference for CPU (host) memory. + + When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT), + you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT + in VmaAllocationCreateInfo::flags. + + It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g. + vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo() + and not with generic memory allocation functions. + */ + VMA_MEMORY_USAGE_AUTO_PREFER_HOST = 9, + + VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF +} VmaMemoryUsage; + +/// Flags to be passed as VmaAllocationCreateInfo::flags. +typedef enum VmaAllocationCreateFlagBits +{ + /** \brief Set this flag if the allocation should have its own memory block. + + Use it for special, big resources, like fullscreen images used as attachments. + + If you use this flag while creating a buffer or an image, `VkMemoryDedicatedAllocateInfo` + structure is applied if possible. + */ + VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001, + + /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block. + + If new allocation cannot be placed in any of the existing blocks, allocation + fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error. + + You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and + #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense. + */ + VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002, + /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it. + + Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData. + + It is valid to use this flag for allocation made from memory type that is not + `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is + useful if you need an allocation that is efficient to use on GPU + (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that + support it (e.g. Intel GPU). + */ + VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004, + /** \deprecated Preserved for backward compatibility. Consider using vmaSetAllocationName() instead. + + Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a + null-terminated string. Instead of copying pointer value, a local copy of the + string is made and stored in allocation's `pName`. The string is automatically + freed together with the allocation. It is also used in vmaBuildStatsString(). + */ + VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020, + /** Allocation will be created from upper stack in a double stack pool. + + This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag. + */ + VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040, + /** Create both buffer/image and allocation, but don't bind them together. + It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions. + The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage(). + Otherwise it is ignored. + + If you want to make sure the new buffer/image is not tied to the new memory allocation + through `VkMemoryDedicatedAllocateInfoKHR` structure in case the allocation ends up in its own memory block, + use also flag #VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT. + */ + VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080, + /** Create allocation only if additional device memory required for it, if any, won't exceed + memory budget. Otherwise return `VK_ERROR_OUT_OF_DEVICE_MEMORY`. + */ + VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT = 0x00000100, + /** \brief Set this flag if the allocated memory will have aliasing resources. + + Usage of this flag prevents supplying `VkMemoryDedicatedAllocateInfoKHR` when #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT is specified. + Otherwise created dedicated memory will not be suitable for aliasing resources, resulting in Vulkan Validation Layer errors. + */ + VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT = 0x00000200, + /** + Requests possibility to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT). + + - If you use #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` value, + you must use this flag to be able to map the allocation. Otherwise, mapping is incorrect. + - If you use other value of #VmaMemoryUsage, this flag is ignored and mapping is always possible in memory types that are `HOST_VISIBLE`. + This includes allocations created in \ref custom_memory_pools. + + Declares that mapped memory will only be written sequentially, e.g. using `memcpy()` or a loop writing number-by-number, + never read or accessed randomly, so a memory type can be selected that is uncached and write-combined. + + \warning Violating this declaration may work correctly, but will likely be very slow. + Watch out for implicit reads introduced by doing e.g. `pMappedData[i] += x;` + Better prepare your data in a local variable and `memcpy()` it to the mapped pointer all at once. + */ + VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT = 0x00000400, + /** + Requests possibility to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT). + + - If you use #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` value, + you must use this flag to be able to map the allocation. Otherwise, mapping is incorrect. + - If you use other value of #VmaMemoryUsage, this flag is ignored and mapping is always possible in memory types that are `HOST_VISIBLE`. + This includes allocations created in \ref custom_memory_pools. + + Declares that mapped memory can be read, written, and accessed in random order, + so a `HOST_CACHED` memory type is preferred. + */ + VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT = 0x00000800, + /** + Together with #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT, + it says that despite request for host access, a not-`HOST_VISIBLE` memory type can be selected + if it may improve performance. + + By using this flag, you declare that you will check if the allocation ended up in a `HOST_VISIBLE` memory type + (e.g. using vmaGetAllocationMemoryProperties()) and if not, you will create some "staging" buffer and + issue an explicit transfer to write/read your data. + To prepare for this possibility, don't forget to add appropriate flags like + `VK_BUFFER_USAGE_TRANSFER_DST_BIT`, `VK_BUFFER_USAGE_TRANSFER_SRC_BIT` to the parameters of created buffer or image. + */ + VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT = 0x00001000, + /** Allocation strategy that chooses smallest possible free range for the allocation + to minimize memory usage and fragmentation, possibly at the expense of allocation time. + */ + VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = 0x00010000, + /** Allocation strategy that chooses first suitable free range for the allocation - + not necessarily in terms of the smallest offset but the one that is easiest and fastest to find + to minimize allocation time, possibly at the expense of allocation quality. + */ + VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = 0x00020000, + /** Allocation strategy that chooses always the lowest offset in available space. + This is not the most efficient strategy but achieves highly packed data. + Used internally by defragmentation, not recommended in typical usage. + */ + VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT = 0x00040000, + /** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT. + */ + VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT, + /** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT. + */ + VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT, + /** A bit mask to extract only `STRATEGY` bits from entire set of flags. + */ + VMA_ALLOCATION_CREATE_STRATEGY_MASK = + VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT | + VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT | + VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT, + + VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaAllocationCreateFlagBits; +/// See #VmaAllocationCreateFlagBits. +typedef VkFlags VmaAllocationCreateFlags; + +/// Flags to be passed as VmaPoolCreateInfo::flags. +typedef enum VmaPoolCreateFlagBits +{ + /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored. + + This is an optional optimization flag. + + If you always allocate using vmaCreateBuffer(), vmaCreateImage(), + vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator + knows exact type of your allocations so it can handle Buffer-Image Granularity + in the optimal way. + + If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(), + exact type of such allocations is not known, so allocator must be conservative + in handling Buffer-Image Granularity, which can lead to suboptimal allocation + (wasted memory). In that case, if you can make sure you always allocate only + buffers and linear images or only optimal images out of this pool, use this flag + to make allocator disregard Buffer-Image Granularity and so make allocations + faster and more optimal. + */ + VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002, + + /** \brief Enables alternative, linear allocation algorithm in this pool. + + Specify this flag to enable linear allocation algorithm, which always creates + new allocations after last one and doesn't reuse space from allocations freed in + between. It trades memory consumption for simplified algorithm and data + structure, which has better performance and uses less memory for metadata. + + By using this flag, you can achieve behavior of free-at-once, stack, + ring buffer, and double stack. + For details, see documentation chapter \ref linear_algorithm. + */ + VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004, + + /** Bit mask to extract only `ALGORITHM` bits from entire set of flags. + */ + VMA_POOL_CREATE_ALGORITHM_MASK = + VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT, + + VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaPoolCreateFlagBits; +/// Flags to be passed as VmaPoolCreateInfo::flags. See #VmaPoolCreateFlagBits. +typedef VkFlags VmaPoolCreateFlags; + +/// Flags to be passed as VmaDefragmentationInfo::flags. +typedef enum VmaDefragmentationFlagBits +{ + /* \brief Use simple but fast algorithm for defragmentation. + May not achieve best results but will require least time to compute and least allocations to copy. + */ + VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT = 0x1, + /* \brief Default defragmentation algorithm, applied also when no `ALGORITHM` flag is specified. + Offers a balance between defragmentation quality and the amount of allocations and bytes that need to be moved. + */ + VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT = 0x2, + /* \brief Perform full defragmentation of memory. + Can result in notably more time to compute and allocations to copy, but will achieve best memory packing. + */ + VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT = 0x4, + /** \brief Use the most roboust algorithm at the cost of time to compute and number of copies to make. + Only available when bufferImageGranularity is greater than 1, since it aims to reduce + alignment issues between different types of resources. + Otherwise falls back to same behavior as #VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT. + */ + VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT = 0x8, + + /// A bit mask to extract only `ALGORITHM` bits from entire set of flags. + VMA_DEFRAGMENTATION_FLAG_ALGORITHM_MASK = + VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT | + VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT | + VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT | + VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT, + + VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaDefragmentationFlagBits; +/// See #VmaDefragmentationFlagBits. +typedef VkFlags VmaDefragmentationFlags; + +/// Operation performed on single defragmentation move. See structure #VmaDefragmentationMove. +typedef enum VmaDefragmentationMoveOperation +{ + /// Buffer/image has been recreated at `dstTmpAllocation`, data has been copied, old buffer/image has been destroyed. `srcAllocation` should be changed to point to the new place. This is the default value set by vmaBeginDefragmentationPass(). + VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY = 0, + /// Set this value if you cannot move the allocation. New place reserved at `dstTmpAllocation` will be freed. `srcAllocation` will remain unchanged. + VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE = 1, + /// Set this value if you decide to abandon the allocation and you destroyed the buffer/image. New place reserved at `dstTmpAllocation` will be freed, along with `srcAllocation`, which will be destroyed. + VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY = 2, +} VmaDefragmentationMoveOperation; + +/** @} */ + +/** +\addtogroup group_virtual +@{ +*/ + +/// Flags to be passed as VmaVirtualBlockCreateInfo::flags. +typedef enum VmaVirtualBlockCreateFlagBits +{ + /** \brief Enables alternative, linear allocation algorithm in this virtual block. + + Specify this flag to enable linear allocation algorithm, which always creates + new allocations after last one and doesn't reuse space from allocations freed in + between. It trades memory consumption for simplified algorithm and data + structure, which has better performance and uses less memory for metadata. + + By using this flag, you can achieve behavior of free-at-once, stack, + ring buffer, and double stack. + For details, see documentation chapter \ref linear_algorithm. + */ + VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT = 0x00000001, + + /** \brief Bit mask to extract only `ALGORITHM` bits from entire set of flags. + */ + VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK = + VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT, + + VMA_VIRTUAL_BLOCK_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaVirtualBlockCreateFlagBits; +/// Flags to be passed as VmaVirtualBlockCreateInfo::flags. See #VmaVirtualBlockCreateFlagBits. +typedef VkFlags VmaVirtualBlockCreateFlags; + +/// Flags to be passed as VmaVirtualAllocationCreateInfo::flags. +typedef enum VmaVirtualAllocationCreateFlagBits +{ + /** \brief Allocation will be created from upper stack in a double stack pool. + + This flag is only allowed for virtual blocks created with #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT flag. + */ + VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT, + /** \brief Allocation strategy that tries to minimize memory usage. + */ + VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT, + /** \brief Allocation strategy that tries to minimize allocation time. + */ + VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT, + /** Allocation strategy that chooses always the lowest offset in available space. + This is not the most efficient strategy but achieves highly packed data. + */ + VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT, + /** \brief A bit mask to extract only `STRATEGY` bits from entire set of flags. + + These strategy flags are binary compatible with equivalent flags in #VmaAllocationCreateFlagBits. + */ + VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK = VMA_ALLOCATION_CREATE_STRATEGY_MASK, + + VMA_VIRTUAL_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF +} VmaVirtualAllocationCreateFlagBits; +/// Flags to be passed as VmaVirtualAllocationCreateInfo::flags. See #VmaVirtualAllocationCreateFlagBits. +typedef VkFlags VmaVirtualAllocationCreateFlags; + +/** @} */ + +#endif // _VMA_ENUM_DECLARATIONS + +#ifndef _VMA_DATA_TYPES_DECLARATIONS + +/** +\addtogroup group_init +@{ */ + +/** \struct VmaAllocator +\brief Represents main object of this library initialized. + +Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it. +Call function vmaDestroyAllocator() to destroy it. + +It is recommended to create just one object of this type per `VkDevice` object, +right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed. +*/ +VK_DEFINE_HANDLE(VmaAllocator) + +/** @} */ + +/** +\addtogroup group_alloc +@{ +*/ + +/** \struct VmaPool +\brief Represents custom memory pool + +Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it. +Call function vmaDestroyPool() to destroy it. + +For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools). +*/ +VK_DEFINE_HANDLE(VmaPool) + +/** \struct VmaAllocation +\brief Represents single memory allocation. + +It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type +plus unique offset. + +There are multiple ways to create such object. +You need to fill structure VmaAllocationCreateInfo. +For more information see [Choosing memory type](@ref choosing_memory_type). + +Although the library provides convenience functions that create Vulkan buffer or image, +allocate memory for it and bind them together, +binding of the allocation to a buffer or an image is out of scope of the allocation itself. +Allocation object can exist without buffer/image bound, +binding can be done manually by the user, and destruction of it can be done +independently of destruction of the allocation. + +The object also remembers its size and some other information. +To retrieve this information, use function vmaGetAllocationInfo() and inspect +returned structure VmaAllocationInfo. +*/ +VK_DEFINE_HANDLE(VmaAllocation) + +/** \struct VmaDefragmentationContext +\brief An opaque object that represents started defragmentation process. + +Fill structure #VmaDefragmentationInfo and call function vmaBeginDefragmentation() to create it. +Call function vmaEndDefragmentation() to destroy it. +*/ +VK_DEFINE_HANDLE(VmaDefragmentationContext) + +/** @} */ + +/** +\addtogroup group_virtual +@{ +*/ + +/** \struct VmaVirtualAllocation +\brief Represents single memory allocation done inside VmaVirtualBlock. + +Use it as a unique identifier to virtual allocation within the single block. + +Use value `VK_NULL_HANDLE` to represent a null/invalid allocation. +*/ +VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaVirtualAllocation) + +/** @} */ + +/** +\addtogroup group_virtual +@{ +*/ + +/** \struct VmaVirtualBlock +\brief Handle to a virtual block object that allows to use core allocation algorithm without allocating any real GPU memory. + +Fill in #VmaVirtualBlockCreateInfo structure and use vmaCreateVirtualBlock() to create it. Use vmaDestroyVirtualBlock() to destroy it. +For more information, see documentation chapter \ref virtual_allocator. + +This object is not thread-safe - should not be used from multiple threads simultaneously, must be synchronized externally. +*/ +VK_DEFINE_HANDLE(VmaVirtualBlock) + +/** @} */ + +/** +\addtogroup group_init +@{ +*/ + +/// Callback function called after successful vkAllocateMemory. +typedef void (VKAPI_PTR* PFN_vmaAllocateDeviceMemoryFunction)( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t memoryType, + VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory, + VkDeviceSize size, + void* VMA_NULLABLE pUserData); + +/// Callback function called before vkFreeMemory. +typedef void (VKAPI_PTR* PFN_vmaFreeDeviceMemoryFunction)( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t memoryType, + VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory, + VkDeviceSize size, + void* VMA_NULLABLE pUserData); + +/** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`. + +Provided for informative purpose, e.g. to gather statistics about number of +allocations or total amount of memory allocated in Vulkan. + +Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. +*/ +typedef struct VmaDeviceMemoryCallbacks +{ + /// Optional, can be null. + PFN_vmaAllocateDeviceMemoryFunction VMA_NULLABLE pfnAllocate; + /// Optional, can be null. + PFN_vmaFreeDeviceMemoryFunction VMA_NULLABLE pfnFree; + /// Optional, can be null. + void* VMA_NULLABLE pUserData; +} VmaDeviceMemoryCallbacks; + +/** \brief Pointers to some Vulkan functions - a subset used by the library. + +Used in VmaAllocatorCreateInfo::pVulkanFunctions. +*/ +typedef struct VmaVulkanFunctions +{ + /// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS. + PFN_vkGetInstanceProcAddr VMA_NULLABLE vkGetInstanceProcAddr; + /// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS. + PFN_vkGetDeviceProcAddr VMA_NULLABLE vkGetDeviceProcAddr; + PFN_vkGetPhysicalDeviceProperties VMA_NULLABLE vkGetPhysicalDeviceProperties; + PFN_vkGetPhysicalDeviceMemoryProperties VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties; + PFN_vkAllocateMemory VMA_NULLABLE vkAllocateMemory; + PFN_vkFreeMemory VMA_NULLABLE vkFreeMemory; + PFN_vkMapMemory VMA_NULLABLE vkMapMemory; + PFN_vkUnmapMemory VMA_NULLABLE vkUnmapMemory; + PFN_vkFlushMappedMemoryRanges VMA_NULLABLE vkFlushMappedMemoryRanges; + PFN_vkInvalidateMappedMemoryRanges VMA_NULLABLE vkInvalidateMappedMemoryRanges; + PFN_vkBindBufferMemory VMA_NULLABLE vkBindBufferMemory; + PFN_vkBindImageMemory VMA_NULLABLE vkBindImageMemory; + PFN_vkGetBufferMemoryRequirements VMA_NULLABLE vkGetBufferMemoryRequirements; + PFN_vkGetImageMemoryRequirements VMA_NULLABLE vkGetImageMemoryRequirements; + PFN_vkCreateBuffer VMA_NULLABLE vkCreateBuffer; + PFN_vkDestroyBuffer VMA_NULLABLE vkDestroyBuffer; + PFN_vkCreateImage VMA_NULLABLE vkCreateImage; + PFN_vkDestroyImage VMA_NULLABLE vkDestroyImage; + PFN_vkCmdCopyBuffer VMA_NULLABLE vkCmdCopyBuffer; +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + /// Fetch "vkGetBufferMemoryRequirements2" on Vulkan >= 1.1, fetch "vkGetBufferMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension. + PFN_vkGetBufferMemoryRequirements2KHR VMA_NULLABLE vkGetBufferMemoryRequirements2KHR; + /// Fetch "vkGetImageMemoryRequirements2" on Vulkan >= 1.1, fetch "vkGetImageMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension. + PFN_vkGetImageMemoryRequirements2KHR VMA_NULLABLE vkGetImageMemoryRequirements2KHR; +#endif +#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 + /// Fetch "vkBindBufferMemory2" on Vulkan >= 1.1, fetch "vkBindBufferMemory2KHR" when using VK_KHR_bind_memory2 extension. + PFN_vkBindBufferMemory2KHR VMA_NULLABLE vkBindBufferMemory2KHR; + /// Fetch "vkBindImageMemory2" on Vulkan >= 1.1, fetch "vkBindImageMemory2KHR" when using VK_KHR_bind_memory2 extension. + PFN_vkBindImageMemory2KHR VMA_NULLABLE vkBindImageMemory2KHR; +#endif +#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 + /// Fetch from "vkGetPhysicalDeviceMemoryProperties2" on Vulkan >= 1.1, but you can also fetch it from "vkGetPhysicalDeviceMemoryProperties2KHR" if you enabled extension VK_KHR_get_physical_device_properties2. + PFN_vkGetPhysicalDeviceMemoryProperties2KHR VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties2KHR; +#endif +#if VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000 + /// Fetch from "vkGetDeviceBufferMemoryRequirements" on Vulkan >= 1.3, but you can also fetch it from "vkGetDeviceBufferMemoryRequirementsKHR" if you enabled extension VK_KHR_maintenance4. + PFN_vkGetDeviceBufferMemoryRequirementsKHR VMA_NULLABLE vkGetDeviceBufferMemoryRequirements; + /// Fetch from "vkGetDeviceImageMemoryRequirements" on Vulkan >= 1.3, but you can also fetch it from "vkGetDeviceImageMemoryRequirementsKHR" if you enabled extension VK_KHR_maintenance4. + PFN_vkGetDeviceImageMemoryRequirementsKHR VMA_NULLABLE vkGetDeviceImageMemoryRequirements; +#endif +} VmaVulkanFunctions; + +/// Description of a Allocator to be created. +typedef struct VmaAllocatorCreateInfo +{ + /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum. + VmaAllocatorCreateFlags flags; + /// Vulkan physical device. + /** It must be valid throughout whole lifetime of created allocator. */ + VkPhysicalDevice VMA_NOT_NULL physicalDevice; + /// Vulkan device. + /** It must be valid throughout whole lifetime of created allocator. */ + VkDevice VMA_NOT_NULL device; + /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional. + /** Set to 0 to use default, which is currently 256 MiB. */ + VkDeviceSize preferredLargeHeapBlockSize; + /// Custom CPU memory allocation callbacks. Optional. + /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */ + const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks; + /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional. + /** Optional, can be null. */ + const VmaDeviceMemoryCallbacks* VMA_NULLABLE pDeviceMemoryCallbacks; + /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap. + + If not NULL, it must be a pointer to an array of + `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on + maximum number of bytes that can be allocated out of particular Vulkan memory + heap. + + Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that + heap. This is also the default in case of `pHeapSizeLimit` = NULL. + + If there is a limit defined for a heap: + + - If user tries to allocate more memory from that heap using this allocator, + the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. + - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the + value of this limit will be reported instead when using vmaGetMemoryProperties(). + + Warning! Using this feature may not be equivalent to installing a GPU with + smaller amount of memory, because graphics driver doesn't necessary fail new + allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is + exceeded. It may return success and just silently migrate some device memory + blocks to system RAM. This driver behavior can also be controlled using + VK_AMD_memory_overallocation_behavior extension. + */ + const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pHeapSizeLimit; + + /** \brief Pointers to Vulkan functions. Can be null. + + For details see [Pointers to Vulkan functions](@ref config_Vulkan_functions). + */ + const VmaVulkanFunctions* VMA_NULLABLE pVulkanFunctions; + /** \brief Handle to Vulkan instance object. + + Starting from version 3.0.0 this member is no longer optional, it must be set! + */ + VkInstance VMA_NOT_NULL instance; + /** \brief Optional. Vulkan version that the application uses. + + It must be a value in the format as created by macro `VK_MAKE_VERSION` or a constant like: `VK_API_VERSION_1_1`, `VK_API_VERSION_1_0`. + The patch version number specified is ignored. Only the major and minor versions are considered. + Only versions 1.0, 1.1, 1.2, 1.3 are supported by the current implementation. + Leaving it initialized to zero is equivalent to `VK_API_VERSION_1_0`. + It must match the Vulkan version used by the application and supported on the selected physical device, + so it must be no higher than `VkApplicationInfo::apiVersion` passed to `vkCreateInstance` + and no higher than `VkPhysicalDeviceProperties::apiVersion` found on the physical device used. + */ + uint32_t vulkanApiVersion; +#if VMA_EXTERNAL_MEMORY + /** \brief Either null or a pointer to an array of external memory handle types for each Vulkan memory type. + + If not NULL, it must be a pointer to an array of `VkPhysicalDeviceMemoryProperties::memoryTypeCount` + elements, defining external memory handle types of particular Vulkan memory type, + to be passed using `VkExportMemoryAllocateInfoKHR`. + + Any of the elements may be equal to 0, which means not to use `VkExportMemoryAllocateInfoKHR` on this memory type. + This is also the default in case of `pTypeExternalMemoryHandleTypes` = NULL. + */ + const VkExternalMemoryHandleTypeFlagsKHR* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryTypeCount") pTypeExternalMemoryHandleTypes; +#endif // #if VMA_EXTERNAL_MEMORY +} VmaAllocatorCreateInfo; + +/// Information about existing #VmaAllocator object. +typedef struct VmaAllocatorInfo +{ + /** \brief Handle to Vulkan instance object. + + This is the same value as has been passed through VmaAllocatorCreateInfo::instance. + */ + VkInstance VMA_NOT_NULL instance; + /** \brief Handle to Vulkan physical device object. + + This is the same value as has been passed through VmaAllocatorCreateInfo::physicalDevice. + */ + VkPhysicalDevice VMA_NOT_NULL physicalDevice; + /** \brief Handle to Vulkan device object. + + This is the same value as has been passed through VmaAllocatorCreateInfo::device. + */ + VkDevice VMA_NOT_NULL device; +} VmaAllocatorInfo; + +/** @} */ + +/** +\addtogroup group_stats +@{ +*/ + +/** \brief Calculated statistics of memory usage e.g. in a specific memory type, heap, custom pool, or total. + +These are fast to calculate. +See functions: vmaGetHeapBudgets(), vmaGetPoolStatistics(). +*/ +typedef struct VmaStatistics +{ + /** \brief Number of `VkDeviceMemory` objects - Vulkan memory blocks allocated. + */ + uint32_t blockCount; + /** \brief Number of #VmaAllocation objects allocated. + + Dedicated allocations have their own blocks, so each one adds 1 to `allocationCount` as well as `blockCount`. + */ + uint32_t allocationCount; + /** \brief Number of bytes allocated in `VkDeviceMemory` blocks. + + \note To avoid confusion, please be aware that what Vulkan calls an "allocation" - a whole `VkDeviceMemory` object + (e.g. as in `VkPhysicalDeviceLimits::maxMemoryAllocationCount`) is called a "block" in VMA, while VMA calls + "allocation" a #VmaAllocation object that represents a memory region sub-allocated from such block, usually for a single buffer or image. + */ + VkDeviceSize blockBytes; + /** \brief Total number of bytes occupied by all #VmaAllocation objects. + + Always less or equal than `blockBytes`. + Difference `(blockBytes - allocationBytes)` is the amount of memory allocated from Vulkan + but unused by any #VmaAllocation. + */ + VkDeviceSize allocationBytes; +} VmaStatistics; + +/** \brief More detailed statistics than #VmaStatistics. + +These are slower to calculate. Use for debugging purposes. +See functions: vmaCalculateStatistics(), vmaCalculatePoolStatistics(). + +Previous version of the statistics API provided averages, but they have been removed +because they can be easily calculated as: + +\code +VkDeviceSize allocationSizeAvg = detailedStats.statistics.allocationBytes / detailedStats.statistics.allocationCount; +VkDeviceSize unusedBytes = detailedStats.statistics.blockBytes - detailedStats.statistics.allocationBytes; +VkDeviceSize unusedRangeSizeAvg = unusedBytes / detailedStats.unusedRangeCount; +\endcode +*/ +typedef struct VmaDetailedStatistics +{ + /// Basic statistics. + VmaStatistics statistics; + /// Number of free ranges of memory between allocations. + uint32_t unusedRangeCount; + /// Smallest allocation size. `VK_WHOLE_SIZE` if there are 0 allocations. + VkDeviceSize allocationSizeMin; + /// Largest allocation size. 0 if there are 0 allocations. + VkDeviceSize allocationSizeMax; + /// Smallest empty range size. `VK_WHOLE_SIZE` if there are 0 empty ranges. + VkDeviceSize unusedRangeSizeMin; + /// Largest empty range size. 0 if there are 0 empty ranges. + VkDeviceSize unusedRangeSizeMax; +} VmaDetailedStatistics; + +/** \brief General statistics from current state of the Allocator - +total memory usage across all memory heaps and types. + +These are slower to calculate. Use for debugging purposes. +See function vmaCalculateStatistics(). +*/ +typedef struct VmaTotalStatistics +{ + VmaDetailedStatistics memoryType[VK_MAX_MEMORY_TYPES]; + VmaDetailedStatistics memoryHeap[VK_MAX_MEMORY_HEAPS]; + VmaDetailedStatistics total; +} VmaTotalStatistics; + +/** \brief Statistics of current memory usage and available budget for a specific memory heap. + +These are fast to calculate. +See function vmaGetHeapBudgets(). +*/ +typedef struct VmaBudget +{ + /** \brief Statistics fetched from the library. + */ + VmaStatistics statistics; + /** \brief Estimated current memory usage of the program, in bytes. + + Fetched from system using VK_EXT_memory_budget extension if enabled. + + It might be different than `statistics.blockBytes` (usually higher) due to additional implicit objects + also occupying the memory, like swapchain, pipelines, descriptor heaps, command buffers, or + `VkDeviceMemory` blocks allocated outside of this library, if any. + */ + VkDeviceSize usage; + /** \brief Estimated amount of memory available to the program, in bytes. + + Fetched from system using VK_EXT_memory_budget extension if enabled. + + It might be different (most probably smaller) than `VkMemoryHeap::size[heapIndex]` due to factors + external to the program, decided by the operating system. + Difference `budget - usage` is the amount of additional memory that can probably + be allocated without problems. Exceeding the budget may result in various problems. + */ + VkDeviceSize budget; +} VmaBudget; + +/** @} */ + +/** +\addtogroup group_alloc +@{ +*/ + +/** \brief Parameters of new #VmaAllocation. + +To be used with functions like vmaCreateBuffer(), vmaCreateImage(), and many others. +*/ +typedef struct VmaAllocationCreateInfo +{ + /// Use #VmaAllocationCreateFlagBits enum. + VmaAllocationCreateFlags flags; + /** \brief Intended usage of memory. + + You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n + If `pool` is not null, this member is ignored. + */ + VmaMemoryUsage usage; + /** \brief Flags that must be set in a Memory Type chosen for an allocation. + + Leave 0 if you specify memory requirements in other way. \n + If `pool` is not null, this member is ignored.*/ + VkMemoryPropertyFlags requiredFlags; + /** \brief Flags that preferably should be set in a memory type chosen for an allocation. + + Set to 0 if no additional flags are preferred. \n + If `pool` is not null, this member is ignored. */ + VkMemoryPropertyFlags preferredFlags; + /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation. + + Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if + it meets other requirements specified by this structure, with no further + restrictions on memory type index. \n + If `pool` is not null, this member is ignored. + */ + uint32_t memoryTypeBits; + /** \brief Pool that this allocation should be created in. + + Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members: + `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored. + */ + VmaPool VMA_NULLABLE pool; + /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData(). + + If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either + null or pointer to a null-terminated string. The string will be then copied to + internal buffer, so it doesn't need to be valid after allocation call. + */ + void* VMA_NULLABLE pUserData; + /** \brief A floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations. + + It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object + and this allocation ends up as dedicated or is explicitly forced as dedicated using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. + Otherwise, it has the priority of a memory block where it is placed and this variable is ignored. + */ + float priority; +} VmaAllocationCreateInfo; + +/// Describes parameter of created #VmaPool. +typedef struct VmaPoolCreateInfo +{ + /** \brief Vulkan memory type index to allocate this pool from. + */ + uint32_t memoryTypeIndex; + /** \brief Use combination of #VmaPoolCreateFlagBits. + */ + VmaPoolCreateFlags flags; + /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional. + + Specify nonzero to set explicit, constant size of memory blocks used by this + pool. + + Leave 0 to use default and let the library manage block sizes automatically. + Sizes of particular blocks may vary. + In this case, the pool will also support dedicated allocations. + */ + VkDeviceSize blockSize; + /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty. + + Set to 0 to have no preallocated blocks and allow the pool be completely empty. + */ + size_t minBlockCount; + /** \brief Maximum number of blocks that can be allocated in this pool. Optional. + + Set to 0 to use default, which is `SIZE_MAX`, which means no limit. + + Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated + throughout whole lifetime of this pool. + */ + size_t maxBlockCount; + /** \brief A floating-point value between 0 and 1, indicating the priority of the allocations in this pool relative to other memory allocations. + + It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object. + Otherwise, this variable is ignored. + */ + float priority; + /** \brief Additional minimum alignment to be used for all allocations created from this pool. Can be 0. + + Leave 0 (default) not to impose any additional alignment. If not 0, it must be a power of two. + It can be useful in cases where alignment returned by Vulkan by functions like `vkGetBufferMemoryRequirements` is not enough, + e.g. when doing interop with OpenGL. + */ + VkDeviceSize minAllocationAlignment; + /** \brief Additional `pNext` chain to be attached to `VkMemoryAllocateInfo` used for every allocation made by this pool. Optional. + + Optional, can be null. If not null, it must point to a `pNext` chain of structures that can be attached to `VkMemoryAllocateInfo`. + It can be useful for special needs such as adding `VkExportMemoryAllocateInfoKHR`. + Structures pointed by this member must remain alive and unchanged for the whole lifetime of the custom pool. + + Please note that some structures, e.g. `VkMemoryPriorityAllocateInfoEXT`, `VkMemoryDedicatedAllocateInfoKHR`, + can be attached automatically by this library when using other, more convenient of its features. + */ + void* VMA_NULLABLE VMA_EXTENDS_VK_STRUCT(VkMemoryAllocateInfo) pMemoryAllocateNext; +} VmaPoolCreateInfo; + +/** @} */ + +/** +\addtogroup group_alloc +@{ +*/ + +/** +Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo(). + +There is also an extended version of this structure that carries additional parameters: #VmaAllocationInfo2. +*/ +typedef struct VmaAllocationInfo +{ + /** \brief Memory type index that this allocation was allocated from. + + It never changes. + */ + uint32_t memoryType; + /** \brief Handle to Vulkan memory object. + + Same memory object can be shared by multiple allocations. + + It can change after the allocation is moved during \ref defragmentation. + */ + VkDeviceMemory VMA_NULLABLE_NON_DISPATCHABLE deviceMemory; + /** \brief Offset in `VkDeviceMemory` object to the beginning of this allocation, in bytes. `(deviceMemory, offset)` pair is unique to this allocation. + + You usually don't need to use this offset. If you create a buffer or an image together with the allocation using e.g. function + vmaCreateBuffer(), vmaCreateImage(), functions that operate on these resources refer to the beginning of the buffer or image, + not entire device memory block. Functions like vmaMapMemory(), vmaBindBufferMemory() also refer to the beginning of the allocation + and apply this offset automatically. + + It can change after the allocation is moved during \ref defragmentation. + */ + VkDeviceSize offset; + /** \brief Size of this allocation, in bytes. + + It never changes. + + \note Allocation size returned in this variable may be greater than the size + requested for the resource e.g. as `VkBufferCreateInfo::size`. Whole size of the + allocation is accessible for operations on memory e.g. using a pointer after + mapping with vmaMapMemory(), but operations on the resource e.g. using + `vkCmdCopyBuffer` must be limited to the size of the resource. + */ + VkDeviceSize size; + /** \brief Pointer to the beginning of this allocation as mapped data. + + If the allocation hasn't been mapped using vmaMapMemory() and hasn't been + created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value is null. + + It can change after call to vmaMapMemory(), vmaUnmapMemory(). + It can also change after the allocation is moved during \ref defragmentation. + */ + void* VMA_NULLABLE pMappedData; + /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData(). + + It can change after call to vmaSetAllocationUserData() for this allocation. + */ + void* VMA_NULLABLE pUserData; + /** \brief Custom allocation name that was set with vmaSetAllocationName(). + + It can change after call to vmaSetAllocationName() for this allocation. + + Another way to set custom name is to pass it in VmaAllocationCreateInfo::pUserData with + additional flag #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT set [DEPRECATED]. + */ + const char* VMA_NULLABLE pName; +} VmaAllocationInfo; + +/// Extended parameters of a #VmaAllocation object that can be retrieved using function vmaGetAllocationInfo2(). +typedef struct VmaAllocationInfo2 +{ + /** \brief Basic parameters of the allocation. + + If you need only these, you can use function vmaGetAllocationInfo() and structure #VmaAllocationInfo instead. + */ + VmaAllocationInfo allocationInfo; + /** \brief Size of the `VkDeviceMemory` block that the allocation belongs to. + + In case of an allocation with dedicated memory, it will be equal to `allocationInfo.size`. + */ + VkDeviceSize blockSize; + /** \brief `VK_TRUE` if the allocation has dedicated memory, `VK_FALSE` if it was placed as part of a larger memory block. + + When `VK_TRUE`, it also means `VkMemoryDedicatedAllocateInfo` was used when creating the allocation + (if VK_KHR_dedicated_allocation extension or Vulkan version >= 1.1 is enabled). + */ + VkBool32 dedicatedMemory; +} VmaAllocationInfo2; + +/** Callback function called during vmaBeginDefragmentation() to check custom criterion about ending current defragmentation pass. + +Should return true if the defragmentation needs to stop current pass. +*/ +typedef VkBool32 (VKAPI_PTR* PFN_vmaCheckDefragmentationBreakFunction)(void* VMA_NULLABLE pUserData); + +/** \brief Parameters for defragmentation. + +To be used with function vmaBeginDefragmentation(). +*/ +typedef struct VmaDefragmentationInfo +{ + /// \brief Use combination of #VmaDefragmentationFlagBits. + VmaDefragmentationFlags flags; + /** \brief Custom pool to be defragmented. + + If null then default pools will undergo defragmentation process. + */ + VmaPool VMA_NULLABLE pool; + /** \brief Maximum numbers of bytes that can be copied during single pass, while moving allocations to different places. + + `0` means no limit. + */ + VkDeviceSize maxBytesPerPass; + /** \brief Maximum number of allocations that can be moved during single pass to a different place. + + `0` means no limit. + */ + uint32_t maxAllocationsPerPass; + /** \brief Optional custom callback for stopping vmaBeginDefragmentation(). + + Have to return true for breaking current defragmentation pass. + */ + PFN_vmaCheckDefragmentationBreakFunction VMA_NULLABLE pfnBreakCallback; + /// \brief Optional data to pass to custom callback for stopping pass of defragmentation. + void* VMA_NULLABLE pBreakCallbackUserData; +} VmaDefragmentationInfo; + +/// Single move of an allocation to be done for defragmentation. +typedef struct VmaDefragmentationMove +{ + /// Operation to be performed on the allocation by vmaEndDefragmentationPass(). Default value is #VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY. You can modify it. + VmaDefragmentationMoveOperation operation; + /// Allocation that should be moved. + VmaAllocation VMA_NOT_NULL srcAllocation; + /** \brief Temporary allocation pointing to destination memory that will replace `srcAllocation`. + + \warning Do not store this allocation in your data structures! It exists only temporarily, for the duration of the defragmentation pass, + to be used for binding new buffer/image to the destination memory using e.g. vmaBindBufferMemory(). + vmaEndDefragmentationPass() will destroy it and make `srcAllocation` point to this memory. + */ + VmaAllocation VMA_NOT_NULL dstTmpAllocation; +} VmaDefragmentationMove; + +/** \brief Parameters for incremental defragmentation steps. + +To be used with function vmaBeginDefragmentationPass(). +*/ +typedef struct VmaDefragmentationPassMoveInfo +{ + /// Number of elements in the `pMoves` array. + uint32_t moveCount; + /** \brief Array of moves to be performed by the user in the current defragmentation pass. + + Pointer to an array of `moveCount` elements, owned by VMA, created in vmaBeginDefragmentationPass(), destroyed in vmaEndDefragmentationPass(). + + For each element, you should: + + 1. Create a new buffer/image in the place pointed by VmaDefragmentationMove::dstMemory + VmaDefragmentationMove::dstOffset. + 2. Copy data from the VmaDefragmentationMove::srcAllocation e.g. using `vkCmdCopyBuffer`, `vkCmdCopyImage`. + 3. Make sure these commands finished executing on the GPU. + 4. Destroy the old buffer/image. + + Only then you can finish defragmentation pass by calling vmaEndDefragmentationPass(). + After this call, the allocation will point to the new place in memory. + + Alternatively, if you cannot move specific allocation, you can set VmaDefragmentationMove::operation to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE. + + Alternatively, if you decide you want to completely remove the allocation: + + 1. Destroy its buffer/image. + 2. Set VmaDefragmentationMove::operation to #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY. + + Then, after vmaEndDefragmentationPass() the allocation will be freed. + */ + VmaDefragmentationMove* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(moveCount) pMoves; +} VmaDefragmentationPassMoveInfo; + +/// Statistics returned for defragmentation process in function vmaEndDefragmentation(). +typedef struct VmaDefragmentationStats +{ + /// Total number of bytes that have been copied while moving allocations to different places. + VkDeviceSize bytesMoved; + /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects. + VkDeviceSize bytesFreed; + /// Number of allocations that have been moved to different places. + uint32_t allocationsMoved; + /// Number of empty `VkDeviceMemory` objects that have been released to the system. + uint32_t deviceMemoryBlocksFreed; +} VmaDefragmentationStats; + +/** @} */ + +/** +\addtogroup group_virtual +@{ +*/ + +/// Parameters of created #VmaVirtualBlock object to be passed to vmaCreateVirtualBlock(). +typedef struct VmaVirtualBlockCreateInfo +{ + /** \brief Total size of the virtual block. + + Sizes can be expressed in bytes or any units you want as long as you are consistent in using them. + For example, if you allocate from some array of structures, 1 can mean single instance of entire structure. + */ + VkDeviceSize size; + + /** \brief Use combination of #VmaVirtualBlockCreateFlagBits. + */ + VmaVirtualBlockCreateFlags flags; + + /** \brief Custom CPU memory allocation callbacks. Optional. + + Optional, can be null. When specified, they will be used for all CPU-side memory allocations. + */ + const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks; +} VmaVirtualBlockCreateInfo; + +/// Parameters of created virtual allocation to be passed to vmaVirtualAllocate(). +typedef struct VmaVirtualAllocationCreateInfo +{ + /** \brief Size of the allocation. + + Cannot be zero. + */ + VkDeviceSize size; + /** \brief Required alignment of the allocation. Optional. + + Must be power of two. Special value 0 has the same meaning as 1 - means no special alignment is required, so allocation can start at any offset. + */ + VkDeviceSize alignment; + /** \brief Use combination of #VmaVirtualAllocationCreateFlagBits. + */ + VmaVirtualAllocationCreateFlags flags; + /** \brief Custom pointer to be associated with the allocation. Optional. + + It can be any value and can be used for user-defined purposes. It can be fetched or changed later. + */ + void* VMA_NULLABLE pUserData; +} VmaVirtualAllocationCreateInfo; + +/// Parameters of an existing virtual allocation, returned by vmaGetVirtualAllocationInfo(). +typedef struct VmaVirtualAllocationInfo +{ + /** \brief Offset of the allocation. + + Offset at which the allocation was made. + */ + VkDeviceSize offset; + /** \brief Size of the allocation. + + Same value as passed in VmaVirtualAllocationCreateInfo::size. + */ + VkDeviceSize size; + /** \brief Custom pointer associated with the allocation. + + Same value as passed in VmaVirtualAllocationCreateInfo::pUserData or to vmaSetVirtualAllocationUserData(). + */ + void* VMA_NULLABLE pUserData; +} VmaVirtualAllocationInfo; + +/** @} */ + +#endif // _VMA_DATA_TYPES_DECLARATIONS + +#ifndef _VMA_FUNCTION_HEADERS + +/** +\addtogroup group_init +@{ +*/ + +/// Creates #VmaAllocator object. +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator( + const VmaAllocatorCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaAllocator VMA_NULLABLE* VMA_NOT_NULL pAllocator); + +/// Destroys allocator object. +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator( + VmaAllocator VMA_NULLABLE allocator); + +/** \brief Returns information about existing #VmaAllocator object - handle to Vulkan device etc. + +It might be useful if you want to keep just the #VmaAllocator handle and fetch other required handles to +`VkPhysicalDevice`, `VkDevice` etc. every time using this function. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocatorInfo* VMA_NOT_NULL pAllocatorInfo); + +/** +PhysicalDeviceProperties are fetched from physicalDevice by the allocator. +You can access it here, without fetching it again on your own. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties( + VmaAllocator VMA_NOT_NULL allocator, + const VkPhysicalDeviceProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceProperties); + +/** +PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator. +You can access it here, without fetching it again on your own. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties( + VmaAllocator VMA_NOT_NULL allocator, + const VkPhysicalDeviceMemoryProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceMemoryProperties); + +/** +\brief Given Memory Type Index, returns Property Flags of this memory type. + +This is just a convenience function. Same information can be obtained using +vmaGetMemoryProperties(). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t memoryTypeIndex, + VkMemoryPropertyFlags* VMA_NOT_NULL pFlags); + +/** \brief Sets index of the current frame. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t frameIndex); + +/** @} */ + +/** +\addtogroup group_stats +@{ +*/ + +/** \brief Retrieves statistics from current state of the Allocator. + +This function is called "calculate" not "get" because it has to traverse all +internal data structures, so it may be quite slow. Use it for debugging purposes. +For faster but more brief statistics suitable to be called every frame or every allocation, +use vmaGetHeapBudgets(). + +Note that when using allocator from multiple threads, returned information may immediately +become outdated. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStatistics( + VmaAllocator VMA_NOT_NULL allocator, + VmaTotalStatistics* VMA_NOT_NULL pStats); + +/** \brief Retrieves information about current memory usage and budget for all memory heaps. + +\param allocator +\param[out] pBudgets Must point to array with number of elements at least equal to number of memory heaps in physical device used. + +This function is called "get" not "calculate" because it is very fast, suitable to be called +every frame or every allocation. For more detailed statistics use vmaCalculateStatistics(). + +Note that when using allocator from multiple threads, returned information may immediately +become outdated. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets( + VmaAllocator VMA_NOT_NULL allocator, + VmaBudget* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pBudgets); + +/** @} */ + +/** +\addtogroup group_alloc +@{ +*/ + +/** +\brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo. + +This algorithm tries to find a memory type that: + +- Is allowed by memoryTypeBits. +- Contains all the flags from pAllocationCreateInfo->requiredFlags. +- Matches intended usage. +- Has as many flags from pAllocationCreateInfo->preferredFlags as possible. + +\return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result +from this function or any other allocating function probably means that your +device doesn't support any memory type with requested features for the specific +type of resource you want to use it for. Please check parameters of your +resource, like image layout (OPTIMAL versus LINEAR) or mip level count. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t memoryTypeBits, + const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, + uint32_t* VMA_NOT_NULL pMemoryTypeIndex); + +/** +\brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo. + +It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. +It internally creates a temporary, dummy buffer that never has memory bound. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo( + VmaAllocator VMA_NOT_NULL allocator, + const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, + const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, + uint32_t* VMA_NOT_NULL pMemoryTypeIndex); + +/** +\brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo. + +It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex. +It internally creates a temporary, dummy image that never has memory bound. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo( + VmaAllocator VMA_NOT_NULL allocator, + const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, + const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, + uint32_t* VMA_NOT_NULL pMemoryTypeIndex); + +/** \brief Allocates Vulkan device memory and creates #VmaPool object. + +\param allocator Allocator object. +\param pCreateInfo Parameters of pool to create. +\param[out] pPool Handle to created pool. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool( + VmaAllocator VMA_NOT_NULL allocator, + const VmaPoolCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaPool VMA_NULLABLE* VMA_NOT_NULL pPool); + +/** \brief Destroys #VmaPool object and frees Vulkan device memory. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool( + VmaAllocator VMA_NOT_NULL allocator, + VmaPool VMA_NULLABLE pool); + +/** @} */ + +/** +\addtogroup group_stats +@{ +*/ + +/** \brief Retrieves statistics of existing #VmaPool object. + +\param allocator Allocator object. +\param pool Pool object. +\param[out] pPoolStats Statistics of specified pool. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStatistics( + VmaAllocator VMA_NOT_NULL allocator, + VmaPool VMA_NOT_NULL pool, + VmaStatistics* VMA_NOT_NULL pPoolStats); + +/** \brief Retrieves detailed statistics of existing #VmaPool object. + +\param allocator Allocator object. +\param pool Pool object. +\param[out] pPoolStats Statistics of specified pool. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaCalculatePoolStatistics( + VmaAllocator VMA_NOT_NULL allocator, + VmaPool VMA_NOT_NULL pool, + VmaDetailedStatistics* VMA_NOT_NULL pPoolStats); + +/** @} */ + +/** +\addtogroup group_alloc +@{ +*/ + +/** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions. + +Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, +`VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is +`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). + +Possible return values: + +- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool. +- `VK_SUCCESS` - corruption detection has been performed and succeeded. +- `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations. + `VMA_ASSERT` is also fired in that case. +- Other value: Error returned by Vulkan, e.g. memory mapping failure. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption( + VmaAllocator VMA_NOT_NULL allocator, + VmaPool VMA_NOT_NULL pool); + +/** \brief Retrieves name of a custom pool. + +After the call `ppName` is either null or points to an internally-owned null-terminated string +containing name of the pool that was previously set. The pointer becomes invalid when the pool is +destroyed or its name is changed using vmaSetPoolName(). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName( + VmaAllocator VMA_NOT_NULL allocator, + VmaPool VMA_NOT_NULL pool, + const char* VMA_NULLABLE* VMA_NOT_NULL ppName); + +/** \brief Sets name of a custom pool. + +`pName` can be either null or pointer to a null-terminated string with new name for the pool. +Function makes internal copy of the string, so it can be changed or freed immediately after this call. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName( + VmaAllocator VMA_NOT_NULL allocator, + VmaPool VMA_NOT_NULL pool, + const char* VMA_NULLABLE pName); + +/** \brief General purpose memory allocation. + +\param allocator +\param pVkMemoryRequirements +\param pCreateInfo +\param[out] pAllocation Handle to allocated memory. +\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). + +You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). + +It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(), +vmaCreateBuffer(), vmaCreateImage() instead whenever possible. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory( + VmaAllocator VMA_NOT_NULL allocator, + const VkMemoryRequirements* VMA_NOT_NULL pVkMemoryRequirements, + const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, + VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); + +/** \brief General purpose memory allocation for multiple allocation objects at once. + +\param allocator Allocator object. +\param pVkMemoryRequirements Memory requirements for each allocation. +\param pCreateInfo Creation parameters for each allocation. +\param allocationCount Number of allocations to make. +\param[out] pAllocations Pointer to array that will be filled with handles to created allocations. +\param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations. + +You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages(). + +Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding. +It is just a general purpose allocation function able to make multiple allocations at once. +It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times. + +All allocations are made using same parameters. All of them are created out of the same memory pool and type. +If any allocation fails, all allocations already made within this function call are also freed, so that when +returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages( + VmaAllocator VMA_NOT_NULL allocator, + const VkMemoryRequirements* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pVkMemoryRequirements, + const VmaAllocationCreateInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pCreateInfo, + size_t allocationCount, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations, + VmaAllocationInfo* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationInfo); + +/** \brief Allocates memory suitable for given `VkBuffer`. + +\param allocator +\param buffer +\param pCreateInfo +\param[out] pAllocation Handle to allocated memory. +\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). + +It only creates #VmaAllocation. To bind the memory to the buffer, use vmaBindBufferMemory(). + +This is a special-purpose function. In most cases you should use vmaCreateBuffer(). + +You must free the allocation using vmaFreeMemory() when no longer needed. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer( + VmaAllocator VMA_NOT_NULL allocator, + VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer, + const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, + VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); + +/** \brief Allocates memory suitable for given `VkImage`. + +\param allocator +\param image +\param pCreateInfo +\param[out] pAllocation Handle to allocated memory. +\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). + +It only creates #VmaAllocation. To bind the memory to the buffer, use vmaBindImageMemory(). + +This is a special-purpose function. In most cases you should use vmaCreateImage(). + +You must free the allocation using vmaFreeMemory() when no longer needed. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage( + VmaAllocator VMA_NOT_NULL allocator, + VkImage VMA_NOT_NULL_NON_DISPATCHABLE image, + const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, + VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); + +/** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage(). + +Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory( + VmaAllocator VMA_NOT_NULL allocator, + const VmaAllocation VMA_NULLABLE allocation); + +/** \brief Frees memory and destroys multiple allocations. + +Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding. +It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(), +vmaAllocateMemoryPages() and other functions. +It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times. + +Allocations in `pAllocations` array can come from any memory pools and types. +Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages( + VmaAllocator VMA_NOT_NULL allocator, + size_t allocationCount, + const VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations); + +/** \brief Returns current information about specified allocation. + +Current parameters of given allocation are returned in `pAllocationInfo`. + +Although this function doesn't lock any mutex, so it should be quite efficient, +you should avoid calling it too often. +You can retrieve same VmaAllocationInfo structure while creating your resource, from function +vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change +(e.g. due to defragmentation). + +There is also a new function vmaGetAllocationInfo2() that offers extended information +about the allocation, returned using new structure #VmaAllocationInfo2. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VmaAllocationInfo* VMA_NOT_NULL pAllocationInfo); + +/** \brief Returns extended information about specified allocation. + +Current parameters of given allocation are returned in `pAllocationInfo`. +Extended parameters in structure #VmaAllocationInfo2 include memory block size +and a flag telling whether the allocation has dedicated memory. +It can be useful e.g. for interop with OpenGL. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo2( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VmaAllocationInfo2* VMA_NOT_NULL pAllocationInfo); + +/** \brief Sets pUserData in given allocation to new value. + +The value of pointer `pUserData` is copied to allocation's `pUserData`. +It is opaque, so you can use it however you want - e.g. +as a pointer, ordinal number or some handle to you own data. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + void* VMA_NULLABLE pUserData); + +/** \brief Sets pName in given allocation to new value. + +`pName` must be either null, or pointer to a null-terminated string. The function +makes local copy of the string and sets it as allocation's `pName`. String +passed as pName doesn't need to be valid for whole lifetime of the allocation - +you can free it after this call. String previously pointed by allocation's +`pName` is freed from memory. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationName( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + const char* VMA_NULLABLE pName); + +/** +\brief Given an allocation, returns Property Flags of its memory type. + +This is just a convenience function. Same information can be obtained using +vmaGetAllocationInfo() + vmaGetMemoryProperties(). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkMemoryPropertyFlags* VMA_NOT_NULL pFlags); + +/** \brief Maps memory represented by given allocation and returns pointer to it. + +Maps memory represented by given allocation to make it accessible to CPU code. +When succeeded, `*ppData` contains pointer to first byte of this memory. + +\warning +If the allocation is part of a bigger `VkDeviceMemory` block, returned pointer is +correctly offsetted to the beginning of region assigned to this particular allocation. +Unlike the result of `vkMapMemory`, it points to the allocation, not to the beginning of the whole block. +You should not add VmaAllocationInfo::offset to it! + +Mapping is internally reference-counted and synchronized, so despite raw Vulkan +function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory` +multiple times simultaneously, it is safe to call this function on allocations +assigned to the same memory block. Actual Vulkan memory will be mapped on first +mapping and unmapped on last unmapping. + +If the function succeeded, you must call vmaUnmapMemory() to unmap the +allocation when mapping is no longer needed or before freeing the allocation, at +the latest. + +It also safe to call this function multiple times on the same allocation. You +must call vmaUnmapMemory() same number of times as you called vmaMapMemory(). + +It is also safe to call this function on allocation created with +#VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time. +You must still call vmaUnmapMemory() same number of times as you called +vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the +"0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag. + +This function fails when used on allocation made in memory type that is not +`HOST_VISIBLE`. + +This function doesn't automatically flush or invalidate caches. +If the allocation is made from a memory types that is not `HOST_COHERENT`, +you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + void* VMA_NULLABLE* VMA_NOT_NULL ppData); + +/** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory(). + +For details, see description of vmaMapMemory(). + +This function doesn't automatically flush or invalidate caches. +If the allocation is made from a memory types that is not `HOST_COHERENT`, +you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation); + +/** \brief Flushes memory of given allocation. + +Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation. +It needs to be called after writing to a mapped memory for memory types that are not `HOST_COHERENT`. +Unmap operation doesn't do that automatically. + +- `offset` must be relative to the beginning of allocation. +- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. +- `offset` and `size` don't have to be aligned. + They are internally rounded down/up to multiply of `nonCoherentAtomSize`. +- If `size` is 0, this call is ignored. +- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, + this call is ignored. + +Warning! `offset` and `size` are relative to the contents of given `allocation`. +If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively. +Do not pass allocation's offset as `offset`!!! + +This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is +called, otherwise `VK_SUCCESS`. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkDeviceSize offset, + VkDeviceSize size); + +/** \brief Invalidates memory of given allocation. + +Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation. +It needs to be called before reading from a mapped memory for memory types that are not `HOST_COHERENT`. +Map operation doesn't do that automatically. + +- `offset` must be relative to the beginning of allocation. +- `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation. +- `offset` and `size` don't have to be aligned. + They are internally rounded down/up to multiply of `nonCoherentAtomSize`. +- If `size` is 0, this call is ignored. +- If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`, + this call is ignored. + +Warning! `offset` and `size` are relative to the contents of given `allocation`. +If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively. +Do not pass allocation's offset as `offset`!!! + +This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if +it is called, otherwise `VK_SUCCESS`. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkDeviceSize offset, + VkDeviceSize size); + +/** \brief Flushes memory of given set of allocations. + +Calls `vkFlushMappedMemoryRanges()` for memory associated with given ranges of given allocations. +For more information, see documentation of vmaFlushAllocation(). + +\param allocator +\param allocationCount +\param allocations +\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all offsets are zero. +\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations. + +This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is +called, otherwise `VK_SUCCESS`. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t allocationCount, + const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations, + const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets, + const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes); + +/** \brief Invalidates memory of given set of allocations. + +Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given ranges of given allocations. +For more information, see documentation of vmaInvalidateAllocation(). + +\param allocator +\param allocationCount +\param allocations +\param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all offsets are zero. +\param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations. + +This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if it is +called, otherwise `VK_SUCCESS`. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t allocationCount, + const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations, + const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets, + const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes); + +/** \brief Maps the allocation temporarily if needed, copies data from specified host pointer to it, and flushes the memory from the host caches if needed. + +\param allocator +\param pSrcHostPointer Pointer to the host data that become source of the copy. +\param dstAllocation Handle to the allocation that becomes destination of the copy. +\param dstAllocationLocalOffset Offset within `dstAllocation` where to write copied data, in bytes. +\param size Number of bytes to copy. + +This is a convenience function that allows to copy data from a host pointer to an allocation easily. +Same behavior can be achieved by calling vmaMapMemory(), `memcpy()`, vmaUnmapMemory(), vmaFlushAllocation(). + +This function can be called only for allocations created in a memory type that has `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag. +It can be ensured e.g. by using #VMA_MEMORY_USAGE_AUTO and #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or +#VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT. +Otherwise, the function will fail and generate a Validation Layers error. + +`dstAllocationLocalOffset` is relative to the contents of given `dstAllocation`. +If you mean whole allocation, you should pass 0. +Do not pass allocation's offset within device memory block this parameter! +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCopyMemoryToAllocation( + VmaAllocator VMA_NOT_NULL allocator, + const void* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(size) pSrcHostPointer, + VmaAllocation VMA_NOT_NULL dstAllocation, + VkDeviceSize dstAllocationLocalOffset, + VkDeviceSize size); + +/** \brief Invalidates memory in the host caches if needed, maps the allocation temporarily if needed, and copies data from it to a specified host pointer. + +\param allocator +\param srcAllocation Handle to the allocation that becomes source of the copy. +\param srcAllocationLocalOffset Offset within `srcAllocation` where to read copied data, in bytes. +\param pDstHostPointer Pointer to the host memory that become destination of the copy. +\param size Number of bytes to copy. + +This is a convenience function that allows to copy data from an allocation to a host pointer easily. +Same behavior can be achieved by calling vmaInvalidateAllocation(), vmaMapMemory(), `memcpy()`, vmaUnmapMemory(). + +This function should be called only for allocations created in a memory type that has `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` +and `VK_MEMORY_PROPERTY_HOST_CACHED_BIT` flag. +It can be ensured e.g. by using #VMA_MEMORY_USAGE_AUTO and #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT. +Otherwise, the function may fail and generate a Validation Layers error. +It may also work very slowly when reading from an uncached memory. + +`srcAllocationLocalOffset` is relative to the contents of given `srcAllocation`. +If you mean whole allocation, you should pass 0. +Do not pass allocation's offset within device memory block as this parameter! +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCopyAllocationToMemory( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL srcAllocation, + VkDeviceSize srcAllocationLocalOffset, + void* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(size) pDstHostPointer, + VkDeviceSize size); + +/** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions. + +\param allocator +\param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked. + +Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero, +`VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are +`HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection). + +Possible return values: + +- `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types. +- `VK_SUCCESS` - corruption detection has been performed and succeeded. +- `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations. + `VMA_ASSERT` is also fired in that case. +- Other value: Error returned by Vulkan, e.g. memory mapping failure. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption( + VmaAllocator VMA_NOT_NULL allocator, + uint32_t memoryTypeBits); + +/** \brief Begins defragmentation process. + +\param allocator Allocator object. +\param pInfo Structure filled with parameters of defragmentation. +\param[out] pContext Context object that must be passed to vmaEndDefragmentation() to finish defragmentation. +\returns +- `VK_SUCCESS` if defragmentation can begin. +- `VK_ERROR_FEATURE_NOT_PRESENT` if defragmentation is not supported. + +For more information about defragmentation, see documentation chapter: +[Defragmentation](@ref defragmentation). +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentation( + VmaAllocator VMA_NOT_NULL allocator, + const VmaDefragmentationInfo* VMA_NOT_NULL pInfo, + VmaDefragmentationContext VMA_NULLABLE* VMA_NOT_NULL pContext); + +/** \brief Ends defragmentation process. + +\param allocator Allocator object. +\param context Context object that has been created by vmaBeginDefragmentation(). +\param[out] pStats Optional stats for the defragmentation. Can be null. + +Use this function to finish defragmentation started by vmaBeginDefragmentation(). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaEndDefragmentation( + VmaAllocator VMA_NOT_NULL allocator, + VmaDefragmentationContext VMA_NOT_NULL context, + VmaDefragmentationStats* VMA_NULLABLE pStats); + +/** \brief Starts single defragmentation pass. + +\param allocator Allocator object. +\param context Context object that has been created by vmaBeginDefragmentation(). +\param[out] pPassInfo Computed information for current pass. +\returns +- `VK_SUCCESS` if no more moves are possible. Then you can omit call to vmaEndDefragmentationPass() and simply end whole defragmentation. +- `VK_INCOMPLETE` if there are pending moves returned in `pPassInfo`. You need to perform them, call vmaEndDefragmentationPass(), + and then preferably try another pass with vmaBeginDefragmentationPass(). +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass( + VmaAllocator VMA_NOT_NULL allocator, + VmaDefragmentationContext VMA_NOT_NULL context, + VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo); + +/** \brief Ends single defragmentation pass. + +\param allocator Allocator object. +\param context Context object that has been created by vmaBeginDefragmentation(). +\param pPassInfo Computed information for current pass filled by vmaBeginDefragmentationPass() and possibly modified by you. + +Returns `VK_SUCCESS` if no more moves are possible or `VK_INCOMPLETE` if more defragmentations are possible. + +Ends incremental defragmentation pass and commits all defragmentation moves from `pPassInfo`. +After this call: + +- Allocations at `pPassInfo[i].srcAllocation` that had `pPassInfo[i].operation ==` #VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY + (which is the default) will be pointing to the new destination place. +- Allocation at `pPassInfo[i].srcAllocation` that had `pPassInfo[i].operation ==` #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY + will be freed. + +If no more moves are possible you can end whole defragmentation. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass( + VmaAllocator VMA_NOT_NULL allocator, + VmaDefragmentationContext VMA_NOT_NULL context, + VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo); + +/** \brief Binds buffer to allocation. + +Binds specified buffer to region of memory represented by specified allocation. +Gets `VkDeviceMemory` handle and offset from the allocation. +If you want to create a buffer, allocate memory for it and bind them together separately, +you should use this function for binding instead of standard `vkBindBufferMemory()`, +because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple +allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously +(which is illegal in Vulkan). + +It is recommended to use function vmaCreateBuffer() instead of this one. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer); + +/** \brief Binds buffer to allocation with additional parameters. + +\param allocator +\param allocation +\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0. +\param buffer +\param pNext A chain of structures to be attached to `VkBindBufferMemoryInfoKHR` structure used internally. Normally it should be null. + +This function is similar to vmaBindBufferMemory(), but it provides additional parameters. + +If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag +or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkDeviceSize allocationLocalOffset, + VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer, + const void* VMA_NULLABLE VMA_EXTENDS_VK_STRUCT(VkBindBufferMemoryInfoKHR) pNext); + +/** \brief Binds image to allocation. + +Binds specified image to region of memory represented by specified allocation. +Gets `VkDeviceMemory` handle and offset from the allocation. +If you want to create an image, allocate memory for it and bind them together separately, +you should use this function for binding instead of standard `vkBindImageMemory()`, +because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple +allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously +(which is illegal in Vulkan). + +It is recommended to use function vmaCreateImage() instead of this one. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkImage VMA_NOT_NULL_NON_DISPATCHABLE image); + +/** \brief Binds image to allocation with additional parameters. + +\param allocator +\param allocation +\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0. +\param image +\param pNext A chain of structures to be attached to `VkBindImageMemoryInfoKHR` structure used internally. Normally it should be null. + +This function is similar to vmaBindImageMemory(), but it provides additional parameters. + +If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag +or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkDeviceSize allocationLocalOffset, + VkImage VMA_NOT_NULL_NON_DISPATCHABLE image, + const void* VMA_NULLABLE VMA_EXTENDS_VK_STRUCT(VkBindImageMemoryInfoKHR) pNext); + +/** \brief Creates a new `VkBuffer`, allocates and binds memory for it. + +\param allocator +\param pBufferCreateInfo +\param pAllocationCreateInfo +\param[out] pBuffer Buffer that was created. +\param[out] pAllocation Allocation that was created. +\param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo(). + +This function automatically: + +-# Creates buffer. +-# Allocates appropriate memory for it. +-# Binds the buffer with the memory. + +If any of these operations fail, buffer and allocation are not created, +returned value is negative error code, `*pBuffer` and `*pAllocation` are null. + +If the function succeeded, you must destroy both buffer and allocation when you +no longer need them using either convenience function vmaDestroyBuffer() or +separately, using `vkDestroyBuffer()` and vmaFreeMemory(). + +If #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used, +VK_KHR_dedicated_allocation extension is used internally to query driver whether +it requires or prefers the new buffer to have dedicated allocation. If yes, +and if dedicated allocation is possible +(#VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated +allocation for this buffer, just like when using +#VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. + +\note This function creates a new `VkBuffer`. Sub-allocation of parts of one large buffer, +although recommended as a good practice, is out of scope of this library and could be implemented +by the user as a higher-level logic on top of VMA. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer( + VmaAllocator VMA_NOT_NULL allocator, + const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, + const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, + VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, + VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); + +/** \brief Creates a buffer with additional minimum alignment. + +Similar to vmaCreateBuffer() but provides additional parameter `minAlignment` which allows to specify custom, +minimum alignment to be used when placing the buffer inside a larger memory block, which may be needed e.g. +for interop with OpenGL. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment( + VmaAllocator VMA_NOT_NULL allocator, + const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, + const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, + VkDeviceSize minAlignment, + VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, + VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); + +/** \brief Creates a new `VkBuffer`, binds already created memory for it. + +\param allocator +\param allocation Allocation that provides memory to be used for binding new buffer to it. +\param pBufferCreateInfo +\param[out] pBuffer Buffer that was created. + +This function automatically: + +-# Creates buffer. +-# Binds the buffer with the supplied memory. + +If any of these operations fail, buffer is not created, +returned value is negative error code and `*pBuffer` is null. + +If the function succeeded, you must destroy the buffer when you +no longer need it using `vkDestroyBuffer()`. If you want to also destroy the corresponding +allocation you can use convenience function vmaDestroyBuffer(). + +\note There is a new version of this function augmented with parameter `allocationLocalOffset` - see vmaCreateAliasingBuffer2(). +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, + VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer); + +/** \brief Creates a new `VkBuffer`, binds already created memory for it. + +\param allocator +\param allocation Allocation that provides memory to be used for binding new buffer to it. +\param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the allocation. Normally it should be 0. +\param pBufferCreateInfo +\param[out] pBuffer Buffer that was created. + +This function automatically: + +-# Creates buffer. +-# Binds the buffer with the supplied memory. + +If any of these operations fail, buffer is not created, +returned value is negative error code and `*pBuffer` is null. + +If the function succeeded, you must destroy the buffer when you +no longer need it using `vkDestroyBuffer()`. If you want to also destroy the corresponding +allocation you can use convenience function vmaDestroyBuffer(). + +\note This is a new version of the function augmented with parameter `allocationLocalOffset`. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer2( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkDeviceSize allocationLocalOffset, + const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, + VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer); + +/** \brief Destroys Vulkan buffer and frees allocated memory. + +This is just a convenience function equivalent to: + +\code +vkDestroyBuffer(device, buffer, allocationCallbacks); +vmaFreeMemory(allocator, allocation); +\endcode + +It is safe to pass null as buffer and/or allocation. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer( + VmaAllocator VMA_NOT_NULL allocator, + VkBuffer VMA_NULLABLE_NON_DISPATCHABLE buffer, + VmaAllocation VMA_NULLABLE allocation); + +/// Function similar to vmaCreateBuffer(). +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage( + VmaAllocator VMA_NOT_NULL allocator, + const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, + const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo, + VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage, + VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation, + VmaAllocationInfo* VMA_NULLABLE pAllocationInfo); + +/// Function similar to vmaCreateAliasingBuffer() but for images. +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, + VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage); + +/// Function similar to vmaCreateAliasingBuffer2() but for images. +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage2( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkDeviceSize allocationLocalOffset, + const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, + VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage); + +/** \brief Destroys Vulkan image and frees allocated memory. + +This is just a convenience function equivalent to: + +\code +vkDestroyImage(device, image, allocationCallbacks); +vmaFreeMemory(allocator, allocation); +\endcode + +It is safe to pass null as image and/or allocation. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage( + VmaAllocator VMA_NOT_NULL allocator, + VkImage VMA_NULLABLE_NON_DISPATCHABLE image, + VmaAllocation VMA_NULLABLE allocation); + +/** @} */ + +/** +\addtogroup group_virtual +@{ +*/ + +/** \brief Creates new #VmaVirtualBlock object. + +\param pCreateInfo Parameters for creation. +\param[out] pVirtualBlock Returned virtual block object or `VMA_NULL` if creation failed. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock( + const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaVirtualBlock VMA_NULLABLE* VMA_NOT_NULL pVirtualBlock); + +/** \brief Destroys #VmaVirtualBlock object. + +Please note that you should consciously handle virtual allocations that could remain unfreed in the block. +You should either free them individually using vmaVirtualFree() or call vmaClearVirtualBlock() +if you are sure this is what you want. If you do neither, an assert is called. + +If you keep pointers to some additional metadata associated with your virtual allocations in their `pUserData`, +don't forget to free them. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock( + VmaVirtualBlock VMA_NULLABLE virtualBlock); + +/** \brief Returns true of the #VmaVirtualBlock is empty - contains 0 virtual allocations and has all its space available for new allocations. +*/ +VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty( + VmaVirtualBlock VMA_NOT_NULL virtualBlock); + +/** \brief Returns information about a specific virtual allocation within a virtual block, like its size and `pUserData` pointer. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo); + +/** \brief Allocates new virtual allocation inside given #VmaVirtualBlock. + +If the allocation fails due to not enough free space available, `VK_ERROR_OUT_OF_DEVICE_MEMORY` is returned +(despite the function doesn't ever allocate actual GPU memory). +`pAllocation` is then set to `VK_NULL_HANDLE` and `pOffset`, if not null, it set to `UINT64_MAX`. + +\param virtualBlock Virtual block +\param pCreateInfo Parameters for the allocation +\param[out] pAllocation Returned handle of the new allocation +\param[out] pOffset Returned offset of the new allocation. Optional, can be null. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation, + VkDeviceSize* VMA_NULLABLE pOffset); + +/** \brief Frees virtual allocation inside given #VmaVirtualBlock. + +It is correct to call this function with `allocation == VK_NULL_HANDLE` - it does nothing. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation); + +/** \brief Frees all virtual allocations inside given #VmaVirtualBlock. + +You must either call this function or free each virtual allocation individually with vmaVirtualFree() +before destroying a virtual block. Otherwise, an assert is called. + +If you keep pointer to some additional metadata associated with your virtual allocation in its `pUserData`, +don't forget to free it as well. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock( + VmaVirtualBlock VMA_NOT_NULL virtualBlock); + +/** \brief Changes custom pointer associated with given virtual allocation. +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, + void* VMA_NULLABLE pUserData); + +/** \brief Calculates and returns statistics about virtual allocations and memory usage in given #VmaVirtualBlock. + +This function is fast to call. For more detailed statistics, see vmaCalculateVirtualBlockStatistics(). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualBlockStatistics( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaStatistics* VMA_NOT_NULL pStats); + +/** \brief Calculates and returns detailed statistics about virtual allocations and memory usage in given #VmaVirtualBlock. + +This function is slow to call. Use for debugging purposes. +For less detailed statistics, see vmaGetVirtualBlockStatistics(). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStatistics( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaDetailedStatistics* VMA_NOT_NULL pStats); + +/** @} */ + +#if VMA_STATS_STRING_ENABLED +/** +\addtogroup group_stats +@{ +*/ + +/** \brief Builds and returns a null-terminated string in JSON format with information about given #VmaVirtualBlock. +\param virtualBlock Virtual block. +\param[out] ppStatsString Returned string. +\param detailedMap Pass `VK_FALSE` to only obtain statistics as returned by vmaCalculateVirtualBlockStatistics(). Pass `VK_TRUE` to also obtain full list of allocations and free spaces. + +Returned string must be freed using vmaFreeVirtualBlockStatsString(). +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString, + VkBool32 detailedMap); + +/// Frees a string returned by vmaBuildVirtualBlockStatsString(). +VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString( + VmaVirtualBlock VMA_NOT_NULL virtualBlock, + char* VMA_NULLABLE pStatsString); + +/** \brief Builds and returns statistics as a null-terminated string in JSON format. +\param allocator +\param[out] ppStatsString Must be freed using vmaFreeStatsString() function. +\param detailedMap +*/ +VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString( + VmaAllocator VMA_NOT_NULL allocator, + char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString, + VkBool32 detailedMap); + +VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString( + VmaAllocator VMA_NOT_NULL allocator, + char* VMA_NULLABLE pStatsString); + +/** @} */ + +#endif // VMA_STATS_STRING_ENABLED + +#endif // _VMA_FUNCTION_HEADERS + +#ifdef __cplusplus +} +#endif + +#endif // AMD_VULKAN_MEMORY_ALLOCATOR_H + +//////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////// +// +// IMPLEMENTATION +// +//////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////// + +// For Visual Studio IntelliSense. +#if defined(__cplusplus) && defined(__INTELLISENSE__) +#define VMA_IMPLEMENTATION +#endif + +#ifdef VMA_IMPLEMENTATION +#undef VMA_IMPLEMENTATION + +#include <cstdint> +#include <cstdlib> +#include <cstring> +#include <cinttypes> +#include <utility> +#include <type_traits> + +#if !defined(VMA_CPP20) + #if __cplusplus >= 202002L || _MSVC_LANG >= 202002L // C++20 + #define VMA_CPP20 1 + #else + #define VMA_CPP20 0 + #endif +#endif + +#ifdef _MSC_VER + #include <intrin.h> // For functions like __popcnt, _BitScanForward etc. +#endif +#if VMA_CPP20 + #include <bit> +#endif + +#if VMA_STATS_STRING_ENABLED + #include <cstdio> // For snprintf +#endif + +/******************************************************************************* +CONFIGURATION SECTION + +Define some of these macros before each #include of this header or change them +here if you need other then default behavior depending on your environment. +*/ +#ifndef _VMA_CONFIGURATION + +/* +Define this macro to 1 to make the library fetch pointers to Vulkan functions +internally, like: + + vulkanFunctions.vkAllocateMemory = &vkAllocateMemory; +*/ +#if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES) + #define VMA_STATIC_VULKAN_FUNCTIONS 1 +#endif + +/* +Define this macro to 1 to make the library fetch pointers to Vulkan functions +internally, like: + + vulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkGetDeviceProcAddr(device, "vkAllocateMemory"); + +To use this feature in new versions of VMA you now have to pass +VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as +VmaAllocatorCreateInfo::pVulkanFunctions. Other members can be null. +*/ +#if !defined(VMA_DYNAMIC_VULKAN_FUNCTIONS) + #define VMA_DYNAMIC_VULKAN_FUNCTIONS 1 +#endif + +#ifndef VMA_USE_STL_SHARED_MUTEX + #if __cplusplus >= 201703L || _MSVC_LANG >= 201703L // C++17 + #define VMA_USE_STL_SHARED_MUTEX 1 + // Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus + // Otherwise it is always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2. + #elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L + #define VMA_USE_STL_SHARED_MUTEX 1 + #else + #define VMA_USE_STL_SHARED_MUTEX 0 + #endif +#endif + +/* +Define this macro to include custom header files without having to edit this file directly, e.g.: + + // Inside of "my_vma_configuration_user_includes.h": + + #include "my_custom_assert.h" // for MY_CUSTOM_ASSERT + #include "my_custom_min.h" // for my_custom_min + #include <algorithm> + #include <mutex> + + // Inside a different file, which includes "vk_mem_alloc.h": + + #define VMA_CONFIGURATION_USER_INCLUDES_H "my_vma_configuration_user_includes.h" + #define VMA_ASSERT(expr) MY_CUSTOM_ASSERT(expr) + #define VMA_MIN(v1, v2) (my_custom_min(v1, v2)) + #include "vk_mem_alloc.h" + ... + +The following headers are used in this CONFIGURATION section only, so feel free to +remove them if not needed. +*/ +#if !defined(VMA_CONFIGURATION_USER_INCLUDES_H) + #include <cassert> // for assert + #include <algorithm> // for min, max, swap + #include <mutex> +#else + #include VMA_CONFIGURATION_USER_INCLUDES_H +#endif + +#ifndef VMA_NULL + // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0. + #define VMA_NULL nullptr +#endif + +#ifndef VMA_FALLTHROUGH + #if __cplusplus >= 201703L || _MSVC_LANG >= 201703L // C++17 + #define VMA_FALLTHROUGH [[fallthrough]] + #else + #define VMA_FALLTHROUGH + #endif +#endif + +// Normal assert to check for programmer's errors, especially in Debug configuration. +#ifndef VMA_ASSERT + #ifdef NDEBUG + #define VMA_ASSERT(expr) + #else + #define VMA_ASSERT(expr) assert(expr) + #endif +#endif + +// Assert that will be called very often, like inside data structures e.g. operator[]. +// Making it non-empty can make program slow. +#ifndef VMA_HEAVY_ASSERT + #ifdef NDEBUG + #define VMA_HEAVY_ASSERT(expr) + #else + #define VMA_HEAVY_ASSERT(expr) //VMA_ASSERT(expr) + #endif +#endif + +// Assert used for reporting memory leaks - unfreed allocations. +#ifndef VMA_ASSERT_LEAK + #define VMA_ASSERT_LEAK(expr) VMA_ASSERT(expr) +#endif + +// If your compiler is not compatible with C++17 and definition of +// aligned_alloc() function is missing, uncommenting following line may help: + +//#include <malloc.h> + +#if defined(__ANDROID_API__) && (__ANDROID_API__ < 16) +#include <cstdlib> +static void* vma_aligned_alloc(size_t alignment, size_t size) +{ + // alignment must be >= sizeof(void*) + if(alignment < sizeof(void*)) + { + alignment = sizeof(void*); + } + + return memalign(alignment, size); +} +#elif defined(__APPLE__) || defined(__ANDROID__) || (defined(__linux__) && defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC)) +#include <cstdlib> + +#if defined(__APPLE__) +#include <AvailabilityMacros.h> +#endif + +static void* vma_aligned_alloc(size_t alignment, size_t size) +{ + // Unfortunately, aligned_alloc causes VMA to crash due to it returning null pointers. (At least under 11.4) + // Therefore, for now disable this specific exception until a proper solution is found. + //#if defined(__APPLE__) && (defined(MAC_OS_X_VERSION_10_16) || defined(__IPHONE_14_0)) + //#if MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_16 || __IPHONE_OS_VERSION_MAX_ALLOWED >= __IPHONE_14_0 + // // For C++14, usr/include/malloc/_malloc.h declares aligned_alloc()) only + // // with the MacOSX11.0 SDK in Xcode 12 (which is what adds + // // MAC_OS_X_VERSION_10_16), even though the function is marked + // // available for 10.15. That is why the preprocessor checks for 10.16 but + // // the __builtin_available checks for 10.15. + // // People who use C++17 could call aligned_alloc with the 10.15 SDK already. + // if (__builtin_available(macOS 10.15, iOS 13, *)) + // return aligned_alloc(alignment, size); + //#endif + //#endif + + // alignment must be >= sizeof(void*) + if(alignment < sizeof(void*)) + { + alignment = sizeof(void*); + } + + void *pointer; + if(posix_memalign(&pointer, alignment, size) == 0) + return pointer; + return VMA_NULL; +} +#elif defined(_WIN32) +static void* vma_aligned_alloc(size_t alignment, size_t size) +{ + return _aligned_malloc(size, alignment); +} +#elif __cplusplus >= 201703L || _MSVC_LANG >= 201703L // C++17 +static void* vma_aligned_alloc(size_t alignment, size_t size) +{ + return aligned_alloc(alignment, size); +} +#else +static void* vma_aligned_alloc(size_t alignment, size_t size) +{ + VMA_ASSERT(0 && "Could not implement aligned_alloc automatically. Please enable C++17 or later in your compiler or provide custom implementation of macro VMA_SYSTEM_ALIGNED_MALLOC (and VMA_SYSTEM_ALIGNED_FREE if needed) using the API of your system."); + return VMA_NULL; +} +#endif + +#if defined(_WIN32) +static void vma_aligned_free(void* ptr) +{ + _aligned_free(ptr); +} +#else +static void vma_aligned_free(void* VMA_NULLABLE ptr) +{ + free(ptr); +} +#endif + +#ifndef VMA_ALIGN_OF + #define VMA_ALIGN_OF(type) (alignof(type)) +#endif + +#ifndef VMA_SYSTEM_ALIGNED_MALLOC + #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) vma_aligned_alloc((alignment), (size)) +#endif + +#ifndef VMA_SYSTEM_ALIGNED_FREE + // VMA_SYSTEM_FREE is the old name, but might have been defined by the user + #if defined(VMA_SYSTEM_FREE) + #define VMA_SYSTEM_ALIGNED_FREE(ptr) VMA_SYSTEM_FREE(ptr) + #else + #define VMA_SYSTEM_ALIGNED_FREE(ptr) vma_aligned_free(ptr) + #endif +#endif + +#ifndef VMA_COUNT_BITS_SET + // Returns number of bits set to 1 in (v) + #define VMA_COUNT_BITS_SET(v) VmaCountBitsSet(v) +#endif + +#ifndef VMA_BITSCAN_LSB + // Scans integer for index of first nonzero value from the Least Significant Bit (LSB). If mask is 0 then returns UINT8_MAX + #define VMA_BITSCAN_LSB(mask) VmaBitScanLSB(mask) +#endif + +#ifndef VMA_BITSCAN_MSB + // Scans integer for index of first nonzero value from the Most Significant Bit (MSB). If mask is 0 then returns UINT8_MAX + #define VMA_BITSCAN_MSB(mask) VmaBitScanMSB(mask) +#endif + +#ifndef VMA_MIN + #define VMA_MIN(v1, v2) ((std::min)((v1), (v2))) +#endif + +#ifndef VMA_MAX + #define VMA_MAX(v1, v2) ((std::max)((v1), (v2))) +#endif + +#ifndef VMA_SORT + #define VMA_SORT(beg, end, cmp) std::sort(beg, end, cmp) +#endif + +#ifndef VMA_DEBUG_LOG_FORMAT + #define VMA_DEBUG_LOG_FORMAT(format, ...) + /* + #define VMA_DEBUG_LOG_FORMAT(format, ...) do { \ + printf((format), __VA_ARGS__); \ + printf("\n"); \ + } while(false) + */ +#endif + +#ifndef VMA_DEBUG_LOG + #define VMA_DEBUG_LOG(str) VMA_DEBUG_LOG_FORMAT("%s", (str)) +#endif + +#ifndef VMA_LEAK_LOG_FORMAT + #define VMA_LEAK_LOG_FORMAT(format, ...) VMA_DEBUG_LOG_FORMAT(format, __VA_ARGS__) +#endif + +#ifndef VMA_CLASS_NO_COPY + #define VMA_CLASS_NO_COPY(className) \ + private: \ + className(const className&) = delete; \ + className& operator=(const className&) = delete; +#endif +#ifndef VMA_CLASS_NO_COPY_NO_MOVE + #define VMA_CLASS_NO_COPY_NO_MOVE(className) \ + private: \ + className(const className&) = delete; \ + className(className&&) = delete; \ + className& operator=(const className&) = delete; \ + className& operator=(className&&) = delete; +#endif + +// Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString. +#if VMA_STATS_STRING_ENABLED + static inline void VmaUint32ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint32_t num) + { + snprintf(outStr, strLen, "%" PRIu32, num); + } + static inline void VmaUint64ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint64_t num) + { + snprintf(outStr, strLen, "%" PRIu64, num); + } + static inline void VmaPtrToStr(char* VMA_NOT_NULL outStr, size_t strLen, const void* ptr) + { + snprintf(outStr, strLen, "%p", ptr); + } +#endif + +#ifndef VMA_MUTEX + class VmaMutex + { + VMA_CLASS_NO_COPY_NO_MOVE(VmaMutex) + public: + VmaMutex() { } + void Lock() { m_Mutex.lock(); } + void Unlock() { m_Mutex.unlock(); } + bool TryLock() { return m_Mutex.try_lock(); } + private: + std::mutex m_Mutex; + }; + #define VMA_MUTEX VmaMutex +#endif + +// Read-write mutex, where "read" is shared access, "write" is exclusive access. +#ifndef VMA_RW_MUTEX + #if VMA_USE_STL_SHARED_MUTEX + // Use std::shared_mutex from C++17. + #include <shared_mutex> + class VmaRWMutex + { + public: + void LockRead() { m_Mutex.lock_shared(); } + void UnlockRead() { m_Mutex.unlock_shared(); } + bool TryLockRead() { return m_Mutex.try_lock_shared(); } + void LockWrite() { m_Mutex.lock(); } + void UnlockWrite() { m_Mutex.unlock(); } + bool TryLockWrite() { return m_Mutex.try_lock(); } + private: + std::shared_mutex m_Mutex; + }; + #define VMA_RW_MUTEX VmaRWMutex + #elif defined(_WIN32) && defined(WINVER) && WINVER >= 0x0600 + // Use SRWLOCK from WinAPI. + // Minimum supported client = Windows Vista, server = Windows Server 2008. + class VmaRWMutex + { + public: + VmaRWMutex() { InitializeSRWLock(&m_Lock); } + void LockRead() { AcquireSRWLockShared(&m_Lock); } + void UnlockRead() { ReleaseSRWLockShared(&m_Lock); } + bool TryLockRead() { return TryAcquireSRWLockShared(&m_Lock) != FALSE; } + void LockWrite() { AcquireSRWLockExclusive(&m_Lock); } + void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); } + bool TryLockWrite() { return TryAcquireSRWLockExclusive(&m_Lock) != FALSE; } + private: + SRWLOCK m_Lock; + }; + #define VMA_RW_MUTEX VmaRWMutex + #else + // Less efficient fallback: Use normal mutex. + class VmaRWMutex + { + public: + void LockRead() { m_Mutex.Lock(); } + void UnlockRead() { m_Mutex.Unlock(); } + bool TryLockRead() { return m_Mutex.TryLock(); } + void LockWrite() { m_Mutex.Lock(); } + void UnlockWrite() { m_Mutex.Unlock(); } + bool TryLockWrite() { return m_Mutex.TryLock(); } + private: + VMA_MUTEX m_Mutex; + }; + #define VMA_RW_MUTEX VmaRWMutex + #endif // #if VMA_USE_STL_SHARED_MUTEX +#endif // #ifndef VMA_RW_MUTEX + +/* +If providing your own implementation, you need to implement a subset of std::atomic. +*/ +#ifndef VMA_ATOMIC_UINT32 + #include <atomic> + #define VMA_ATOMIC_UINT32 std::atomic<uint32_t> +#endif + +#ifndef VMA_ATOMIC_UINT64 + #include <atomic> + #define VMA_ATOMIC_UINT64 std::atomic<uint64_t> +#endif + +#ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY + /** + Every allocation will have its own memory block. + Define to 1 for debugging purposes only. + */ + #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0) +#endif + +#ifndef VMA_MIN_ALIGNMENT + /** + Minimum alignment of all allocations, in bytes. + Set to more than 1 for debugging purposes. Must be power of two. + */ + #ifdef VMA_DEBUG_ALIGNMENT // Old name + #define VMA_MIN_ALIGNMENT VMA_DEBUG_ALIGNMENT + #else + #define VMA_MIN_ALIGNMENT (1) + #endif +#endif + +#ifndef VMA_DEBUG_MARGIN + /** + Minimum margin after every allocation, in bytes. + Set nonzero for debugging purposes only. + */ + #define VMA_DEBUG_MARGIN (0) +#endif + +#ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS + /** + Define this macro to 1 to automatically fill new allocations and destroyed + allocations with some bit pattern. + */ + #define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0) +#endif + +#ifndef VMA_DEBUG_DETECT_CORRUPTION + /** + Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to + enable writing magic value to the margin after every allocation and + validating it, so that memory corruptions (out-of-bounds writes) are detected. + */ + #define VMA_DEBUG_DETECT_CORRUPTION (0) +#endif + +#ifndef VMA_DEBUG_GLOBAL_MUTEX + /** + Set this to 1 for debugging purposes only, to enable single mutex protecting all + entry calls to the library. Can be useful for debugging multithreading issues. + */ + #define VMA_DEBUG_GLOBAL_MUTEX (0) +#endif + +#ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY + /** + Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity. + Set to more than 1 for debugging purposes only. Must be power of two. + */ + #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1) +#endif + +#ifndef VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT + /* + Set this to 1 to make VMA never exceed VkPhysicalDeviceLimits::maxMemoryAllocationCount + and return error instead of leaving up to Vulkan implementation what to do in such cases. + */ + #define VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT (0) +#endif + +#ifndef VMA_SMALL_HEAP_MAX_SIZE + /// Maximum size of a memory heap in Vulkan to consider it "small". + #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024) +#endif + +#ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE + /// Default size of a block allocated as single VkDeviceMemory from a "large" heap. + #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024) +#endif + +/* +Mapping hysteresis is a logic that launches when vmaMapMemory/vmaUnmapMemory is called +or a persistently mapped allocation is created and destroyed several times in a row. +It keeps additional +1 mapping of a device memory block to prevent calling actual +vkMapMemory/vkUnmapMemory too many times, which may improve performance and help +tools like RenderDoc. +*/ +#ifndef VMA_MAPPING_HYSTERESIS_ENABLED + #define VMA_MAPPING_HYSTERESIS_ENABLED 1 +#endif + +#define VMA_VALIDATE(cond) do { if(!(cond)) { \ + VMA_ASSERT(0 && "Validation failed: " #cond); \ + return false; \ + } } while(false) + +/******************************************************************************* +END OF CONFIGURATION +*/ +#endif // _VMA_CONFIGURATION + + +static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED = 0xDC; +static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF; +// Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F. +static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666; + +// Copy of some Vulkan definitions so we don't need to check their existence just to handle few constants. +static const uint32_t VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY = 0x00000040; +static const uint32_t VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY = 0x00000080; +static const uint32_t VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY = 0x00020000; +static const uint32_t VK_IMAGE_CREATE_DISJOINT_BIT_COPY = 0x00000200; +static const int32_t VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT_COPY = 1000158000; +static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u; +static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32; +static const uint32_t VMA_VENDOR_ID_AMD = 4098; + +// This one is tricky. Vulkan specification defines this code as available since +// Vulkan 1.0, but doesn't actually define it in Vulkan SDK earlier than 1.2.131. +// See pull request #207. +#define VK_ERROR_UNKNOWN_COPY ((VkResult)-13) + + +#if VMA_STATS_STRING_ENABLED +// Correspond to values of enum VmaSuballocationType. +static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = +{ + "FREE", + "UNKNOWN", + "BUFFER", + "IMAGE_UNKNOWN", + "IMAGE_LINEAR", + "IMAGE_OPTIMAL", +}; +#endif + +static VkAllocationCallbacks VmaEmptyAllocationCallbacks = + { VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL }; + + +#ifndef _VMA_ENUM_DECLARATIONS + +enum VmaSuballocationType +{ + VMA_SUBALLOCATION_TYPE_FREE = 0, + VMA_SUBALLOCATION_TYPE_UNKNOWN = 1, + VMA_SUBALLOCATION_TYPE_BUFFER = 2, + VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3, + VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4, + VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5, + VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF +}; + +enum VMA_CACHE_OPERATION +{ + VMA_CACHE_FLUSH, + VMA_CACHE_INVALIDATE +}; + +enum class VmaAllocationRequestType +{ + Normal, + TLSF, + // Used by "Linear" algorithm. + UpperAddress, + EndOf1st, + EndOf2nd, +}; + +#endif // _VMA_ENUM_DECLARATIONS + +#ifndef _VMA_FORWARD_DECLARATIONS +// Opaque handle used by allocation algorithms to identify single allocation in any conforming way. +VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaAllocHandle); + +struct VmaMutexLock; +struct VmaMutexLockRead; +struct VmaMutexLockWrite; + +template<typename T> +struct AtomicTransactionalIncrement; + +template<typename T> +struct VmaStlAllocator; + +template<typename T, typename AllocatorT> +class VmaVector; + +template<typename T, typename AllocatorT, size_t N> +class VmaSmallVector; + +template<typename T> +class VmaPoolAllocator; + +template<typename T> +struct VmaListItem; + +template<typename T> +class VmaRawList; + +template<typename T, typename AllocatorT> +class VmaList; + +template<typename ItemTypeTraits> +class VmaIntrusiveLinkedList; + +#if VMA_STATS_STRING_ENABLED +class VmaStringBuilder; +class VmaJsonWriter; +#endif + +class VmaDeviceMemoryBlock; + +struct VmaDedicatedAllocationListItemTraits; +class VmaDedicatedAllocationList; + +struct VmaSuballocation; +struct VmaSuballocationOffsetLess; +struct VmaSuballocationOffsetGreater; +struct VmaSuballocationItemSizeLess; + +typedef VmaList<VmaSuballocation, VmaStlAllocator<VmaSuballocation>> VmaSuballocationList; + +struct VmaAllocationRequest; + +class VmaBlockMetadata; +class VmaBlockMetadata_Linear; +class VmaBlockMetadata_TLSF; + +class VmaBlockVector; + +struct VmaPoolListItemTraits; + +struct VmaCurrentBudgetData; + +class VmaAllocationObjectAllocator; + +#endif // _VMA_FORWARD_DECLARATIONS + + +#ifndef _VMA_FUNCTIONS + +/* +Returns number of bits set to 1 in (v). + +On specific platforms and compilers you can use intrinsics like: + +Visual Studio: + return __popcnt(v); +GCC, Clang: + return static_cast<uint32_t>(__builtin_popcount(v)); + +Define macro VMA_COUNT_BITS_SET to provide your optimized implementation. +But you need to check in runtime whether user's CPU supports these, as some old processors don't. +*/ +static inline uint32_t VmaCountBitsSet(uint32_t v) +{ +#if VMA_CPP20 + return std::popcount(v); +#else + uint32_t c = v - ((v >> 1) & 0x55555555); + c = ((c >> 2) & 0x33333333) + (c & 0x33333333); + c = ((c >> 4) + c) & 0x0F0F0F0F; + c = ((c >> 8) + c) & 0x00FF00FF; + c = ((c >> 16) + c) & 0x0000FFFF; + return c; +#endif +} + +static inline uint8_t VmaBitScanLSB(uint64_t mask) +{ +#if defined(_MSC_VER) && defined(_WIN64) + unsigned long pos; + if (_BitScanForward64(&pos, mask)) + return static_cast<uint8_t>(pos); + return UINT8_MAX; +#elif VMA_CPP20 + if(mask) + return static_cast<uint8_t>(std::countr_zero(mask)); + return UINT8_MAX; +#elif defined __GNUC__ || defined __clang__ + return static_cast<uint8_t>(__builtin_ffsll(mask)) - 1U; +#else + uint8_t pos = 0; + uint64_t bit = 1; + do + { + if (mask & bit) + return pos; + bit <<= 1; + } while (pos++ < 63); + return UINT8_MAX; +#endif +} + +static inline uint8_t VmaBitScanLSB(uint32_t mask) +{ +#ifdef _MSC_VER + unsigned long pos; + if (_BitScanForward(&pos, mask)) + return static_cast<uint8_t>(pos); + return UINT8_MAX; +#elif VMA_CPP20 + if(mask) + return static_cast<uint8_t>(std::countr_zero(mask)); + return UINT8_MAX; +#elif defined __GNUC__ || defined __clang__ + return static_cast<uint8_t>(__builtin_ffs(mask)) - 1U; +#else + uint8_t pos = 0; + uint32_t bit = 1; + do + { + if (mask & bit) + return pos; + bit <<= 1; + } while (pos++ < 31); + return UINT8_MAX; +#endif +} + +static inline uint8_t VmaBitScanMSB(uint64_t mask) +{ +#if defined(_MSC_VER) && defined(_WIN64) + unsigned long pos; + if (_BitScanReverse64(&pos, mask)) + return static_cast<uint8_t>(pos); +#elif VMA_CPP20 + if(mask) + return 63 - static_cast<uint8_t>(std::countl_zero(mask)); +#elif defined __GNUC__ || defined __clang__ + if (mask) + return 63 - static_cast<uint8_t>(__builtin_clzll(mask)); +#else + uint8_t pos = 63; + uint64_t bit = 1ULL << 63; + do + { + if (mask & bit) + return pos; + bit >>= 1; + } while (pos-- > 0); +#endif + return UINT8_MAX; +} + +static inline uint8_t VmaBitScanMSB(uint32_t mask) +{ +#ifdef _MSC_VER + unsigned long pos; + if (_BitScanReverse(&pos, mask)) + return static_cast<uint8_t>(pos); +#elif VMA_CPP20 + if(mask) + return 31 - static_cast<uint8_t>(std::countl_zero(mask)); +#elif defined __GNUC__ || defined __clang__ + if (mask) + return 31 - static_cast<uint8_t>(__builtin_clz(mask)); +#else + uint8_t pos = 31; + uint32_t bit = 1UL << 31; + do + { + if (mask & bit) + return pos; + bit >>= 1; + } while (pos-- > 0); +#endif + return UINT8_MAX; +} + +/* +Returns true if given number is a power of two. +T must be unsigned integer number or signed integer but always nonnegative. +For 0 returns true. +*/ +template <typename T> +inline bool VmaIsPow2(T x) +{ + return (x & (x - 1)) == 0; +} + +// Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16. +// Use types like uint32_t, uint64_t as T. +template <typename T> +static inline T VmaAlignUp(T val, T alignment) +{ + VMA_HEAVY_ASSERT(VmaIsPow2(alignment)); + return (val + alignment - 1) & ~(alignment - 1); +} + +// Aligns given value down to nearest multiply of align value. For example: VmaAlignDown(11, 8) = 8. +// Use types like uint32_t, uint64_t as T. +template <typename T> +static inline T VmaAlignDown(T val, T alignment) +{ + VMA_HEAVY_ASSERT(VmaIsPow2(alignment)); + return val & ~(alignment - 1); +} + +// Division with mathematical rounding to nearest number. +template <typename T> +static inline T VmaRoundDiv(T x, T y) +{ + return (x + (y / (T)2)) / y; +} + +// Divide by 'y' and round up to nearest integer. +template <typename T> +static inline T VmaDivideRoundingUp(T x, T y) +{ + return (x + y - (T)1) / y; +} + +// Returns smallest power of 2 greater or equal to v. +static inline uint32_t VmaNextPow2(uint32_t v) +{ + v--; + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v++; + return v; +} + +static inline uint64_t VmaNextPow2(uint64_t v) +{ + v--; + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v |= v >> 32; + v++; + return v; +} + +// Returns largest power of 2 less or equal to v. +static inline uint32_t VmaPrevPow2(uint32_t v) +{ + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v = v ^ (v >> 1); + return v; +} + +static inline uint64_t VmaPrevPow2(uint64_t v) +{ + v |= v >> 1; + v |= v >> 2; + v |= v >> 4; + v |= v >> 8; + v |= v >> 16; + v |= v >> 32; + v = v ^ (v >> 1); + return v; +} + +static inline bool VmaStrIsEmpty(const char* pStr) +{ + return pStr == VMA_NULL || *pStr == '\0'; +} + +/* +Returns true if two memory blocks occupy overlapping pages. +ResourceA must be in less memory offset than ResourceB. + +Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)" +chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity". +*/ +static inline bool VmaBlocksOnSamePage( + VkDeviceSize resourceAOffset, + VkDeviceSize resourceASize, + VkDeviceSize resourceBOffset, + VkDeviceSize pageSize) +{ + VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0); + VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1; + VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1); + VkDeviceSize resourceBStart = resourceBOffset; + VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1); + return resourceAEndPage == resourceBStartPage; +} + +/* +Returns true if given suballocation types could conflict and must respect +VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer +or linear image and another one is optimal image. If type is unknown, behave +conservatively. +*/ +static inline bool VmaIsBufferImageGranularityConflict( + VmaSuballocationType suballocType1, + VmaSuballocationType suballocType2) +{ + if (suballocType1 > suballocType2) + { + std::swap(suballocType1, suballocType2); + } + + switch (suballocType1) + { + case VMA_SUBALLOCATION_TYPE_FREE: + return false; + case VMA_SUBALLOCATION_TYPE_UNKNOWN: + return true; + case VMA_SUBALLOCATION_TYPE_BUFFER: + return + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; + case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN: + return + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR || + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; + case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR: + return + suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL; + case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL: + return false; + default: + VMA_ASSERT(0); + return true; + } +} + +static void VmaWriteMagicValue(void* pData, VkDeviceSize offset) +{ +#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION + uint32_t* pDst = (uint32_t*)((char*)pData + offset); + const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); + for (size_t i = 0; i < numberCount; ++i, ++pDst) + { + *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE; + } +#else + // no-op +#endif +} + +static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset) +{ +#if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION + const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset); + const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t); + for (size_t i = 0; i < numberCount; ++i, ++pSrc) + { + if (*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE) + { + return false; + } + } +#endif + return true; +} + +/* +Fills structure with parameters of an example buffer to be used for transfers +during GPU memory defragmentation. +*/ +static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo& outBufCreateInfo) +{ + memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo)); + outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; + outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size. +} + + +/* +Performs binary search and returns iterator to first element that is greater or +equal to (key), according to comparison (cmp). + +Cmp should return true if first argument is less than second argument. + +Returned value is the found element, if present in the collection or place where +new element with value (key) should be inserted. +*/ +template <typename CmpLess, typename IterT, typename KeyT> +static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT& key, const CmpLess& cmp) +{ + size_t down = 0, up = size_t(end - beg); + while (down < up) + { + const size_t mid = down + (up - down) / 2; // Overflow-safe midpoint calculation + if (cmp(*(beg + mid), key)) + { + down = mid + 1; + } + else + { + up = mid; + } + } + return beg + down; +} + +template<typename CmpLess, typename IterT, typename KeyT> +IterT VmaBinaryFindSorted(const IterT& beg, const IterT& end, const KeyT& value, const CmpLess& cmp) +{ + IterT it = VmaBinaryFindFirstNotLess<CmpLess, IterT, KeyT>( + beg, end, value, cmp); + if (it == end || + (!cmp(*it, value) && !cmp(value, *it))) + { + return it; + } + return end; +} + +/* +Returns true if all pointers in the array are not-null and unique. +Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT. +T must be pointer type, e.g. VmaAllocation, VmaPool. +*/ +template<typename T> +static bool VmaValidatePointerArray(uint32_t count, const T* arr) +{ + for (uint32_t i = 0; i < count; ++i) + { + const T iPtr = arr[i]; + if (iPtr == VMA_NULL) + { + return false; + } + for (uint32_t j = i + 1; j < count; ++j) + { + if (iPtr == arr[j]) + { + return false; + } + } + } + return true; +} + +template<typename MainT, typename NewT> +static inline void VmaPnextChainPushFront(MainT* mainStruct, NewT* newStruct) +{ + newStruct->pNext = mainStruct->pNext; + mainStruct->pNext = newStruct; +} +// Finds structure with s->sType == sType in mainStruct->pNext chain. +// Returns pointer to it. If not found, returns null. +template<typename FindT, typename MainT> +static inline const FindT* VmaPnextChainFind(const MainT* mainStruct, VkStructureType sType) +{ + for(const VkBaseInStructure* s = (const VkBaseInStructure*)mainStruct->pNext; + s != VMA_NULL; s = s->pNext) + { + if(s->sType == sType) + { + return (const FindT*)s; + } + } + return VMA_NULL; +} + +// An abstraction over buffer or image `usage` flags, depending on available extensions. +struct VmaBufferImageUsage +{ +#if VMA_KHR_MAINTENANCE5 + typedef uint64_t BaseType; // VkFlags64 +#else + typedef uint32_t BaseType; // VkFlags32 +#endif + + static const VmaBufferImageUsage UNKNOWN; + + BaseType Value; + + VmaBufferImageUsage() { *this = UNKNOWN; } + explicit VmaBufferImageUsage(BaseType usage) : Value(usage) { } + VmaBufferImageUsage(const VkBufferCreateInfo &createInfo, bool useKhrMaintenance5); + explicit VmaBufferImageUsage(const VkImageCreateInfo &createInfo); + + bool operator==(const VmaBufferImageUsage& rhs) const { return Value == rhs.Value; } + bool operator!=(const VmaBufferImageUsage& rhs) const { return Value != rhs.Value; } + + bool Contains(BaseType flag) const { return (Value & flag) != 0; } + bool ContainsDeviceAccess() const + { + // This relies on values of VK_IMAGE_USAGE_TRANSFER* being the same as VK_BUFFER_IMAGE_TRANSFER*. + return (Value & ~BaseType(VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT)) != 0; + } +}; + +const VmaBufferImageUsage VmaBufferImageUsage::UNKNOWN = VmaBufferImageUsage(0); + +static void swap(VmaBufferImageUsage& lhs, VmaBufferImageUsage& rhs) noexcept +{ + using std::swap; + swap(lhs.Value, rhs.Value); +} + +VmaBufferImageUsage::VmaBufferImageUsage(const VkBufferCreateInfo &createInfo, + bool useKhrMaintenance5) +{ +#if VMA_KHR_MAINTENANCE5 + if(useKhrMaintenance5) + { + // If VkBufferCreateInfo::pNext chain contains VkBufferUsageFlags2CreateInfoKHR, + // take usage from it and ignore VkBufferCreateInfo::usage, per specification + // of the VK_KHR_maintenance5 extension. + const VkBufferUsageFlags2CreateInfoKHR* const usageFlags2 = + VmaPnextChainFind<VkBufferUsageFlags2CreateInfoKHR>(&createInfo, VK_STRUCTURE_TYPE_BUFFER_USAGE_FLAGS_2_CREATE_INFO_KHR); + if(usageFlags2) + { + this->Value = usageFlags2->usage; + return; + } + } +#endif + + this->Value = (BaseType)createInfo.usage; +} + +VmaBufferImageUsage::VmaBufferImageUsage(const VkImageCreateInfo &createInfo) +{ + // Maybe in the future there will be VK_KHR_maintenanceN extension with structure + // VkImageUsageFlags2CreateInfoKHR, like the one for buffers... + + this->Value = (BaseType)createInfo.usage; +} + +// This is the main algorithm that guides the selection of a memory type best for an allocation - +// converts usage to required/preferred/not preferred flags. +static bool FindMemoryPreferences( + bool isIntegratedGPU, + const VmaAllocationCreateInfo& allocCreateInfo, + VmaBufferImageUsage bufImgUsage, + VkMemoryPropertyFlags& outRequiredFlags, + VkMemoryPropertyFlags& outPreferredFlags, + VkMemoryPropertyFlags& outNotPreferredFlags) +{ + outRequiredFlags = allocCreateInfo.requiredFlags; + outPreferredFlags = allocCreateInfo.preferredFlags; + outNotPreferredFlags = 0; + + switch(allocCreateInfo.usage) + { + case VMA_MEMORY_USAGE_UNKNOWN: + break; + case VMA_MEMORY_USAGE_GPU_ONLY: + if(!isIntegratedGPU || (outPreferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) + { + outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + } + break; + case VMA_MEMORY_USAGE_CPU_ONLY: + outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; + break; + case VMA_MEMORY_USAGE_CPU_TO_GPU: + outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + if(!isIntegratedGPU || (outPreferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) + { + outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + } + break; + case VMA_MEMORY_USAGE_GPU_TO_CPU: + outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + outPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT; + break; + case VMA_MEMORY_USAGE_CPU_COPY: + outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + break; + case VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED: + outRequiredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT; + break; + case VMA_MEMORY_USAGE_AUTO: + case VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE: + case VMA_MEMORY_USAGE_AUTO_PREFER_HOST: + { + if(bufImgUsage == VmaBufferImageUsage::UNKNOWN) + { + VMA_ASSERT(0 && "VMA_MEMORY_USAGE_AUTO* values can only be used with functions like vmaCreateBuffer, vmaCreateImage so that the details of the created resource are known." + " Maybe you use VkBufferUsageFlags2CreateInfoKHR but forgot to use VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT?" ); + return false; + } + + const bool deviceAccess = bufImgUsage.ContainsDeviceAccess(); + const bool hostAccessSequentialWrite = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT) != 0; + const bool hostAccessRandom = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT) != 0; + const bool hostAccessAllowTransferInstead = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT) != 0; + const bool preferDevice = allocCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE; + const bool preferHost = allocCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_HOST; + + // CPU random access - e.g. a buffer written to or transferred from GPU to read back on CPU. + if(hostAccessRandom) + { + // Prefer cached. Cannot require it, because some platforms don't have it (e.g. Raspberry Pi - see #362)! + outPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT; + + if (!isIntegratedGPU && deviceAccess && hostAccessAllowTransferInstead && !preferHost) + { + // Nice if it will end up in HOST_VISIBLE, but more importantly prefer DEVICE_LOCAL. + // Omitting HOST_VISIBLE here is intentional. + // In case there is DEVICE_LOCAL | HOST_VISIBLE | HOST_CACHED, it will pick that one. + // Otherwise, this will give same weight to DEVICE_LOCAL as HOST_VISIBLE | HOST_CACHED and select the former if occurs first on the list. + outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + } + else + { + // Always CPU memory. + outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + } + } + // CPU sequential write - may be CPU or host-visible GPU memory, uncached and write-combined. + else if(hostAccessSequentialWrite) + { + // Want uncached and write-combined. + outNotPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT; + + if(!isIntegratedGPU && deviceAccess && hostAccessAllowTransferInstead && !preferHost) + { + outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + } + else + { + outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + // Direct GPU access, CPU sequential write (e.g. a dynamic uniform buffer updated every frame) + if(deviceAccess) + { + // Could go to CPU memory or GPU BAR/unified. Up to the user to decide. If no preference, choose GPU memory. + if(preferHost) + outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + else + outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + } + // GPU no direct access, CPU sequential write (e.g. an upload buffer to be transferred to the GPU) + else + { + // Could go to CPU memory or GPU BAR/unified. Up to the user to decide. If no preference, choose CPU memory. + if(preferDevice) + outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + else + outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + } + } + } + // No CPU access + else + { + // if(deviceAccess) + // + // GPU access, no CPU access (e.g. a color attachment image) - prefer GPU memory, + // unless there is a clear preference from the user not to do so. + // + // else: + // + // No direct GPU access, no CPU access, just transfers. + // It may be staging copy intended for e.g. preserving image for next frame (then better GPU memory) or + // a "swap file" copy to free some GPU memory (then better CPU memory). + // Up to the user to decide. If no preferece, assume the former and choose GPU memory. + + if(preferHost) + outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + else + outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + } + break; + } + default: + VMA_ASSERT(0); + } + + // Avoid DEVICE_COHERENT unless explicitly requested. + if(((allocCreateInfo.requiredFlags | allocCreateInfo.preferredFlags) & + (VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)) == 0) + { + outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY; + } + + return true; +} + +//////////////////////////////////////////////////////////////////////////////// +// Memory allocation + +static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment) +{ + void* result = VMA_NULL; + if ((pAllocationCallbacks != VMA_NULL) && + (pAllocationCallbacks->pfnAllocation != VMA_NULL)) + { + result = (*pAllocationCallbacks->pfnAllocation)( + pAllocationCallbacks->pUserData, + size, + alignment, + VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); + } + else + { + result = VMA_SYSTEM_ALIGNED_MALLOC(size, alignment); + } + VMA_ASSERT(result != VMA_NULL && "CPU memory allocation failed."); + return result; +} + +static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr) +{ + if ((pAllocationCallbacks != VMA_NULL) && + (pAllocationCallbacks->pfnFree != VMA_NULL)) + { + (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr); + } + else + { + VMA_SYSTEM_ALIGNED_FREE(ptr); + } +} + +template<typename T> +static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks) +{ + return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T)); +} + +template<typename T> +static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count) +{ + return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T)); +} + +#define vma_new(allocator, type) new(VmaAllocate<type>(allocator))(type) + +#define vma_new_array(allocator, type, count) new(VmaAllocateArray<type>((allocator), (count)))(type) + +template<typename T> +static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr) +{ + ptr->~T(); + VmaFree(pAllocationCallbacks, ptr); +} + +template<typename T> +static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count) +{ + if (ptr != VMA_NULL) + { + for (size_t i = count; i--; ) + { + ptr[i].~T(); + } + VmaFree(pAllocationCallbacks, ptr); + } +} + +static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr) +{ + if (srcStr != VMA_NULL) + { + const size_t len = strlen(srcStr); + char* const result = vma_new_array(allocs, char, len + 1); + memcpy(result, srcStr, len + 1); + return result; + } + return VMA_NULL; +} + +#if VMA_STATS_STRING_ENABLED +static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr, size_t strLen) +{ + if (srcStr != VMA_NULL) + { + char* const result = vma_new_array(allocs, char, strLen + 1); + memcpy(result, srcStr, strLen); + result[strLen] = '\0'; + return result; + } + return VMA_NULL; +} +#endif // VMA_STATS_STRING_ENABLED + +static void VmaFreeString(const VkAllocationCallbacks* allocs, char* str) +{ + if (str != VMA_NULL) + { + const size_t len = strlen(str); + vma_delete_array(allocs, str, len + 1); + } +} + +template<typename CmpLess, typename VectorT> +size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value) +{ + const size_t indexToInsert = VmaBinaryFindFirstNotLess( + vector.data(), + vector.data() + vector.size(), + value, + CmpLess()) - vector.data(); + VmaVectorInsert(vector, indexToInsert, value); + return indexToInsert; +} + +template<typename CmpLess, typename VectorT> +bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value) +{ + CmpLess comparator; + typename VectorT::iterator it = VmaBinaryFindFirstNotLess( + vector.begin(), + vector.end(), + value, + comparator); + if ((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it)) + { + size_t indexToRemove = it - vector.begin(); + VmaVectorRemove(vector, indexToRemove); + return true; + } + return false; +} +#endif // _VMA_FUNCTIONS + +#ifndef _VMA_STATISTICS_FUNCTIONS + +static void VmaClearStatistics(VmaStatistics& outStats) +{ + outStats.blockCount = 0; + outStats.allocationCount = 0; + outStats.blockBytes = 0; + outStats.allocationBytes = 0; +} + +static void VmaAddStatistics(VmaStatistics& inoutStats, const VmaStatistics& src) +{ + inoutStats.blockCount += src.blockCount; + inoutStats.allocationCount += src.allocationCount; + inoutStats.blockBytes += src.blockBytes; + inoutStats.allocationBytes += src.allocationBytes; +} + +static void VmaClearDetailedStatistics(VmaDetailedStatistics& outStats) +{ + VmaClearStatistics(outStats.statistics); + outStats.unusedRangeCount = 0; + outStats.allocationSizeMin = VK_WHOLE_SIZE; + outStats.allocationSizeMax = 0; + outStats.unusedRangeSizeMin = VK_WHOLE_SIZE; + outStats.unusedRangeSizeMax = 0; +} + +static void VmaAddDetailedStatisticsAllocation(VmaDetailedStatistics& inoutStats, VkDeviceSize size) +{ + inoutStats.statistics.allocationCount++; + inoutStats.statistics.allocationBytes += size; + inoutStats.allocationSizeMin = VMA_MIN(inoutStats.allocationSizeMin, size); + inoutStats.allocationSizeMax = VMA_MAX(inoutStats.allocationSizeMax, size); +} + +static void VmaAddDetailedStatisticsUnusedRange(VmaDetailedStatistics& inoutStats, VkDeviceSize size) +{ + inoutStats.unusedRangeCount++; + inoutStats.unusedRangeSizeMin = VMA_MIN(inoutStats.unusedRangeSizeMin, size); + inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, size); +} + +static void VmaAddDetailedStatistics(VmaDetailedStatistics& inoutStats, const VmaDetailedStatistics& src) +{ + VmaAddStatistics(inoutStats.statistics, src.statistics); + inoutStats.unusedRangeCount += src.unusedRangeCount; + inoutStats.allocationSizeMin = VMA_MIN(inoutStats.allocationSizeMin, src.allocationSizeMin); + inoutStats.allocationSizeMax = VMA_MAX(inoutStats.allocationSizeMax, src.allocationSizeMax); + inoutStats.unusedRangeSizeMin = VMA_MIN(inoutStats.unusedRangeSizeMin, src.unusedRangeSizeMin); + inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, src.unusedRangeSizeMax); +} + +#endif // _VMA_STATISTICS_FUNCTIONS + +#ifndef _VMA_MUTEX_LOCK +// Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope). +struct VmaMutexLock +{ + VMA_CLASS_NO_COPY_NO_MOVE(VmaMutexLock) +public: + VmaMutexLock(VMA_MUTEX& mutex, bool useMutex = true) : + m_pMutex(useMutex ? &mutex : VMA_NULL) + { + if (m_pMutex) { m_pMutex->Lock(); } + } + ~VmaMutexLock() { if (m_pMutex) { m_pMutex->Unlock(); } } + +private: + VMA_MUTEX* m_pMutex; +}; + +// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading. +struct VmaMutexLockRead +{ + VMA_CLASS_NO_COPY_NO_MOVE(VmaMutexLockRead) +public: + VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) : + m_pMutex(useMutex ? &mutex : VMA_NULL) + { + if (m_pMutex) { m_pMutex->LockRead(); } + } + ~VmaMutexLockRead() { if (m_pMutex) { m_pMutex->UnlockRead(); } } + +private: + VMA_RW_MUTEX* m_pMutex; +}; + +// Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing. +struct VmaMutexLockWrite +{ + VMA_CLASS_NO_COPY_NO_MOVE(VmaMutexLockWrite) +public: + VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex) + : m_pMutex(useMutex ? &mutex : VMA_NULL) + { + if (m_pMutex) { m_pMutex->LockWrite(); } + } + ~VmaMutexLockWrite() { if (m_pMutex) { m_pMutex->UnlockWrite(); } } + +private: + VMA_RW_MUTEX* m_pMutex; +}; + +#if VMA_DEBUG_GLOBAL_MUTEX + static VMA_MUTEX gDebugGlobalMutex; + #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true); +#else + #define VMA_DEBUG_GLOBAL_MUTEX_LOCK +#endif +#endif // _VMA_MUTEX_LOCK + +#ifndef _VMA_ATOMIC_TRANSACTIONAL_INCREMENT +// An object that increments given atomic but decrements it back in the destructor unless Commit() is called. +template<typename AtomicT> +struct AtomicTransactionalIncrement +{ +public: + using T = decltype(AtomicT().load()); + + ~AtomicTransactionalIncrement() + { + if(m_Atomic) + --(*m_Atomic); + } + + void Commit() { m_Atomic = VMA_NULL; } + T Increment(AtomicT* atomic) + { + m_Atomic = atomic; + return m_Atomic->fetch_add(1); + } + +private: + AtomicT* m_Atomic = VMA_NULL; +}; +#endif // _VMA_ATOMIC_TRANSACTIONAL_INCREMENT + +#ifndef _VMA_STL_ALLOCATOR +// STL-compatible allocator. +template<typename T> +struct VmaStlAllocator +{ + const VkAllocationCallbacks* const m_pCallbacks; + typedef T value_type; + + VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) {} + template<typename U> + VmaStlAllocator(const VmaStlAllocator<U>& src) : m_pCallbacks(src.m_pCallbacks) {} + VmaStlAllocator(const VmaStlAllocator&) = default; + VmaStlAllocator& operator=(const VmaStlAllocator&) = delete; + + T* allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); } + void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); } + + template<typename U> + bool operator==(const VmaStlAllocator<U>& rhs) const + { + return m_pCallbacks == rhs.m_pCallbacks; + } + template<typename U> + bool operator!=(const VmaStlAllocator<U>& rhs) const + { + return m_pCallbacks != rhs.m_pCallbacks; + } +}; +#endif // _VMA_STL_ALLOCATOR + +#ifndef _VMA_VECTOR +/* Class with interface compatible with subset of std::vector. +T must be POD because constructors and destructors are not called and memcpy is +used for these objects. */ +template<typename T, typename AllocatorT> +class VmaVector +{ +public: + typedef T value_type; + typedef T* iterator; + typedef const T* const_iterator; + + VmaVector(const AllocatorT& allocator); + VmaVector(size_t count, const AllocatorT& allocator); + // This version of the constructor is here for compatibility with pre-C++14 std::vector. + // value is unused. + VmaVector(size_t count, const T& value, const AllocatorT& allocator) : VmaVector(count, allocator) {} + VmaVector(const VmaVector<T, AllocatorT>& src); + VmaVector& operator=(const VmaVector& rhs); + ~VmaVector() { VmaFree(m_Allocator.m_pCallbacks, m_pArray); } + + bool empty() const { return m_Count == 0; } + size_t size() const { return m_Count; } + T* data() { return m_pArray; } + T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; } + T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; } + const T* data() const { return m_pArray; } + const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; } + const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; } + + iterator begin() { return m_pArray; } + iterator end() { return m_pArray + m_Count; } + const_iterator cbegin() const { return m_pArray; } + const_iterator cend() const { return m_pArray + m_Count; } + const_iterator begin() const { return cbegin(); } + const_iterator end() const { return cend(); } + + void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); } + void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); } + void push_front(const T& src) { insert(0, src); } + + void push_back(const T& src); + void reserve(size_t newCapacity, bool freeMemory = false); + void resize(size_t newCount); + void clear() { resize(0); } + void shrink_to_fit(); + void insert(size_t index, const T& src); + void remove(size_t index); + + T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; } + const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; } + +private: + AllocatorT m_Allocator; + T* m_pArray; + size_t m_Count; + size_t m_Capacity; +}; + +#ifndef _VMA_VECTOR_FUNCTIONS +template<typename T, typename AllocatorT> +VmaVector<T, AllocatorT>::VmaVector(const AllocatorT& allocator) + : m_Allocator(allocator), + m_pArray(VMA_NULL), + m_Count(0), + m_Capacity(0) {} + +template<typename T, typename AllocatorT> +VmaVector<T, AllocatorT>::VmaVector(size_t count, const AllocatorT& allocator) + : m_Allocator(allocator), + m_pArray(count ? (T*)VmaAllocateArray<T>(allocator.m_pCallbacks, count) : VMA_NULL), + m_Count(count), + m_Capacity(count) {} + +template<typename T, typename AllocatorT> +VmaVector<T, AllocatorT>::VmaVector(const VmaVector& src) + : m_Allocator(src.m_Allocator), + m_pArray(src.m_Count ? (T*)VmaAllocateArray<T>(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL), + m_Count(src.m_Count), + m_Capacity(src.m_Count) +{ + if (m_Count != 0) + { + memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T)); + } +} + +template<typename T, typename AllocatorT> +VmaVector<T, AllocatorT>& VmaVector<T, AllocatorT>::operator=(const VmaVector& rhs) +{ + if (&rhs != this) + { + resize(rhs.m_Count); + if (m_Count != 0) + { + memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T)); + } + } + return *this; +} + +template<typename T, typename AllocatorT> +void VmaVector<T, AllocatorT>::push_back(const T& src) +{ + const size_t newIndex = size(); + resize(newIndex + 1); + m_pArray[newIndex] = src; +} + +template<typename T, typename AllocatorT> +void VmaVector<T, AllocatorT>::reserve(size_t newCapacity, bool freeMemory) +{ + newCapacity = VMA_MAX(newCapacity, m_Count); + + if ((newCapacity < m_Capacity) && !freeMemory) + { + newCapacity = m_Capacity; + } + + if (newCapacity != m_Capacity) + { + T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL; + if (m_Count != 0) + { + memcpy(newArray, m_pArray, m_Count * sizeof(T)); + } + VmaFree(m_Allocator.m_pCallbacks, m_pArray); + m_Capacity = newCapacity; + m_pArray = newArray; + } +} + +template<typename T, typename AllocatorT> +void VmaVector<T, AllocatorT>::resize(size_t newCount) +{ + size_t newCapacity = m_Capacity; + if (newCount > m_Capacity) + { + newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8)); + } + + if (newCapacity != m_Capacity) + { + T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL; + const size_t elementsToCopy = VMA_MIN(m_Count, newCount); + if (elementsToCopy != 0) + { + memcpy(newArray, m_pArray, elementsToCopy * sizeof(T)); + } + VmaFree(m_Allocator.m_pCallbacks, m_pArray); + m_Capacity = newCapacity; + m_pArray = newArray; + } + + m_Count = newCount; +} + +template<typename T, typename AllocatorT> +void VmaVector<T, AllocatorT>::shrink_to_fit() +{ + if (m_Capacity > m_Count) + { + T* newArray = VMA_NULL; + if (m_Count > 0) + { + newArray = VmaAllocateArray<T>(m_Allocator.m_pCallbacks, m_Count); + memcpy(newArray, m_pArray, m_Count * sizeof(T)); + } + VmaFree(m_Allocator.m_pCallbacks, m_pArray); + m_Capacity = m_Count; + m_pArray = newArray; + } +} + +template<typename T, typename AllocatorT> +void VmaVector<T, AllocatorT>::insert(size_t index, const T& src) +{ + VMA_HEAVY_ASSERT(index <= m_Count); + const size_t oldCount = size(); + resize(oldCount + 1); + if (index < oldCount) + { + memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T)); + } + m_pArray[index] = src; +} + +template<typename T, typename AllocatorT> +void VmaVector<T, AllocatorT>::remove(size_t index) +{ + VMA_HEAVY_ASSERT(index < m_Count); + const size_t oldCount = size(); + if (index < oldCount - 1) + { + memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T)); + } + resize(oldCount - 1); +} +#endif // _VMA_VECTOR_FUNCTIONS + +template<typename T, typename allocatorT> +static void VmaVectorInsert(VmaVector<T, allocatorT>& vec, size_t index, const T& item) +{ + vec.insert(index, item); +} + +template<typename T, typename allocatorT> +static void VmaVectorRemove(VmaVector<T, allocatorT>& vec, size_t index) +{ + vec.remove(index); +} +#endif // _VMA_VECTOR + +#ifndef _VMA_SMALL_VECTOR +/* +This is a vector (a variable-sized array), optimized for the case when the array is small. + +It contains some number of elements in-place, which allows it to avoid heap allocation +when the actual number of elements is below that threshold. This allows normal "small" +cases to be fast without losing generality for large inputs. +*/ +template<typename T, typename AllocatorT, size_t N> +class VmaSmallVector +{ +public: + typedef T value_type; + typedef T* iterator; + + VmaSmallVector(const AllocatorT& allocator); + VmaSmallVector(size_t count, const AllocatorT& allocator); + template<typename SrcT, typename SrcAllocatorT, size_t SrcN> + VmaSmallVector(const VmaSmallVector<SrcT, SrcAllocatorT, SrcN>&) = delete; + template<typename SrcT, typename SrcAllocatorT, size_t SrcN> + VmaSmallVector<T, AllocatorT, N>& operator=(const VmaSmallVector<SrcT, SrcAllocatorT, SrcN>&) = delete; + ~VmaSmallVector() = default; + + bool empty() const { return m_Count == 0; } + size_t size() const { return m_Count; } + T* data() { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; } + T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; } + T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; } + const T* data() const { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; } + const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; } + const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; } + + iterator begin() { return data(); } + iterator end() { return data() + m_Count; } + + void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); } + void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); } + void push_front(const T& src) { insert(0, src); } + + void push_back(const T& src); + void resize(size_t newCount, bool freeMemory = false); + void clear(bool freeMemory = false); + void insert(size_t index, const T& src); + void remove(size_t index); + + T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; } + const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; } + +private: + size_t m_Count; + T m_StaticArray[N]; // Used when m_Size <= N + VmaVector<T, AllocatorT> m_DynamicArray; // Used when m_Size > N +}; + +#ifndef _VMA_SMALL_VECTOR_FUNCTIONS +template<typename T, typename AllocatorT, size_t N> +VmaSmallVector<T, AllocatorT, N>::VmaSmallVector(const AllocatorT& allocator) + : m_Count(0), + m_DynamicArray(allocator) {} + +template<typename T, typename AllocatorT, size_t N> +VmaSmallVector<T, AllocatorT, N>::VmaSmallVector(size_t count, const AllocatorT& allocator) + : m_Count(count), + m_DynamicArray(count > N ? count : 0, allocator) {} + +template<typename T, typename AllocatorT, size_t N> +void VmaSmallVector<T, AllocatorT, N>::push_back(const T& src) +{ + const size_t newIndex = size(); + resize(newIndex + 1); + data()[newIndex] = src; +} + +template<typename T, typename AllocatorT, size_t N> +void VmaSmallVector<T, AllocatorT, N>::resize(size_t newCount, bool freeMemory) +{ + if (newCount > N && m_Count > N) + { + // Any direction, staying in m_DynamicArray + m_DynamicArray.resize(newCount); + if (freeMemory) + { + m_DynamicArray.shrink_to_fit(); + } + } + else if (newCount > N && m_Count <= N) + { + // Growing, moving from m_StaticArray to m_DynamicArray + m_DynamicArray.resize(newCount); + if (m_Count > 0) + { + memcpy(m_DynamicArray.data(), m_StaticArray, m_Count * sizeof(T)); + } + } + else if (newCount <= N && m_Count > N) + { + // Shrinking, moving from m_DynamicArray to m_StaticArray + if (newCount > 0) + { + memcpy(m_StaticArray, m_DynamicArray.data(), newCount * sizeof(T)); + } + m_DynamicArray.resize(0); + if (freeMemory) + { + m_DynamicArray.shrink_to_fit(); + } + } + else + { + // Any direction, staying in m_StaticArray - nothing to do here + } + m_Count = newCount; +} + +template<typename T, typename AllocatorT, size_t N> +void VmaSmallVector<T, AllocatorT, N>::clear(bool freeMemory) +{ + m_DynamicArray.clear(); + if (freeMemory) + { + m_DynamicArray.shrink_to_fit(); + } + m_Count = 0; +} + +template<typename T, typename AllocatorT, size_t N> +void VmaSmallVector<T, AllocatorT, N>::insert(size_t index, const T& src) +{ + VMA_HEAVY_ASSERT(index <= m_Count); + const size_t oldCount = size(); + resize(oldCount + 1); + T* const dataPtr = data(); + if (index < oldCount) + { + // I know, this could be more optimal for case where memmove can be memcpy directly from m_StaticArray to m_DynamicArray. + memmove(dataPtr + (index + 1), dataPtr + index, (oldCount - index) * sizeof(T)); + } + dataPtr[index] = src; +} + +template<typename T, typename AllocatorT, size_t N> +void VmaSmallVector<T, AllocatorT, N>::remove(size_t index) +{ + VMA_HEAVY_ASSERT(index < m_Count); + const size_t oldCount = size(); + if (index < oldCount - 1) + { + // I know, this could be more optimal for case where memmove can be memcpy directly from m_DynamicArray to m_StaticArray. + T* const dataPtr = data(); + memmove(dataPtr + index, dataPtr + (index + 1), (oldCount - index - 1) * sizeof(T)); + } + resize(oldCount - 1); +} +#endif // _VMA_SMALL_VECTOR_FUNCTIONS +#endif // _VMA_SMALL_VECTOR + +#ifndef _VMA_POOL_ALLOCATOR +/* +Allocator for objects of type T using a list of arrays (pools) to speed up +allocation. Number of elements that can be allocated is not bounded because +allocator can create multiple blocks. +*/ +template<typename T> +class VmaPoolAllocator +{ + VMA_CLASS_NO_COPY_NO_MOVE(VmaPoolAllocator) +public: + VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity); + ~VmaPoolAllocator(); + template<typename... Types> T* Alloc(Types&&... args); + void Free(T* ptr); + +private: + union Item + { + uint32_t NextFreeIndex; + alignas(T) char Value[sizeof(T)]; + }; + struct ItemBlock + { + Item* pItems; + uint32_t Capacity; + uint32_t FirstFreeIndex; + }; + + const VkAllocationCallbacks* m_pAllocationCallbacks; + const uint32_t m_FirstBlockCapacity; + VmaVector<ItemBlock, VmaStlAllocator<ItemBlock>> m_ItemBlocks; + + ItemBlock& CreateNewBlock(); +}; + +#ifndef _VMA_POOL_ALLOCATOR_FUNCTIONS +template<typename T> +VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity) + : m_pAllocationCallbacks(pAllocationCallbacks), + m_FirstBlockCapacity(firstBlockCapacity), + m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks)) +{ + VMA_ASSERT(m_FirstBlockCapacity > 1); +} + +template<typename T> +VmaPoolAllocator<T>::~VmaPoolAllocator() +{ + for (size_t i = m_ItemBlocks.size(); i--;) + vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity); + m_ItemBlocks.clear(); +} + +template<typename T> +template<typename... Types> T* VmaPoolAllocator<T>::Alloc(Types&&... args) +{ + for (size_t i = m_ItemBlocks.size(); i--; ) + { + ItemBlock& block = m_ItemBlocks[i]; + // This block has some free items: Use first one. + if (block.FirstFreeIndex != UINT32_MAX) + { + Item* const pItem = &block.pItems[block.FirstFreeIndex]; + block.FirstFreeIndex = pItem->NextFreeIndex; + T* result = (T*)&pItem->Value; + new(result)T(std::forward<Types>(args)...); // Explicit constructor call. + return result; + } + } + + // No block has free item: Create new one and use it. + ItemBlock& newBlock = CreateNewBlock(); + Item* const pItem = &newBlock.pItems[0]; + newBlock.FirstFreeIndex = pItem->NextFreeIndex; + T* result = (T*)&pItem->Value; + new(result) T(std::forward<Types>(args)...); // Explicit constructor call. + return result; +} + +template<typename T> +void VmaPoolAllocator<T>::Free(T* ptr) +{ + // Search all memory blocks to find ptr. + for (size_t i = m_ItemBlocks.size(); i--; ) + { + ItemBlock& block = m_ItemBlocks[i]; + + // Casting to union. + Item* pItemPtr; + memcpy(&pItemPtr, &ptr, sizeof(pItemPtr)); + + // Check if pItemPtr is in address range of this block. + if ((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity)) + { + ptr->~T(); // Explicit destructor call. + const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems); + pItemPtr->NextFreeIndex = block.FirstFreeIndex; + block.FirstFreeIndex = index; + return; + } + } + VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool."); +} + +template<typename T> +typename VmaPoolAllocator<T>::ItemBlock& VmaPoolAllocator<T>::CreateNewBlock() +{ + const uint32_t newBlockCapacity = m_ItemBlocks.empty() ? + m_FirstBlockCapacity : m_ItemBlocks.back().Capacity * 3 / 2; + + const ItemBlock newBlock = + { + vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity), + newBlockCapacity, + 0 + }; + + m_ItemBlocks.push_back(newBlock); + + // Setup singly-linked list of all free items in this block. + for (uint32_t i = 0; i < newBlockCapacity - 1; ++i) + newBlock.pItems[i].NextFreeIndex = i + 1; + newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX; + return m_ItemBlocks.back(); +} +#endif // _VMA_POOL_ALLOCATOR_FUNCTIONS +#endif // _VMA_POOL_ALLOCATOR + +#ifndef _VMA_RAW_LIST +template<typename T> +struct VmaListItem +{ + VmaListItem* pPrev; + VmaListItem* pNext; + T Value; +}; + +// Doubly linked list. +template<typename T> +class VmaRawList +{ + VMA_CLASS_NO_COPY_NO_MOVE(VmaRawList) +public: + typedef VmaListItem<T> ItemType; + + VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks); + // Intentionally not calling Clear, because that would be unnecessary + // computations to return all items to m_ItemAllocator as free. + ~VmaRawList() = default; + + size_t GetCount() const { return m_Count; } + bool IsEmpty() const { return m_Count == 0; } + + ItemType* Front() { return m_pFront; } + ItemType* Back() { return m_pBack; } + const ItemType* Front() const { return m_pFront; } + const ItemType* Back() const { return m_pBack; } + + ItemType* PushFront(); + ItemType* PushBack(); + ItemType* PushFront(const T& value); + ItemType* PushBack(const T& value); + void PopFront(); + void PopBack(); + + // Item can be null - it means PushBack. + ItemType* InsertBefore(ItemType* pItem); + // Item can be null - it means PushFront. + ItemType* InsertAfter(ItemType* pItem); + ItemType* InsertBefore(ItemType* pItem, const T& value); + ItemType* InsertAfter(ItemType* pItem, const T& value); + + void Clear(); + void Remove(ItemType* pItem); + +private: + const VkAllocationCallbacks* const m_pAllocationCallbacks; + VmaPoolAllocator<ItemType> m_ItemAllocator; + ItemType* m_pFront; + ItemType* m_pBack; + size_t m_Count; +}; + +#ifndef _VMA_RAW_LIST_FUNCTIONS +template<typename T> +VmaRawList<T>::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) + : m_pAllocationCallbacks(pAllocationCallbacks), + m_ItemAllocator(pAllocationCallbacks, 128), + m_pFront(VMA_NULL), + m_pBack(VMA_NULL), + m_Count(0) {} + +template<typename T> +VmaListItem<T>* VmaRawList<T>::PushFront() +{ + ItemType* const pNewItem = m_ItemAllocator.Alloc(); + pNewItem->pPrev = VMA_NULL; + if (IsEmpty()) + { + pNewItem->pNext = VMA_NULL; + m_pFront = pNewItem; + m_pBack = pNewItem; + m_Count = 1; + } + else + { + pNewItem->pNext = m_pFront; + m_pFront->pPrev = pNewItem; + m_pFront = pNewItem; + ++m_Count; + } + return pNewItem; +} + +template<typename T> +VmaListItem<T>* VmaRawList<T>::PushBack() +{ + ItemType* const pNewItem = m_ItemAllocator.Alloc(); + pNewItem->pNext = VMA_NULL; + if(IsEmpty()) + { + pNewItem->pPrev = VMA_NULL; + m_pFront = pNewItem; + m_pBack = pNewItem; + m_Count = 1; + } + else + { + pNewItem->pPrev = m_pBack; + m_pBack->pNext = pNewItem; + m_pBack = pNewItem; + ++m_Count; + } + return pNewItem; +} + +template<typename T> +VmaListItem<T>* VmaRawList<T>::PushFront(const T& value) +{ + ItemType* const pNewItem = PushFront(); + pNewItem->Value = value; + return pNewItem; +} + +template<typename T> +VmaListItem<T>* VmaRawList<T>::PushBack(const T& value) +{ + ItemType* const pNewItem = PushBack(); + pNewItem->Value = value; + return pNewItem; +} + +template<typename T> +void VmaRawList<T>::PopFront() +{ + VMA_HEAVY_ASSERT(m_Count > 0); + ItemType* const pFrontItem = m_pFront; + ItemType* const pNextItem = pFrontItem->pNext; + if (pNextItem != VMA_NULL) + { + pNextItem->pPrev = VMA_NULL; + } + m_pFront = pNextItem; + m_ItemAllocator.Free(pFrontItem); + --m_Count; +} + +template<typename T> +void VmaRawList<T>::PopBack() +{ + VMA_HEAVY_ASSERT(m_Count > 0); + ItemType* const pBackItem = m_pBack; + ItemType* const pPrevItem = pBackItem->pPrev; + if(pPrevItem != VMA_NULL) + { + pPrevItem->pNext = VMA_NULL; + } + m_pBack = pPrevItem; + m_ItemAllocator.Free(pBackItem); + --m_Count; +} + +template<typename T> +void VmaRawList<T>::Clear() +{ + if (IsEmpty() == false) + { + ItemType* pItem = m_pBack; + while (pItem != VMA_NULL) + { + ItemType* const pPrevItem = pItem->pPrev; + m_ItemAllocator.Free(pItem); + pItem = pPrevItem; + } + m_pFront = VMA_NULL; + m_pBack = VMA_NULL; + m_Count = 0; + } +} + +template<typename T> +void VmaRawList<T>::Remove(ItemType* pItem) +{ + VMA_HEAVY_ASSERT(pItem != VMA_NULL); + VMA_HEAVY_ASSERT(m_Count > 0); + + if(pItem->pPrev != VMA_NULL) + { + pItem->pPrev->pNext = pItem->pNext; + } + else + { + VMA_HEAVY_ASSERT(m_pFront == pItem); + m_pFront = pItem->pNext; + } + + if(pItem->pNext != VMA_NULL) + { + pItem->pNext->pPrev = pItem->pPrev; + } + else + { + VMA_HEAVY_ASSERT(m_pBack == pItem); + m_pBack = pItem->pPrev; + } + + m_ItemAllocator.Free(pItem); + --m_Count; +} + +template<typename T> +VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem) +{ + if(pItem != VMA_NULL) + { + ItemType* const prevItem = pItem->pPrev; + ItemType* const newItem = m_ItemAllocator.Alloc(); + newItem->pPrev = prevItem; + newItem->pNext = pItem; + pItem->pPrev = newItem; + if(prevItem != VMA_NULL) + { + prevItem->pNext = newItem; + } + else + { + VMA_HEAVY_ASSERT(m_pFront == pItem); + m_pFront = newItem; + } + ++m_Count; + return newItem; + } + else + return PushBack(); +} + +template<typename T> +VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem) +{ + if(pItem != VMA_NULL) + { + ItemType* const nextItem = pItem->pNext; + ItemType* const newItem = m_ItemAllocator.Alloc(); + newItem->pNext = nextItem; + newItem->pPrev = pItem; + pItem->pNext = newItem; + if(nextItem != VMA_NULL) + { + nextItem->pPrev = newItem; + } + else + { + VMA_HEAVY_ASSERT(m_pBack == pItem); + m_pBack = newItem; + } + ++m_Count; + return newItem; + } + else + return PushFront(); +} + +template<typename T> +VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem, const T& value) +{ + ItemType* const newItem = InsertBefore(pItem); + newItem->Value = value; + return newItem; +} + +template<typename T> +VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem, const T& value) +{ + ItemType* const newItem = InsertAfter(pItem); + newItem->Value = value; + return newItem; +} +#endif // _VMA_RAW_LIST_FUNCTIONS +#endif // _VMA_RAW_LIST + +#ifndef _VMA_LIST +template<typename T, typename AllocatorT> +class VmaList +{ + VMA_CLASS_NO_COPY_NO_MOVE(VmaList) +public: + class reverse_iterator; + class const_iterator; + class const_reverse_iterator; + + class iterator + { + friend class const_iterator; + friend class VmaList<T, AllocatorT>; + public: + iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {} + iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} + + T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; } + T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; } + + bool operator==(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; } + bool operator!=(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; } + + iterator operator++(int) { iterator result = *this; ++*this; return result; } + iterator operator--(int) { iterator result = *this; --*this; return result; } + + iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; } + iterator& operator--(); + + private: + VmaRawList<T>* m_pList; + VmaListItem<T>* m_pItem; + + iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) : m_pList(pList), m_pItem(pItem) {} + }; + class reverse_iterator + { + friend class const_reverse_iterator; + friend class VmaList<T, AllocatorT>; + public: + reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {} + reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} + + T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; } + T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; } + + bool operator==(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; } + bool operator!=(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; } + + reverse_iterator operator++(int) { reverse_iterator result = *this; ++* this; return result; } + reverse_iterator operator--(int) { reverse_iterator result = *this; --* this; return result; } + + reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; } + reverse_iterator& operator--(); + + private: + VmaRawList<T>* m_pList; + VmaListItem<T>* m_pItem; + + reverse_iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) : m_pList(pList), m_pItem(pItem) {} + }; + class const_iterator + { + friend class VmaList<T, AllocatorT>; + public: + const_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {} + const_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} + const_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} + + iterator drop_const() { return { const_cast<VmaRawList<T>*>(m_pList), const_cast<VmaListItem<T>*>(m_pItem) }; } + + const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; } + const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; } + + bool operator==(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; } + bool operator!=(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; } + + const_iterator operator++(int) { const_iterator result = *this; ++* this; return result; } + const_iterator operator--(int) { const_iterator result = *this; --* this; return result; } + + const_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; } + const_iterator& operator--(); + + private: + const VmaRawList<T>* m_pList; + const VmaListItem<T>* m_pItem; + + const_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) : m_pList(pList), m_pItem(pItem) {} + }; + class const_reverse_iterator + { + friend class VmaList<T, AllocatorT>; + public: + const_reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {} + const_reverse_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} + const_reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {} + + reverse_iterator drop_const() { return { const_cast<VmaRawList<T>*>(m_pList), const_cast<VmaListItem<T>*>(m_pItem) }; } + + const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; } + const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; } + + bool operator==(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; } + bool operator!=(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; } + + const_reverse_iterator operator++(int) { const_reverse_iterator result = *this; ++* this; return result; } + const_reverse_iterator operator--(int) { const_reverse_iterator result = *this; --* this; return result; } + + const_reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; } + const_reverse_iterator& operator--(); + + private: + const VmaRawList<T>* m_pList; + const VmaListItem<T>* m_pItem; + + const_reverse_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) : m_pList(pList), m_pItem(pItem) {} + }; + + VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) {} + + bool empty() const { return m_RawList.IsEmpty(); } + size_t size() const { return m_RawList.GetCount(); } + + iterator begin() { return iterator(&m_RawList, m_RawList.Front()); } + iterator end() { return iterator(&m_RawList, VMA_NULL); } + + const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); } + const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); } + + const_iterator begin() const { return cbegin(); } + const_iterator end() const { return cend(); } + + reverse_iterator rbegin() { return reverse_iterator(&m_RawList, m_RawList.Back()); } + reverse_iterator rend() { return reverse_iterator(&m_RawList, VMA_NULL); } + + const_reverse_iterator crbegin() const { return const_reverse_iterator(&m_RawList, m_RawList.Back()); } + const_reverse_iterator crend() const { return const_reverse_iterator(&m_RawList, VMA_NULL); } + + const_reverse_iterator rbegin() const { return crbegin(); } + const_reverse_iterator rend() const { return crend(); } + + void push_back(const T& value) { m_RawList.PushBack(value); } + iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); } + + void clear() { m_RawList.Clear(); } + void erase(iterator it) { m_RawList.Remove(it.m_pItem); } + +private: + VmaRawList<T> m_RawList; +}; + +#ifndef _VMA_LIST_FUNCTIONS +template<typename T, typename AllocatorT> +typename VmaList<T, AllocatorT>::iterator& VmaList<T, AllocatorT>::iterator::operator--() +{ + if (m_pItem != VMA_NULL) + { + m_pItem = m_pItem->pPrev; + } + else + { + VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); + m_pItem = m_pList->Back(); + } + return *this; +} + +template<typename T, typename AllocatorT> +typename VmaList<T, AllocatorT>::reverse_iterator& VmaList<T, AllocatorT>::reverse_iterator::operator--() +{ + if (m_pItem != VMA_NULL) + { + m_pItem = m_pItem->pNext; + } + else + { + VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); + m_pItem = m_pList->Front(); + } + return *this; +} + +template<typename T, typename AllocatorT> +typename VmaList<T, AllocatorT>::const_iterator& VmaList<T, AllocatorT>::const_iterator::operator--() +{ + if (m_pItem != VMA_NULL) + { + m_pItem = m_pItem->pPrev; + } + else + { + VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); + m_pItem = m_pList->Back(); + } + return *this; +} + +template<typename T, typename AllocatorT> +typename VmaList<T, AllocatorT>::const_reverse_iterator& VmaList<T, AllocatorT>::const_reverse_iterator::operator--() +{ + if (m_pItem != VMA_NULL) + { + m_pItem = m_pItem->pNext; + } + else + { + VMA_HEAVY_ASSERT(!m_pList->IsEmpty()); + m_pItem = m_pList->Back(); + } + return *this; +} +#endif // _VMA_LIST_FUNCTIONS +#endif // _VMA_LIST + +#ifndef _VMA_INTRUSIVE_LINKED_LIST +/* +Expected interface of ItemTypeTraits: +struct MyItemTypeTraits +{ + typedef MyItem ItemType; + static ItemType* GetPrev(const ItemType* item) { return item->myPrevPtr; } + static ItemType* GetNext(const ItemType* item) { return item->myNextPtr; } + static ItemType*& AccessPrev(ItemType* item) { return item->myPrevPtr; } + static ItemType*& AccessNext(ItemType* item) { return item->myNextPtr; } +}; +*/ +template<typename ItemTypeTraits> +class VmaIntrusiveLinkedList +{ +public: + typedef typename ItemTypeTraits::ItemType ItemType; + static ItemType* GetPrev(const ItemType* item) { return ItemTypeTraits::GetPrev(item); } + static ItemType* GetNext(const ItemType* item) { return ItemTypeTraits::GetNext(item); } + + // Movable, not copyable. + VmaIntrusiveLinkedList() = default; + VmaIntrusiveLinkedList(VmaIntrusiveLinkedList && src); + VmaIntrusiveLinkedList(const VmaIntrusiveLinkedList&) = delete; + VmaIntrusiveLinkedList& operator=(VmaIntrusiveLinkedList&& src); + VmaIntrusiveLinkedList& operator=(const VmaIntrusiveLinkedList&) = delete; + ~VmaIntrusiveLinkedList() { VMA_HEAVY_ASSERT(IsEmpty()); } + + size_t GetCount() const { return m_Count; } + bool IsEmpty() const { return m_Count == 0; } + ItemType* Front() { return m_Front; } + ItemType* Back() { return m_Back; } + const ItemType* Front() const { return m_Front; } + const ItemType* Back() const { return m_Back; } + + void PushBack(ItemType* item); + void PushFront(ItemType* item); + ItemType* PopBack(); + ItemType* PopFront(); + + // MyItem can be null - it means PushBack. + void InsertBefore(ItemType* existingItem, ItemType* newItem); + // MyItem can be null - it means PushFront. + void InsertAfter(ItemType* existingItem, ItemType* newItem); + void Remove(ItemType* item); + void RemoveAll(); + +private: + ItemType* m_Front = VMA_NULL; + ItemType* m_Back = VMA_NULL; + size_t m_Count = 0; +}; + +#ifndef _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS +template<typename ItemTypeTraits> +VmaIntrusiveLinkedList<ItemTypeTraits>::VmaIntrusiveLinkedList(VmaIntrusiveLinkedList&& src) + : m_Front(src.m_Front), m_Back(src.m_Back), m_Count(src.m_Count) +{ + src.m_Front = src.m_Back = VMA_NULL; + src.m_Count = 0; +} + +template<typename ItemTypeTraits> +VmaIntrusiveLinkedList<ItemTypeTraits>& VmaIntrusiveLinkedList<ItemTypeTraits>::operator=(VmaIntrusiveLinkedList&& src) +{ + if (&src != this) + { + VMA_HEAVY_ASSERT(IsEmpty()); + m_Front = src.m_Front; + m_Back = src.m_Back; + m_Count = src.m_Count; + src.m_Front = src.m_Back = VMA_NULL; + src.m_Count = 0; + } + return *this; +} + +template<typename ItemTypeTraits> +void VmaIntrusiveLinkedList<ItemTypeTraits>::PushBack(ItemType* item) +{ + VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL); + if (IsEmpty()) + { + m_Front = item; + m_Back = item; + m_Count = 1; + } + else + { + ItemTypeTraits::AccessPrev(item) = m_Back; + ItemTypeTraits::AccessNext(m_Back) = item; + m_Back = item; + ++m_Count; + } +} + +template<typename ItemTypeTraits> +void VmaIntrusiveLinkedList<ItemTypeTraits>::PushFront(ItemType* item) +{ + VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL); + if (IsEmpty()) + { + m_Front = item; + m_Back = item; + m_Count = 1; + } + else + { + ItemTypeTraits::AccessNext(item) = m_Front; + ItemTypeTraits::AccessPrev(m_Front) = item; + m_Front = item; + ++m_Count; + } +} + +template<typename ItemTypeTraits> +typename VmaIntrusiveLinkedList<ItemTypeTraits>::ItemType* VmaIntrusiveLinkedList<ItemTypeTraits>::PopBack() +{ + VMA_HEAVY_ASSERT(m_Count > 0); + ItemType* const backItem = m_Back; + ItemType* const prevItem = ItemTypeTraits::GetPrev(backItem); + if (prevItem != VMA_NULL) + { + ItemTypeTraits::AccessNext(prevItem) = VMA_NULL; + } + m_Back = prevItem; + --m_Count; + ItemTypeTraits::AccessPrev(backItem) = VMA_NULL; + ItemTypeTraits::AccessNext(backItem) = VMA_NULL; + return backItem; +} + +template<typename ItemTypeTraits> +typename VmaIntrusiveLinkedList<ItemTypeTraits>::ItemType* VmaIntrusiveLinkedList<ItemTypeTraits>::PopFront() +{ + VMA_HEAVY_ASSERT(m_Count > 0); + ItemType* const frontItem = m_Front; + ItemType* const nextItem = ItemTypeTraits::GetNext(frontItem); + if (nextItem != VMA_NULL) + { + ItemTypeTraits::AccessPrev(nextItem) = VMA_NULL; + } + m_Front = nextItem; + --m_Count; + ItemTypeTraits::AccessPrev(frontItem) = VMA_NULL; + ItemTypeTraits::AccessNext(frontItem) = VMA_NULL; + return frontItem; +} + +template<typename ItemTypeTraits> +void VmaIntrusiveLinkedList<ItemTypeTraits>::InsertBefore(ItemType* existingItem, ItemType* newItem) +{ + VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL); + if (existingItem != VMA_NULL) + { + ItemType* const prevItem = ItemTypeTraits::GetPrev(existingItem); + ItemTypeTraits::AccessPrev(newItem) = prevItem; + ItemTypeTraits::AccessNext(newItem) = existingItem; + ItemTypeTraits::AccessPrev(existingItem) = newItem; + if (prevItem != VMA_NULL) + { + ItemTypeTraits::AccessNext(prevItem) = newItem; + } + else + { + VMA_HEAVY_ASSERT(m_Front == existingItem); + m_Front = newItem; + } + ++m_Count; + } + else + PushBack(newItem); +} + +template<typename ItemTypeTraits> +void VmaIntrusiveLinkedList<ItemTypeTraits>::InsertAfter(ItemType* existingItem, ItemType* newItem) +{ + VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL); + if (existingItem != VMA_NULL) + { + ItemType* const nextItem = ItemTypeTraits::GetNext(existingItem); + ItemTypeTraits::AccessNext(newItem) = nextItem; + ItemTypeTraits::AccessPrev(newItem) = existingItem; + ItemTypeTraits::AccessNext(existingItem) = newItem; + if (nextItem != VMA_NULL) + { + ItemTypeTraits::AccessPrev(nextItem) = newItem; + } + else + { + VMA_HEAVY_ASSERT(m_Back == existingItem); + m_Back = newItem; + } + ++m_Count; + } + else + return PushFront(newItem); +} + +template<typename ItemTypeTraits> +void VmaIntrusiveLinkedList<ItemTypeTraits>::Remove(ItemType* item) +{ + VMA_HEAVY_ASSERT(item != VMA_NULL && m_Count > 0); + if (ItemTypeTraits::GetPrev(item) != VMA_NULL) + { + ItemTypeTraits::AccessNext(ItemTypeTraits::AccessPrev(item)) = ItemTypeTraits::GetNext(item); + } + else + { + VMA_HEAVY_ASSERT(m_Front == item); + m_Front = ItemTypeTraits::GetNext(item); + } + + if (ItemTypeTraits::GetNext(item) != VMA_NULL) + { + ItemTypeTraits::AccessPrev(ItemTypeTraits::AccessNext(item)) = ItemTypeTraits::GetPrev(item); + } + else + { + VMA_HEAVY_ASSERT(m_Back == item); + m_Back = ItemTypeTraits::GetPrev(item); + } + ItemTypeTraits::AccessPrev(item) = VMA_NULL; + ItemTypeTraits::AccessNext(item) = VMA_NULL; + --m_Count; +} + +template<typename ItemTypeTraits> +void VmaIntrusiveLinkedList<ItemTypeTraits>::RemoveAll() +{ + if (!IsEmpty()) + { + ItemType* item = m_Back; + while (item != VMA_NULL) + { + ItemType* const prevItem = ItemTypeTraits::AccessPrev(item); + ItemTypeTraits::AccessPrev(item) = VMA_NULL; + ItemTypeTraits::AccessNext(item) = VMA_NULL; + item = prevItem; + } + m_Front = VMA_NULL; + m_Back = VMA_NULL; + m_Count = 0; + } +} +#endif // _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS +#endif // _VMA_INTRUSIVE_LINKED_LIST + +#if !defined(_VMA_STRING_BUILDER) && VMA_STATS_STRING_ENABLED +class VmaStringBuilder +{ +public: + VmaStringBuilder(const VkAllocationCallbacks* allocationCallbacks) : m_Data(VmaStlAllocator<char>(allocationCallbacks)) {} + ~VmaStringBuilder() = default; + + size_t GetLength() const { return m_Data.size(); } + const char* GetData() const { return m_Data.data(); } + void AddNewLine() { Add('\n'); } + void Add(char ch) { m_Data.push_back(ch); } + + void Add(const char* pStr); + void AddNumber(uint32_t num); + void AddNumber(uint64_t num); + void AddPointer(const void* ptr); + +private: + VmaVector<char, VmaStlAllocator<char>> m_Data; +}; + +#ifndef _VMA_STRING_BUILDER_FUNCTIONS +void VmaStringBuilder::Add(const char* pStr) +{ + const size_t strLen = strlen(pStr); + if (strLen > 0) + { + const size_t oldCount = m_Data.size(); + m_Data.resize(oldCount + strLen); + memcpy(m_Data.data() + oldCount, pStr, strLen); + } +} + +void VmaStringBuilder::AddNumber(uint32_t num) +{ + char buf[11]; + buf[10] = '\0'; + char* p = &buf[10]; + do + { + *--p = '0' + (char)(num % 10); + num /= 10; + } while (num); + Add(p); +} + +void VmaStringBuilder::AddNumber(uint64_t num) +{ + char buf[21]; + buf[20] = '\0'; + char* p = &buf[20]; + do + { + *--p = '0' + (char)(num % 10); + num /= 10; + } while (num); + Add(p); +} + +void VmaStringBuilder::AddPointer(const void* ptr) +{ + char buf[21]; + VmaPtrToStr(buf, sizeof(buf), ptr); + Add(buf); +} +#endif //_VMA_STRING_BUILDER_FUNCTIONS +#endif // _VMA_STRING_BUILDER + +#if !defined(_VMA_JSON_WRITER) && VMA_STATS_STRING_ENABLED +/* +Allows to conveniently build a correct JSON document to be written to the +VmaStringBuilder passed to the constructor. +*/ +class VmaJsonWriter +{ + VMA_CLASS_NO_COPY_NO_MOVE(VmaJsonWriter) +public: + // sb - string builder to write the document to. Must remain alive for the whole lifetime of this object. + VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb); + ~VmaJsonWriter(); + + // Begins object by writing "{". + // Inside an object, you must call pairs of WriteString and a value, e.g.: + // j.BeginObject(true); j.WriteString("A"); j.WriteNumber(1); j.WriteString("B"); j.WriteNumber(2); j.EndObject(); + // Will write: { "A": 1, "B": 2 } + void BeginObject(bool singleLine = false); + // Ends object by writing "}". + void EndObject(); + + // Begins array by writing "[". + // Inside an array, you can write a sequence of any values. + void BeginArray(bool singleLine = false); + // Ends array by writing "[". + void EndArray(); + + // Writes a string value inside "". + // pStr can contain any ANSI characters, including '"', new line etc. - they will be properly escaped. + void WriteString(const char* pStr); + + // Begins writing a string value. + // Call BeginString, ContinueString, ContinueString, ..., EndString instead of + // WriteString to conveniently build the string content incrementally, made of + // parts including numbers. + void BeginString(const char* pStr = VMA_NULL); + // Posts next part of an open string. + void ContinueString(const char* pStr); + // Posts next part of an open string. The number is converted to decimal characters. + void ContinueString(uint32_t n); + void ContinueString(uint64_t n); + // Posts next part of an open string. Pointer value is converted to characters + // using "%p" formatting - shown as hexadecimal number, e.g.: 000000081276Ad00 + void ContinueString_Pointer(const void* ptr); + // Ends writing a string value by writing '"'. + void EndString(const char* pStr = VMA_NULL); + + // Writes a number value. + void WriteNumber(uint32_t n); + void WriteNumber(uint64_t n); + // Writes a boolean value - false or true. + void WriteBool(bool b); + // Writes a null value. + void WriteNull(); + +private: + enum COLLECTION_TYPE + { + COLLECTION_TYPE_OBJECT, + COLLECTION_TYPE_ARRAY, + }; + struct StackItem + { + COLLECTION_TYPE type; + uint32_t valueCount; + bool singleLineMode; + }; + + static const char* const INDENT; + + VmaStringBuilder& m_SB; + VmaVector< StackItem, VmaStlAllocator<StackItem> > m_Stack; + bool m_InsideString; + + void BeginValue(bool isString); + void WriteIndent(bool oneLess = false); +}; +const char* const VmaJsonWriter::INDENT = " "; + +#ifndef _VMA_JSON_WRITER_FUNCTIONS +VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb) + : m_SB(sb), + m_Stack(VmaStlAllocator<StackItem>(pAllocationCallbacks)), + m_InsideString(false) {} + +VmaJsonWriter::~VmaJsonWriter() +{ + VMA_ASSERT(!m_InsideString); + VMA_ASSERT(m_Stack.empty()); +} + +void VmaJsonWriter::BeginObject(bool singleLine) +{ + VMA_ASSERT(!m_InsideString); + + BeginValue(false); + m_SB.Add('{'); + + StackItem item; + item.type = COLLECTION_TYPE_OBJECT; + item.valueCount = 0; + item.singleLineMode = singleLine; + m_Stack.push_back(item); +} + +void VmaJsonWriter::EndObject() +{ + VMA_ASSERT(!m_InsideString); + + WriteIndent(true); + m_SB.Add('}'); + + VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT); + m_Stack.pop_back(); +} + +void VmaJsonWriter::BeginArray(bool singleLine) +{ + VMA_ASSERT(!m_InsideString); + + BeginValue(false); + m_SB.Add('['); + + StackItem item; + item.type = COLLECTION_TYPE_ARRAY; + item.valueCount = 0; + item.singleLineMode = singleLine; + m_Stack.push_back(item); +} + +void VmaJsonWriter::EndArray() +{ + VMA_ASSERT(!m_InsideString); + + WriteIndent(true); + m_SB.Add(']'); + + VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY); + m_Stack.pop_back(); +} + +void VmaJsonWriter::WriteString(const char* pStr) +{ + BeginString(pStr); + EndString(); +} + +void VmaJsonWriter::BeginString(const char* pStr) +{ + VMA_ASSERT(!m_InsideString); + + BeginValue(true); + m_SB.Add('"'); + m_InsideString = true; + if (pStr != VMA_NULL && pStr[0] != '\0') + { + ContinueString(pStr); + } +} + +void VmaJsonWriter::ContinueString(const char* pStr) +{ + VMA_ASSERT(m_InsideString); + + const size_t strLen = strlen(pStr); + for (size_t i = 0; i < strLen; ++i) + { + char ch = pStr[i]; + if (ch == '\\') + { + m_SB.Add("\\\\"); + } + else if (ch == '"') + { + m_SB.Add("\\\""); + } + else if ((uint8_t)ch >= 32) + { + m_SB.Add(ch); + } + else switch (ch) + { + case '\b': + m_SB.Add("\\b"); + break; + case '\f': + m_SB.Add("\\f"); + break; + case '\n': + m_SB.Add("\\n"); + break; + case '\r': + m_SB.Add("\\r"); + break; + case '\t': + m_SB.Add("\\t"); + break; + default: + VMA_ASSERT(0 && "Character not currently supported."); + } + } +} + +void VmaJsonWriter::ContinueString(uint32_t n) +{ + VMA_ASSERT(m_InsideString); + m_SB.AddNumber(n); +} + +void VmaJsonWriter::ContinueString(uint64_t n) +{ + VMA_ASSERT(m_InsideString); + m_SB.AddNumber(n); +} + +void VmaJsonWriter::ContinueString_Pointer(const void* ptr) +{ + VMA_ASSERT(m_InsideString); + m_SB.AddPointer(ptr); +} + +void VmaJsonWriter::EndString(const char* pStr) +{ + VMA_ASSERT(m_InsideString); + if (pStr != VMA_NULL && pStr[0] != '\0') + { + ContinueString(pStr); + } + m_SB.Add('"'); + m_InsideString = false; +} + +void VmaJsonWriter::WriteNumber(uint32_t n) +{ + VMA_ASSERT(!m_InsideString); + BeginValue(false); + m_SB.AddNumber(n); +} + +void VmaJsonWriter::WriteNumber(uint64_t n) +{ + VMA_ASSERT(!m_InsideString); + BeginValue(false); + m_SB.AddNumber(n); +} + +void VmaJsonWriter::WriteBool(bool b) +{ + VMA_ASSERT(!m_InsideString); + BeginValue(false); + m_SB.Add(b ? "true" : "false"); +} + +void VmaJsonWriter::WriteNull() +{ + VMA_ASSERT(!m_InsideString); + BeginValue(false); + m_SB.Add("null"); +} + +void VmaJsonWriter::BeginValue(bool isString) +{ + if (!m_Stack.empty()) + { + StackItem& currItem = m_Stack.back(); + if (currItem.type == COLLECTION_TYPE_OBJECT && + currItem.valueCount % 2 == 0) + { + VMA_ASSERT(isString); + } + + if (currItem.type == COLLECTION_TYPE_OBJECT && + currItem.valueCount % 2 != 0) + { + m_SB.Add(": "); + } + else if (currItem.valueCount > 0) + { + m_SB.Add(", "); + WriteIndent(); + } + else + { + WriteIndent(); + } + ++currItem.valueCount; + } +} + +void VmaJsonWriter::WriteIndent(bool oneLess) +{ + if (!m_Stack.empty() && !m_Stack.back().singleLineMode) + { + m_SB.AddNewLine(); + + size_t count = m_Stack.size(); + if (count > 0 && oneLess) + { + --count; + } + for (size_t i = 0; i < count; ++i) + { + m_SB.Add(INDENT); + } + } +} +#endif // _VMA_JSON_WRITER_FUNCTIONS + +static void VmaPrintDetailedStatistics(VmaJsonWriter& json, const VmaDetailedStatistics& stat) +{ + json.BeginObject(); + + json.WriteString("BlockCount"); + json.WriteNumber(stat.statistics.blockCount); + json.WriteString("BlockBytes"); + json.WriteNumber(stat.statistics.blockBytes); + json.WriteString("AllocationCount"); + json.WriteNumber(stat.statistics.allocationCount); + json.WriteString("AllocationBytes"); + json.WriteNumber(stat.statistics.allocationBytes); + json.WriteString("UnusedRangeCount"); + json.WriteNumber(stat.unusedRangeCount); + + if (stat.statistics.allocationCount > 1) + { + json.WriteString("AllocationSizeMin"); + json.WriteNumber(stat.allocationSizeMin); + json.WriteString("AllocationSizeMax"); + json.WriteNumber(stat.allocationSizeMax); + } + if (stat.unusedRangeCount > 1) + { + json.WriteString("UnusedRangeSizeMin"); + json.WriteNumber(stat.unusedRangeSizeMin); + json.WriteString("UnusedRangeSizeMax"); + json.WriteNumber(stat.unusedRangeSizeMax); + } + json.EndObject(); +} +#endif // _VMA_JSON_WRITER + +#ifndef _VMA_MAPPING_HYSTERESIS + +class VmaMappingHysteresis +{ + VMA_CLASS_NO_COPY_NO_MOVE(VmaMappingHysteresis) +public: + VmaMappingHysteresis() = default; + + uint32_t GetExtraMapping() const { return m_ExtraMapping; } + + // Call when Map was called. + // Returns true if switched to extra +1 mapping reference count. + bool PostMap() + { +#if VMA_MAPPING_HYSTERESIS_ENABLED + if(m_ExtraMapping == 0) + { + ++m_MajorCounter; + if(m_MajorCounter >= COUNTER_MIN_EXTRA_MAPPING) + { + m_ExtraMapping = 1; + m_MajorCounter = 0; + m_MinorCounter = 0; + return true; + } + } + else // m_ExtraMapping == 1 + PostMinorCounter(); +#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED + return false; + } + + // Call when Unmap was called. + void PostUnmap() + { +#if VMA_MAPPING_HYSTERESIS_ENABLED + if(m_ExtraMapping == 0) + ++m_MajorCounter; + else // m_ExtraMapping == 1 + PostMinorCounter(); +#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED + } + + // Call when allocation was made from the memory block. + void PostAlloc() + { +#if VMA_MAPPING_HYSTERESIS_ENABLED + if(m_ExtraMapping == 1) + ++m_MajorCounter; + else // m_ExtraMapping == 0 + PostMinorCounter(); +#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED + } + + // Call when allocation was freed from the memory block. + // Returns true if switched to extra -1 mapping reference count. + bool PostFree() + { +#if VMA_MAPPING_HYSTERESIS_ENABLED + if(m_ExtraMapping == 1) + { + ++m_MajorCounter; + if(m_MajorCounter >= COUNTER_MIN_EXTRA_MAPPING && + m_MajorCounter > m_MinorCounter + 1) + { + m_ExtraMapping = 0; + m_MajorCounter = 0; + m_MinorCounter = 0; + return true; + } + } + else // m_ExtraMapping == 0 + PostMinorCounter(); +#endif // #if VMA_MAPPING_HYSTERESIS_ENABLED + return false; + } + +private: + static const int32_t COUNTER_MIN_EXTRA_MAPPING = 7; + + uint32_t m_MinorCounter = 0; + uint32_t m_MajorCounter = 0; + uint32_t m_ExtraMapping = 0; // 0 or 1. + + void PostMinorCounter() + { + if(m_MinorCounter < m_MajorCounter) + { + ++m_MinorCounter; + } + else if(m_MajorCounter > 0) + { + --m_MajorCounter; + --m_MinorCounter; + } + } +}; + +#endif // _VMA_MAPPING_HYSTERESIS + +#ifndef _VMA_DEVICE_MEMORY_BLOCK +/* +Represents a single block of device memory (`VkDeviceMemory`) with all the +data about its regions (aka suballocations, #VmaAllocation), assigned and free. + +Thread-safety: +- Access to m_pMetadata must be externally synchronized. +- Map, Unmap, Bind* are synchronized internally. +*/ +class VmaDeviceMemoryBlock +{ + VMA_CLASS_NO_COPY_NO_MOVE(VmaDeviceMemoryBlock) +public: + VmaBlockMetadata* m_pMetadata; + + VmaDeviceMemoryBlock(VmaAllocator hAllocator); + ~VmaDeviceMemoryBlock(); + + // Always call after construction. + void Init( + VmaAllocator hAllocator, + VmaPool hParentPool, + uint32_t newMemoryTypeIndex, + VkDeviceMemory newMemory, + VkDeviceSize newSize, + uint32_t id, + uint32_t algorithm, + VkDeviceSize bufferImageGranularity); + // Always call before destruction. + void Destroy(VmaAllocator allocator); + + VmaPool GetParentPool() const { return m_hParentPool; } + VkDeviceMemory GetDeviceMemory() const { return m_hMemory; } + uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } + uint32_t GetId() const { return m_Id; } + void* GetMappedData() const { return m_pMappedData; } + uint32_t GetMapRefCount() const { return m_MapCount; } + + // Call when allocation/free was made from m_pMetadata. + // Used for m_MappingHysteresis. + void PostAlloc(VmaAllocator hAllocator); + void PostFree(VmaAllocator hAllocator); + + // Validates all data structures inside this object. If not valid, returns false. + bool Validate() const; + VkResult CheckCorruption(VmaAllocator hAllocator); + + // ppData can be null. + VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData); + void Unmap(VmaAllocator hAllocator, uint32_t count); + + VkResult WriteMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); + VkResult ValidateMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize); + + VkResult BindBufferMemory( + const VmaAllocator hAllocator, + const VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkBuffer hBuffer, + const void* pNext); + VkResult BindImageMemory( + const VmaAllocator hAllocator, + const VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkImage hImage, + const void* pNext); + +private: + VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool. + uint32_t m_MemoryTypeIndex; + uint32_t m_Id; + VkDeviceMemory m_hMemory; + + /* + Protects access to m_hMemory so it is not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory. + Also protects m_MapCount, m_pMappedData. + Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex. + */ + VMA_MUTEX m_MapAndBindMutex; + VmaMappingHysteresis m_MappingHysteresis; + uint32_t m_MapCount; + void* m_pMappedData; +}; +#endif // _VMA_DEVICE_MEMORY_BLOCK + +#ifndef _VMA_ALLOCATION_T +struct VmaAllocation_T +{ + friend struct VmaDedicatedAllocationListItemTraits; + + enum FLAGS + { + FLAG_PERSISTENT_MAP = 0x01, + FLAG_MAPPING_ALLOWED = 0x02, + }; + +public: + enum ALLOCATION_TYPE + { + ALLOCATION_TYPE_NONE, + ALLOCATION_TYPE_BLOCK, + ALLOCATION_TYPE_DEDICATED, + }; + + // This struct is allocated using VmaPoolAllocator. + VmaAllocation_T(bool mappingAllowed); + ~VmaAllocation_T(); + + void InitBlockAllocation( + VmaDeviceMemoryBlock* block, + VmaAllocHandle allocHandle, + VkDeviceSize alignment, + VkDeviceSize size, + uint32_t memoryTypeIndex, + VmaSuballocationType suballocationType, + bool mapped); + // pMappedData not null means allocation is created with MAPPED flag. + void InitDedicatedAllocation( + VmaPool hParentPool, + uint32_t memoryTypeIndex, + VkDeviceMemory hMemory, + VmaSuballocationType suballocationType, + void* pMappedData, + VkDeviceSize size); + + ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; } + VkDeviceSize GetAlignment() const { return m_Alignment; } + VkDeviceSize GetSize() const { return m_Size; } + void* GetUserData() const { return m_pUserData; } + const char* GetName() const { return m_pName; } + VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; } + + VmaDeviceMemoryBlock* GetBlock() const { VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); return m_BlockAllocation.m_Block; } + uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } + bool IsPersistentMap() const { return (m_Flags & FLAG_PERSISTENT_MAP) != 0; } + bool IsMappingAllowed() const { return (m_Flags & FLAG_MAPPING_ALLOWED) != 0; } + + void SetUserData(VmaAllocator hAllocator, void* pUserData) { m_pUserData = pUserData; } + void SetName(VmaAllocator hAllocator, const char* pName); + void FreeName(VmaAllocator hAllocator); + uint8_t SwapBlockAllocation(VmaAllocator hAllocator, VmaAllocation allocation); + VmaAllocHandle GetAllocHandle() const; + VkDeviceSize GetOffset() const; + VmaPool GetParentPool() const; + VkDeviceMemory GetMemory() const; + void* GetMappedData() const; + + void BlockAllocMap(); + void BlockAllocUnmap(); + VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData); + void DedicatedAllocUnmap(VmaAllocator hAllocator); + +#if VMA_STATS_STRING_ENABLED + VmaBufferImageUsage GetBufferImageUsage() const { return m_BufferImageUsage; } + void InitBufferUsage(const VkBufferCreateInfo &createInfo, bool useKhrMaintenance5) + { + VMA_ASSERT(m_BufferImageUsage == VmaBufferImageUsage::UNKNOWN); + m_BufferImageUsage = VmaBufferImageUsage(createInfo, useKhrMaintenance5); + } + void InitImageUsage(const VkImageCreateInfo &createInfo) + { + VMA_ASSERT(m_BufferImageUsage == VmaBufferImageUsage::UNKNOWN); + m_BufferImageUsage = VmaBufferImageUsage(createInfo); + } + void PrintParameters(class VmaJsonWriter& json) const; +#endif + +private: + // Allocation out of VmaDeviceMemoryBlock. + struct BlockAllocation + { + VmaDeviceMemoryBlock* m_Block; + VmaAllocHandle m_AllocHandle; + }; + // Allocation for an object that has its own private VkDeviceMemory. + struct DedicatedAllocation + { + VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool. + VkDeviceMemory m_hMemory; + void* m_pMappedData; // Not null means memory is mapped. + VmaAllocation_T* m_Prev; + VmaAllocation_T* m_Next; + }; + union + { + // Allocation out of VmaDeviceMemoryBlock. + BlockAllocation m_BlockAllocation; + // Allocation for an object that has its own private VkDeviceMemory. + DedicatedAllocation m_DedicatedAllocation; + }; + + VkDeviceSize m_Alignment; + VkDeviceSize m_Size; + void* m_pUserData; + char* m_pName; + uint32_t m_MemoryTypeIndex; + uint8_t m_Type; // ALLOCATION_TYPE + uint8_t m_SuballocationType; // VmaSuballocationType + // Reference counter for vmaMapMemory()/vmaUnmapMemory(). + uint8_t m_MapCount; + uint8_t m_Flags; // enum FLAGS +#if VMA_STATS_STRING_ENABLED + VmaBufferImageUsage m_BufferImageUsage; // 0 if unknown. +#endif +}; +#endif // _VMA_ALLOCATION_T + +#ifndef _VMA_DEDICATED_ALLOCATION_LIST_ITEM_TRAITS +struct VmaDedicatedAllocationListItemTraits +{ + typedef VmaAllocation_T ItemType; + + static ItemType* GetPrev(const ItemType* item) + { + VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); + return item->m_DedicatedAllocation.m_Prev; + } + static ItemType* GetNext(const ItemType* item) + { + VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); + return item->m_DedicatedAllocation.m_Next; + } + static ItemType*& AccessPrev(ItemType* item) + { + VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); + return item->m_DedicatedAllocation.m_Prev; + } + static ItemType*& AccessNext(ItemType* item) + { + VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); + return item->m_DedicatedAllocation.m_Next; + } +}; +#endif // _VMA_DEDICATED_ALLOCATION_LIST_ITEM_TRAITS + +#ifndef _VMA_DEDICATED_ALLOCATION_LIST +/* +Stores linked list of VmaAllocation_T objects. +Thread-safe, synchronized internally. +*/ +class VmaDedicatedAllocationList +{ + VMA_CLASS_NO_COPY_NO_MOVE(VmaDedicatedAllocationList) +public: + VmaDedicatedAllocationList() {} + ~VmaDedicatedAllocationList(); + + void Init(bool useMutex) { m_UseMutex = useMutex; } + bool Validate(); + + void AddDetailedStatistics(VmaDetailedStatistics& inoutStats); + void AddStatistics(VmaStatistics& inoutStats); +#if VMA_STATS_STRING_ENABLED + // Writes JSON array with the list of allocations. + void BuildStatsString(VmaJsonWriter& json); +#endif + + bool IsEmpty(); + void Register(VmaAllocation alloc); + void Unregister(VmaAllocation alloc); + +private: + typedef VmaIntrusiveLinkedList<VmaDedicatedAllocationListItemTraits> DedicatedAllocationLinkedList; + + bool m_UseMutex = true; + VMA_RW_MUTEX m_Mutex; + DedicatedAllocationLinkedList m_AllocationList; +}; + +#ifndef _VMA_DEDICATED_ALLOCATION_LIST_FUNCTIONS + +VmaDedicatedAllocationList::~VmaDedicatedAllocationList() +{ + VMA_HEAVY_ASSERT(Validate()); + + if (!m_AllocationList.IsEmpty()) + { + VMA_ASSERT_LEAK(false && "Unfreed dedicated allocations found!"); + } +} + +bool VmaDedicatedAllocationList::Validate() +{ + const size_t declaredCount = m_AllocationList.GetCount(); + size_t actualCount = 0; + VmaMutexLockRead lock(m_Mutex, m_UseMutex); + for (VmaAllocation alloc = m_AllocationList.Front(); + alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc)) + { + ++actualCount; + } + VMA_VALIDATE(actualCount == declaredCount); + + return true; +} + +void VmaDedicatedAllocationList::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) +{ + for(auto* item = m_AllocationList.Front(); item != VMA_NULL; item = DedicatedAllocationLinkedList::GetNext(item)) + { + const VkDeviceSize size = item->GetSize(); + inoutStats.statistics.blockCount++; + inoutStats.statistics.blockBytes += size; + VmaAddDetailedStatisticsAllocation(inoutStats, item->GetSize()); + } +} + +void VmaDedicatedAllocationList::AddStatistics(VmaStatistics& inoutStats) +{ + VmaMutexLockRead lock(m_Mutex, m_UseMutex); + + const uint32_t allocCount = (uint32_t)m_AllocationList.GetCount(); + inoutStats.blockCount += allocCount; + inoutStats.allocationCount += allocCount; + + for(auto* item = m_AllocationList.Front(); item != VMA_NULL; item = DedicatedAllocationLinkedList::GetNext(item)) + { + const VkDeviceSize size = item->GetSize(); + inoutStats.blockBytes += size; + inoutStats.allocationBytes += size; + } +} + +#if VMA_STATS_STRING_ENABLED +void VmaDedicatedAllocationList::BuildStatsString(VmaJsonWriter& json) +{ + VmaMutexLockRead lock(m_Mutex, m_UseMutex); + json.BeginArray(); + for (VmaAllocation alloc = m_AllocationList.Front(); + alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc)) + { + json.BeginObject(true); + alloc->PrintParameters(json); + json.EndObject(); + } + json.EndArray(); +} +#endif // VMA_STATS_STRING_ENABLED + +bool VmaDedicatedAllocationList::IsEmpty() +{ + VmaMutexLockRead lock(m_Mutex, m_UseMutex); + return m_AllocationList.IsEmpty(); +} + +void VmaDedicatedAllocationList::Register(VmaAllocation alloc) +{ + VmaMutexLockWrite lock(m_Mutex, m_UseMutex); + m_AllocationList.PushBack(alloc); +} + +void VmaDedicatedAllocationList::Unregister(VmaAllocation alloc) +{ + VmaMutexLockWrite lock(m_Mutex, m_UseMutex); + m_AllocationList.Remove(alloc); +} +#endif // _VMA_DEDICATED_ALLOCATION_LIST_FUNCTIONS +#endif // _VMA_DEDICATED_ALLOCATION_LIST + +#ifndef _VMA_SUBALLOCATION +/* +Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as +allocated memory block or free. +*/ +struct VmaSuballocation +{ + VkDeviceSize offset; + VkDeviceSize size; + void* userData; + VmaSuballocationType type; +}; + +// Comparator for offsets. +struct VmaSuballocationOffsetLess +{ + bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const + { + return lhs.offset < rhs.offset; + } +}; + +struct VmaSuballocationOffsetGreater +{ + bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const + { + return lhs.offset > rhs.offset; + } +}; + +struct VmaSuballocationItemSizeLess +{ + bool operator()(const VmaSuballocationList::iterator lhs, + const VmaSuballocationList::iterator rhs) const + { + return lhs->size < rhs->size; + } + + bool operator()(const VmaSuballocationList::iterator lhs, + VkDeviceSize rhsSize) const + { + return lhs->size < rhsSize; + } +}; +#endif // _VMA_SUBALLOCATION + +#ifndef _VMA_ALLOCATION_REQUEST +/* +Parameters of planned allocation inside a VmaDeviceMemoryBlock. +item points to a FREE suballocation. +*/ +struct VmaAllocationRequest +{ + VmaAllocHandle allocHandle; + VkDeviceSize size; + VmaSuballocationList::iterator item; + void* customData; + uint64_t algorithmData; + VmaAllocationRequestType type; +}; +#endif // _VMA_ALLOCATION_REQUEST + +#ifndef _VMA_BLOCK_METADATA +/* +Data structure used for bookkeeping of allocations and unused ranges of memory +in a single VkDeviceMemory block. +*/ +class VmaBlockMetadata +{ + VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockMetadata) +public: + // pAllocationCallbacks, if not null, must be owned externally - alive and unchanged for the whole lifetime of this object. + VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual); + virtual ~VmaBlockMetadata() = default; + + virtual void Init(VkDeviceSize size) { m_Size = size; } + bool IsVirtual() const { return m_IsVirtual; } + VkDeviceSize GetSize() const { return m_Size; } + + // Validates all data structures inside this object. If not valid, returns false. + virtual bool Validate() const = 0; + virtual size_t GetAllocationCount() const = 0; + virtual size_t GetFreeRegionsCount() const = 0; + virtual VkDeviceSize GetSumFreeSize() const = 0; + // Returns true if this block is empty - contains only single free suballocation. + virtual bool IsEmpty() const = 0; + virtual void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) = 0; + virtual VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const = 0; + virtual void* GetAllocationUserData(VmaAllocHandle allocHandle) const = 0; + + virtual VmaAllocHandle GetAllocationListBegin() const = 0; + virtual VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const = 0; + virtual VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const = 0; + + // Shouldn't modify blockCount. + virtual void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const = 0; + virtual void AddStatistics(VmaStatistics& inoutStats) const = 0; + +#if VMA_STATS_STRING_ENABLED + virtual void PrintDetailedMap(class VmaJsonWriter& json) const = 0; +#endif + + // Tries to find a place for suballocation with given parameters inside this block. + // If succeeded, fills pAllocationRequest and returns true. + // If failed, returns false. + virtual bool CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + // Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags. + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) = 0; + + virtual VkResult CheckCorruption(const void* pBlockData) = 0; + + // Makes actual allocation based on request. Request must already be checked and valid. + virtual void Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) = 0; + + // Frees suballocation assigned to given memory region. + virtual void Free(VmaAllocHandle allocHandle) = 0; + + // Frees all allocations. + // Careful! Don't call it if there are VmaAllocation objects owned by userData of cleared allocations! + virtual void Clear() = 0; + + virtual void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) = 0; + virtual void DebugLogAllAllocations() const = 0; + +protected: + const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_pAllocationCallbacks; } + VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; } + VkDeviceSize GetDebugMargin() const { return VkDeviceSize(IsVirtual() ? 0 : VMA_DEBUG_MARGIN); } + + void DebugLogAllocation(VkDeviceSize offset, VkDeviceSize size, void* userData) const; +#if VMA_STATS_STRING_ENABLED + // mapRefCount == UINT32_MAX means unspecified. + void PrintDetailedMap_Begin(class VmaJsonWriter& json, + VkDeviceSize unusedBytes, + size_t allocationCount, + size_t unusedRangeCount) const; + void PrintDetailedMap_Allocation(class VmaJsonWriter& json, + VkDeviceSize offset, VkDeviceSize size, void* userData) const; + void PrintDetailedMap_UnusedRange(class VmaJsonWriter& json, + VkDeviceSize offset, + VkDeviceSize size) const; + void PrintDetailedMap_End(class VmaJsonWriter& json) const; +#endif + +private: + VkDeviceSize m_Size; + const VkAllocationCallbacks* m_pAllocationCallbacks; + const VkDeviceSize m_BufferImageGranularity; + const bool m_IsVirtual; +}; + +#ifndef _VMA_BLOCK_METADATA_FUNCTIONS +VmaBlockMetadata::VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual) + : m_Size(0), + m_pAllocationCallbacks(pAllocationCallbacks), + m_BufferImageGranularity(bufferImageGranularity), + m_IsVirtual(isVirtual) {} + +void VmaBlockMetadata::DebugLogAllocation(VkDeviceSize offset, VkDeviceSize size, void* userData) const +{ + if (IsVirtual()) + { + VMA_LEAK_LOG_FORMAT("UNFREED VIRTUAL ALLOCATION; Offset: %" PRIu64 "; Size: %" PRIu64 "; UserData: %p", offset, size, userData); + } + else + { + VMA_ASSERT(userData != VMA_NULL); + VmaAllocation allocation = reinterpret_cast<VmaAllocation>(userData); + + userData = allocation->GetUserData(); + const char* name = allocation->GetName(); + +#if VMA_STATS_STRING_ENABLED + VMA_LEAK_LOG_FORMAT("UNFREED ALLOCATION; Offset: %" PRIu64 "; Size: %" PRIu64 "; UserData: %p; Name: %s; Type: %s; Usage: %" PRIu64, + offset, size, userData, name ? name : "vma_empty", + VMA_SUBALLOCATION_TYPE_NAMES[allocation->GetSuballocationType()], + (uint64_t)allocation->GetBufferImageUsage().Value); +#else + VMA_LEAK_LOG_FORMAT("UNFREED ALLOCATION; Offset: %" PRIu64 "; Size: %" PRIu64 "; UserData: %p; Name: %s; Type: %u", + offset, size, userData, name ? name : "vma_empty", + (unsigned)allocation->GetSuballocationType()); +#endif // VMA_STATS_STRING_ENABLED + } + +} + +#if VMA_STATS_STRING_ENABLED +void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter& json, + VkDeviceSize unusedBytes, size_t allocationCount, size_t unusedRangeCount) const +{ + json.WriteString("TotalBytes"); + json.WriteNumber(GetSize()); + + json.WriteString("UnusedBytes"); + json.WriteNumber(unusedBytes); + + json.WriteString("Allocations"); + json.WriteNumber((uint64_t)allocationCount); + + json.WriteString("UnusedRanges"); + json.WriteNumber((uint64_t)unusedRangeCount); + + json.WriteString("Suballocations"); + json.BeginArray(); +} + +void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter& json, + VkDeviceSize offset, VkDeviceSize size, void* userData) const +{ + json.BeginObject(true); + + json.WriteString("Offset"); + json.WriteNumber(offset); + + if (IsVirtual()) + { + json.WriteString("Size"); + json.WriteNumber(size); + if (userData) + { + json.WriteString("CustomData"); + json.BeginString(); + json.ContinueString_Pointer(userData); + json.EndString(); + } + } + else + { + ((VmaAllocation)userData)->PrintParameters(json); + } + + json.EndObject(); +} + +void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter& json, + VkDeviceSize offset, VkDeviceSize size) const +{ + json.BeginObject(true); + + json.WriteString("Offset"); + json.WriteNumber(offset); + + json.WriteString("Type"); + json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]); + + json.WriteString("Size"); + json.WriteNumber(size); + + json.EndObject(); +} + +void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter& json) const +{ + json.EndArray(); +} +#endif // VMA_STATS_STRING_ENABLED +#endif // _VMA_BLOCK_METADATA_FUNCTIONS +#endif // _VMA_BLOCK_METADATA + +#ifndef _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY +// Before deleting object of this class remember to call 'Destroy()' +class VmaBlockBufferImageGranularity final +{ +public: + struct ValidationContext + { + const VkAllocationCallbacks* allocCallbacks; + uint16_t* pageAllocs; + }; + + VmaBlockBufferImageGranularity(VkDeviceSize bufferImageGranularity); + ~VmaBlockBufferImageGranularity(); + + bool IsEnabled() const { return m_BufferImageGranularity > MAX_LOW_BUFFER_IMAGE_GRANULARITY; } + + void Init(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize size); + // Before destroying object you must call free it's memory + void Destroy(const VkAllocationCallbacks* pAllocationCallbacks); + + void RoundupAllocRequest(VmaSuballocationType allocType, + VkDeviceSize& inOutAllocSize, + VkDeviceSize& inOutAllocAlignment) const; + + bool CheckConflictAndAlignUp(VkDeviceSize& inOutAllocOffset, + VkDeviceSize allocSize, + VkDeviceSize blockOffset, + VkDeviceSize blockSize, + VmaSuballocationType allocType) const; + + void AllocPages(uint8_t allocType, VkDeviceSize offset, VkDeviceSize size); + void FreePages(VkDeviceSize offset, VkDeviceSize size); + void Clear(); + + ValidationContext StartValidation(const VkAllocationCallbacks* pAllocationCallbacks, + bool isVirutal) const; + bool Validate(ValidationContext& ctx, VkDeviceSize offset, VkDeviceSize size) const; + bool FinishValidation(ValidationContext& ctx) const; + +private: + static const uint16_t MAX_LOW_BUFFER_IMAGE_GRANULARITY = 256; + + struct RegionInfo + { + uint8_t allocType; + uint16_t allocCount; + }; + + VkDeviceSize m_BufferImageGranularity; + uint32_t m_RegionCount; + RegionInfo* m_RegionInfo; + + uint32_t GetStartPage(VkDeviceSize offset) const { return OffsetToPageIndex(offset & ~(m_BufferImageGranularity - 1)); } + uint32_t GetEndPage(VkDeviceSize offset, VkDeviceSize size) const { return OffsetToPageIndex((offset + size - 1) & ~(m_BufferImageGranularity - 1)); } + + uint32_t OffsetToPageIndex(VkDeviceSize offset) const; + void AllocPage(RegionInfo& page, uint8_t allocType); +}; + +#ifndef _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY_FUNCTIONS +VmaBlockBufferImageGranularity::VmaBlockBufferImageGranularity(VkDeviceSize bufferImageGranularity) + : m_BufferImageGranularity(bufferImageGranularity), + m_RegionCount(0), + m_RegionInfo(VMA_NULL) {} + +VmaBlockBufferImageGranularity::~VmaBlockBufferImageGranularity() +{ + VMA_ASSERT(m_RegionInfo == VMA_NULL && "Free not called before destroying object!"); +} + +void VmaBlockBufferImageGranularity::Init(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize size) +{ + if (IsEnabled()) + { + m_RegionCount = static_cast<uint32_t>(VmaDivideRoundingUp(size, m_BufferImageGranularity)); + m_RegionInfo = vma_new_array(pAllocationCallbacks, RegionInfo, m_RegionCount); + memset(m_RegionInfo, 0, m_RegionCount * sizeof(RegionInfo)); + } +} + +void VmaBlockBufferImageGranularity::Destroy(const VkAllocationCallbacks* pAllocationCallbacks) +{ + if (m_RegionInfo) + { + vma_delete_array(pAllocationCallbacks, m_RegionInfo, m_RegionCount); + m_RegionInfo = VMA_NULL; + } +} + +void VmaBlockBufferImageGranularity::RoundupAllocRequest(VmaSuballocationType allocType, + VkDeviceSize& inOutAllocSize, + VkDeviceSize& inOutAllocAlignment) const +{ + if (m_BufferImageGranularity > 1 && + m_BufferImageGranularity <= MAX_LOW_BUFFER_IMAGE_GRANULARITY) + { + if (allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN || + allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN || + allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL) + { + inOutAllocAlignment = VMA_MAX(inOutAllocAlignment, m_BufferImageGranularity); + inOutAllocSize = VmaAlignUp(inOutAllocSize, m_BufferImageGranularity); + } + } +} + +bool VmaBlockBufferImageGranularity::CheckConflictAndAlignUp(VkDeviceSize& inOutAllocOffset, + VkDeviceSize allocSize, + VkDeviceSize blockOffset, + VkDeviceSize blockSize, + VmaSuballocationType allocType) const +{ + if (IsEnabled()) + { + uint32_t startPage = GetStartPage(inOutAllocOffset); + if (m_RegionInfo[startPage].allocCount > 0 && + VmaIsBufferImageGranularityConflict(static_cast<VmaSuballocationType>(m_RegionInfo[startPage].allocType), allocType)) + { + inOutAllocOffset = VmaAlignUp(inOutAllocOffset, m_BufferImageGranularity); + if (blockSize < allocSize + inOutAllocOffset - blockOffset) + return true; + ++startPage; + } + uint32_t endPage = GetEndPage(inOutAllocOffset, allocSize); + if (endPage != startPage && + m_RegionInfo[endPage].allocCount > 0 && + VmaIsBufferImageGranularityConflict(static_cast<VmaSuballocationType>(m_RegionInfo[endPage].allocType), allocType)) + { + return true; + } + } + return false; +} + +void VmaBlockBufferImageGranularity::AllocPages(uint8_t allocType, VkDeviceSize offset, VkDeviceSize size) +{ + if (IsEnabled()) + { + uint32_t startPage = GetStartPage(offset); + AllocPage(m_RegionInfo[startPage], allocType); + + uint32_t endPage = GetEndPage(offset, size); + if (startPage != endPage) + AllocPage(m_RegionInfo[endPage], allocType); + } +} + +void VmaBlockBufferImageGranularity::FreePages(VkDeviceSize offset, VkDeviceSize size) +{ + if (IsEnabled()) + { + uint32_t startPage = GetStartPage(offset); + --m_RegionInfo[startPage].allocCount; + if (m_RegionInfo[startPage].allocCount == 0) + m_RegionInfo[startPage].allocType = VMA_SUBALLOCATION_TYPE_FREE; + uint32_t endPage = GetEndPage(offset, size); + if (startPage != endPage) + { + --m_RegionInfo[endPage].allocCount; + if (m_RegionInfo[endPage].allocCount == 0) + m_RegionInfo[endPage].allocType = VMA_SUBALLOCATION_TYPE_FREE; + } + } +} + +void VmaBlockBufferImageGranularity::Clear() +{ + if (m_RegionInfo) + memset(m_RegionInfo, 0, m_RegionCount * sizeof(RegionInfo)); +} + +VmaBlockBufferImageGranularity::ValidationContext VmaBlockBufferImageGranularity::StartValidation( + const VkAllocationCallbacks* pAllocationCallbacks, bool isVirutal) const +{ + ValidationContext ctx{ pAllocationCallbacks, VMA_NULL }; + if (!isVirutal && IsEnabled()) + { + ctx.pageAllocs = vma_new_array(pAllocationCallbacks, uint16_t, m_RegionCount); + memset(ctx.pageAllocs, 0, m_RegionCount * sizeof(uint16_t)); + } + return ctx; +} + +bool VmaBlockBufferImageGranularity::Validate(ValidationContext& ctx, + VkDeviceSize offset, VkDeviceSize size) const +{ + if (IsEnabled()) + { + uint32_t start = GetStartPage(offset); + ++ctx.pageAllocs[start]; + VMA_VALIDATE(m_RegionInfo[start].allocCount > 0); + + uint32_t end = GetEndPage(offset, size); + if (start != end) + { + ++ctx.pageAllocs[end]; + VMA_VALIDATE(m_RegionInfo[end].allocCount > 0); + } + } + return true; +} + +bool VmaBlockBufferImageGranularity::FinishValidation(ValidationContext& ctx) const +{ + // Check proper page structure + if (IsEnabled()) + { + VMA_ASSERT(ctx.pageAllocs != VMA_NULL && "Validation context not initialized!"); + + for (uint32_t page = 0; page < m_RegionCount; ++page) + { + VMA_VALIDATE(ctx.pageAllocs[page] == m_RegionInfo[page].allocCount); + } + vma_delete_array(ctx.allocCallbacks, ctx.pageAllocs, m_RegionCount); + ctx.pageAllocs = VMA_NULL; + } + return true; +} + +uint32_t VmaBlockBufferImageGranularity::OffsetToPageIndex(VkDeviceSize offset) const +{ + return static_cast<uint32_t>(offset >> VMA_BITSCAN_MSB(m_BufferImageGranularity)); +} + +void VmaBlockBufferImageGranularity::AllocPage(RegionInfo& page, uint8_t allocType) +{ + // When current alloc type is free then it can be overridden by new type + if (page.allocCount == 0 || (page.allocCount > 0 && page.allocType == VMA_SUBALLOCATION_TYPE_FREE)) + page.allocType = allocType; + + ++page.allocCount; +} +#endif // _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY_FUNCTIONS +#endif // _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY + +#ifndef _VMA_BLOCK_METADATA_LINEAR +/* +Allocations and their references in internal data structure look like this: + +if(m_2ndVectorMode == SECOND_VECTOR_EMPTY): + + 0 +-------+ + | | + | | + | | + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount] + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount + 1] + +-------+ + | ... | + +-------+ + | Alloc | 1st[1st.size() - 1] + +-------+ + | | + | | + | | +GetSize() +-------+ + +if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER): + + 0 +-------+ + | Alloc | 2nd[0] + +-------+ + | Alloc | 2nd[1] + +-------+ + | ... | + +-------+ + | Alloc | 2nd[2nd.size() - 1] + +-------+ + | | + | | + | | + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount] + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount + 1] + +-------+ + | ... | + +-------+ + | Alloc | 1st[1st.size() - 1] + +-------+ + | | +GetSize() +-------+ + +if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK): + + 0 +-------+ + | | + | | + | | + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount] + +-------+ + | Alloc | 1st[m_1stNullItemsBeginCount + 1] + +-------+ + | ... | + +-------+ + | Alloc | 1st[1st.size() - 1] + +-------+ + | | + | | + | | + +-------+ + | Alloc | 2nd[2nd.size() - 1] + +-------+ + | ... | + +-------+ + | Alloc | 2nd[1] + +-------+ + | Alloc | 2nd[0] +GetSize() +-------+ + +*/ +class VmaBlockMetadata_Linear : public VmaBlockMetadata +{ + VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockMetadata_Linear) +public: + VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual); + virtual ~VmaBlockMetadata_Linear() = default; + + VkDeviceSize GetSumFreeSize() const override { return m_SumFreeSize; } + bool IsEmpty() const override { return GetAllocationCount() == 0; } + VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return (VkDeviceSize)allocHandle - 1; } + + void Init(VkDeviceSize size) override; + bool Validate() const override; + size_t GetAllocationCount() const override; + size_t GetFreeRegionsCount() const override; + + void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override; + void AddStatistics(VmaStatistics& inoutStats) const override; + +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap(class VmaJsonWriter& json) const override; +#endif + + bool CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) override; + + VkResult CheckCorruption(const void* pBlockData) override; + + void Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) override; + + void Free(VmaAllocHandle allocHandle) override; + void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override; + void* GetAllocationUserData(VmaAllocHandle allocHandle) const override; + VmaAllocHandle GetAllocationListBegin() const override; + VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override; + VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const override; + void Clear() override; + void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override; + void DebugLogAllAllocations() const override; + +private: + /* + There are two suballocation vectors, used in ping-pong way. + The one with index m_1stVectorIndex is called 1st. + The one with index (m_1stVectorIndex ^ 1) is called 2nd. + 2nd can be non-empty only when 1st is not empty. + When 2nd is not empty, m_2ndVectorMode indicates its mode of operation. + */ + typedef VmaVector<VmaSuballocation, VmaStlAllocator<VmaSuballocation>> SuballocationVectorType; + + enum SECOND_VECTOR_MODE + { + SECOND_VECTOR_EMPTY, + /* + Suballocations in 2nd vector are created later than the ones in 1st, but they + all have smaller offset. + */ + SECOND_VECTOR_RING_BUFFER, + /* + Suballocations in 2nd vector are upper side of double stack. + They all have offsets higher than those in 1st vector. + Top of this stack means smaller offsets, but higher indices in this vector. + */ + SECOND_VECTOR_DOUBLE_STACK, + }; + + VkDeviceSize m_SumFreeSize; + SuballocationVectorType m_Suballocations0, m_Suballocations1; + uint32_t m_1stVectorIndex; + SECOND_VECTOR_MODE m_2ndVectorMode; + // Number of items in 1st vector with hAllocation = null at the beginning. + size_t m_1stNullItemsBeginCount; + // Number of other items in 1st vector with hAllocation = null somewhere in the middle. + size_t m_1stNullItemsMiddleCount; + // Number of items in 2nd vector with hAllocation = null. + size_t m_2ndNullItemsCount; + + SuballocationVectorType& AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } + SuballocationVectorType& AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } + const SuballocationVectorType& AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; } + const SuballocationVectorType& AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; } + + VmaSuballocation& FindSuballocation(VkDeviceSize offset) const; + bool ShouldCompact1st() const; + void CleanupAfterFree(); + + bool CreateAllocationRequest_LowerAddress( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest); + bool CreateAllocationRequest_UpperAddress( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest); +}; + +#ifndef _VMA_BLOCK_METADATA_LINEAR_FUNCTIONS +VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual) + : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual), + m_SumFreeSize(0), + m_Suballocations0(VmaStlAllocator<VmaSuballocation>(pAllocationCallbacks)), + m_Suballocations1(VmaStlAllocator<VmaSuballocation>(pAllocationCallbacks)), + m_1stVectorIndex(0), + m_2ndVectorMode(SECOND_VECTOR_EMPTY), + m_1stNullItemsBeginCount(0), + m_1stNullItemsMiddleCount(0), + m_2ndNullItemsCount(0) {} + +void VmaBlockMetadata_Linear::Init(VkDeviceSize size) +{ + VmaBlockMetadata::Init(size); + m_SumFreeSize = size; +} + +bool VmaBlockMetadata_Linear::Validate() const +{ + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + + VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY)); + VMA_VALIDATE(!suballocations1st.empty() || + suballocations2nd.empty() || + m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER); + + if (!suballocations1st.empty()) + { + // Null item at the beginning should be accounted into m_1stNullItemsBeginCount. + VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].type != VMA_SUBALLOCATION_TYPE_FREE); + // Null item at the end should be just pop_back(). + VMA_VALIDATE(suballocations1st.back().type != VMA_SUBALLOCATION_TYPE_FREE); + } + if (!suballocations2nd.empty()) + { + // Null item at the end should be just pop_back(). + VMA_VALIDATE(suballocations2nd.back().type != VMA_SUBALLOCATION_TYPE_FREE); + } + + VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size()); + VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size()); + + VkDeviceSize sumUsedSize = 0; + const size_t suballoc1stCount = suballocations1st.size(); + const VkDeviceSize debugMargin = GetDebugMargin(); + VkDeviceSize offset = 0; + + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + const size_t suballoc2ndCount = suballocations2nd.size(); + size_t nullItem2ndCount = 0; + for (size_t i = 0; i < suballoc2ndCount; ++i) + { + const VmaSuballocation& suballoc = suballocations2nd[i]; + const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + + VmaAllocation const alloc = (VmaAllocation)suballoc.userData; + if (!IsVirtual()) + { + VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE)); + } + VMA_VALIDATE(suballoc.offset >= offset); + + if (!currFree) + { + if (!IsVirtual()) + { + VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1); + VMA_VALIDATE(alloc->GetSize() == suballoc.size); + } + sumUsedSize += suballoc.size; + } + else + { + ++nullItem2ndCount; + } + + offset = suballoc.offset + suballoc.size + debugMargin; + } + + VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); + } + + for (size_t i = 0; i < m_1stNullItemsBeginCount; ++i) + { + const VmaSuballocation& suballoc = suballocations1st[i]; + VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE && + suballoc.userData == VMA_NULL); + } + + size_t nullItem1stCount = m_1stNullItemsBeginCount; + + for (size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i) + { + const VmaSuballocation& suballoc = suballocations1st[i]; + const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + + VmaAllocation const alloc = (VmaAllocation)suballoc.userData; + if (!IsVirtual()) + { + VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE)); + } + VMA_VALIDATE(suballoc.offset >= offset); + VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree); + + if (!currFree) + { + if (!IsVirtual()) + { + VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1); + VMA_VALIDATE(alloc->GetSize() == suballoc.size); + } + sumUsedSize += suballoc.size; + } + else + { + ++nullItem1stCount; + } + + offset = suballoc.offset + suballoc.size + debugMargin; + } + VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount); + + if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + const size_t suballoc2ndCount = suballocations2nd.size(); + size_t nullItem2ndCount = 0; + for (size_t i = suballoc2ndCount; i--; ) + { + const VmaSuballocation& suballoc = suballocations2nd[i]; + const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE); + + VmaAllocation const alloc = (VmaAllocation)suballoc.userData; + if (!IsVirtual()) + { + VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE)); + } + VMA_VALIDATE(suballoc.offset >= offset); + + if (!currFree) + { + if (!IsVirtual()) + { + VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1); + VMA_VALIDATE(alloc->GetSize() == suballoc.size); + } + sumUsedSize += suballoc.size; + } + else + { + ++nullItem2ndCount; + } + + offset = suballoc.offset + suballoc.size + debugMargin; + } + + VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount); + } + + VMA_VALIDATE(offset <= GetSize()); + VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize); + + return true; +} + +size_t VmaBlockMetadata_Linear::GetAllocationCount() const +{ + return AccessSuballocations1st().size() - m_1stNullItemsBeginCount - m_1stNullItemsMiddleCount + + AccessSuballocations2nd().size() - m_2ndNullItemsCount; +} + +size_t VmaBlockMetadata_Linear::GetFreeRegionsCount() const +{ + // Function only used for defragmentation, which is disabled for this algorithm + VMA_ASSERT(0); + return SIZE_MAX; +} + +void VmaBlockMetadata_Linear::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const +{ + const VkDeviceSize size = GetSize(); + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + const size_t suballoc1stCount = suballocations1st.size(); + const size_t suballoc2ndCount = suballocations2nd.size(); + + inoutStats.statistics.blockCount++; + inoutStats.statistics.blockBytes += size; + + VkDeviceSize lastOffset = 0; + + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; + size_t nextAlloc2ndIndex = 0; + while (lastOffset < freeSpace2ndTo1stEnd) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc2ndIndex < suballoc2ndCount && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + ++nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex < suballoc2ndCount) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc2ndIndex; + } + // We are at the end. + else + { + // There is free space from lastOffset to freeSpace2ndTo1stEnd. + if (lastOffset < freeSpace2ndTo1stEnd) + { + const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; + VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace2ndTo1stEnd; + } + } + } + + size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; + const VkDeviceSize freeSpace1stTo2ndEnd = + m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; + while (lastOffset < freeSpace1stTo2ndEnd) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc1stIndex < suballoc1stCount && + suballocations1st[nextAlloc1stIndex].userData == VMA_NULL) + { + ++nextAlloc1stIndex; + } + + // Found non-null allocation. + if (nextAlloc1stIndex < suballoc1stCount) + { + const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc1stIndex; + } + // We are at the end. + else + { + // There is free space from lastOffset to freeSpace1stTo2ndEnd. + if (lastOffset < freeSpace1stTo2ndEnd) + { + const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; + VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace1stTo2ndEnd; + } + } + + if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; + while (lastOffset < size) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc2ndIndex != SIZE_MAX && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + --nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex != SIZE_MAX) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + --nextAlloc2ndIndex; + } + // We are at the end. + else + { + // There is free space from lastOffset to size. + if (lastOffset < size) + { + const VkDeviceSize unusedRangeSize = size - lastOffset; + VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize); + } + + // End of loop. + lastOffset = size; + } + } + } +} + +void VmaBlockMetadata_Linear::AddStatistics(VmaStatistics& inoutStats) const +{ + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + const VkDeviceSize size = GetSize(); + const size_t suballoc1stCount = suballocations1st.size(); + const size_t suballoc2ndCount = suballocations2nd.size(); + + inoutStats.blockCount++; + inoutStats.blockBytes += size; + inoutStats.allocationBytes += size - m_SumFreeSize; + + VkDeviceSize lastOffset = 0; + + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; + size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount; + while (lastOffset < freeSpace2ndTo1stEnd) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex < suballoc2ndCount && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + ++nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex < suballoc2ndCount) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++inoutStats.allocationCount; + + // Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc2ndIndex; + } + // We are at the end. + else + { + // End of loop. + lastOffset = freeSpace2ndTo1stEnd; + } + } + } + + size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; + const VkDeviceSize freeSpace1stTo2ndEnd = + m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; + while (lastOffset < freeSpace1stTo2ndEnd) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc1stIndex < suballoc1stCount && + suballocations1st[nextAlloc1stIndex].userData == VMA_NULL) + { + ++nextAlloc1stIndex; + } + + // Found non-null allocation. + if (nextAlloc1stIndex < suballoc1stCount) + { + const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; + + // Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++inoutStats.allocationCount; + + // Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc1stIndex; + } + // We are at the end. + else + { + // End of loop. + lastOffset = freeSpace1stTo2ndEnd; + } + } + + if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; + while (lastOffset < size) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex != SIZE_MAX && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + --nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex != SIZE_MAX) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++inoutStats.allocationCount; + + // Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + --nextAlloc2ndIndex; + } + // We are at the end. + else + { + // End of loop. + lastOffset = size; + } + } + } +} + +#if VMA_STATS_STRING_ENABLED +void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter& json) const +{ + const VkDeviceSize size = GetSize(); + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + const size_t suballoc1stCount = suballocations1st.size(); + const size_t suballoc2ndCount = suballocations2nd.size(); + + // FIRST PASS + + size_t unusedRangeCount = 0; + VkDeviceSize usedBytes = 0; + + VkDeviceSize lastOffset = 0; + + size_t alloc2ndCount = 0; + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; + size_t nextAlloc2ndIndex = 0; + while (lastOffset < freeSpace2ndTo1stEnd) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex < suballoc2ndCount && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + ++nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex < suballoc2ndCount) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + ++unusedRangeCount; + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++alloc2ndCount; + usedBytes += suballoc.size; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc2ndIndex; + } + // We are at the end. + else + { + if (lastOffset < freeSpace2ndTo1stEnd) + { + // There is free space from lastOffset to freeSpace2ndTo1stEnd. + ++unusedRangeCount; + } + + // End of loop. + lastOffset = freeSpace2ndTo1stEnd; + } + } + } + + size_t nextAlloc1stIndex = m_1stNullItemsBeginCount; + size_t alloc1stCount = 0; + const VkDeviceSize freeSpace1stTo2ndEnd = + m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size; + while (lastOffset < freeSpace1stTo2ndEnd) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc1stIndex < suballoc1stCount && + suballocations1st[nextAlloc1stIndex].userData == VMA_NULL) + { + ++nextAlloc1stIndex; + } + + // Found non-null allocation. + if (nextAlloc1stIndex < suballoc1stCount) + { + const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + ++unusedRangeCount; + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++alloc1stCount; + usedBytes += suballoc.size; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc1stIndex; + } + // We are at the end. + else + { + if (lastOffset < freeSpace1stTo2ndEnd) + { + // There is free space from lastOffset to freeSpace1stTo2ndEnd. + ++unusedRangeCount; + } + + // End of loop. + lastOffset = freeSpace1stTo2ndEnd; + } + } + + if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; + while (lastOffset < size) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex != SIZE_MAX && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + --nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex != SIZE_MAX) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + ++unusedRangeCount; + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + ++alloc2ndCount; + usedBytes += suballoc.size; + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + --nextAlloc2ndIndex; + } + // We are at the end. + else + { + if (lastOffset < size) + { + // There is free space from lastOffset to size. + ++unusedRangeCount; + } + + // End of loop. + lastOffset = size; + } + } + } + + const VkDeviceSize unusedBytes = size - usedBytes; + PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount); + + // SECOND PASS + lastOffset = 0; + + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset; + size_t nextAlloc2ndIndex = 0; + while (lastOffset < freeSpace2ndTo1stEnd) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex < suballoc2ndCount && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + ++nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex < suballoc2ndCount) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc2ndIndex; + } + // We are at the end. + else + { + if (lastOffset < freeSpace2ndTo1stEnd) + { + // There is free space from lastOffset to freeSpace2ndTo1stEnd. + const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace2ndTo1stEnd; + } + } + } + + nextAlloc1stIndex = m_1stNullItemsBeginCount; + while (lastOffset < freeSpace1stTo2ndEnd) + { + // Find next non-null allocation or move nextAllocIndex to the end. + while (nextAlloc1stIndex < suballoc1stCount && + suballocations1st[nextAlloc1stIndex].userData == VMA_NULL) + { + ++nextAlloc1stIndex; + } + + // Found non-null allocation. + if (nextAlloc1stIndex < suballoc1stCount) + { + const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + ++nextAlloc1stIndex; + } + // We are at the end. + else + { + if (lastOffset < freeSpace1stTo2ndEnd) + { + // There is free space from lastOffset to freeSpace1stTo2ndEnd. + const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // End of loop. + lastOffset = freeSpace1stTo2ndEnd; + } + } + + if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + size_t nextAlloc2ndIndex = suballocations2nd.size() - 1; + while (lastOffset < size) + { + // Find next non-null allocation or move nextAlloc2ndIndex to the end. + while (nextAlloc2ndIndex != SIZE_MAX && + suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL) + { + --nextAlloc2ndIndex; + } + + // Found non-null allocation. + if (nextAlloc2ndIndex != SIZE_MAX) + { + const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex]; + + // 1. Process free space before this allocation. + if (lastOffset < suballoc.offset) + { + // There is free space from lastOffset to suballoc.offset. + const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // 2. Process this allocation. + // There is allocation with suballoc.offset, suballoc.size. + PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData); + + // 3. Prepare for next iteration. + lastOffset = suballoc.offset + suballoc.size; + --nextAlloc2ndIndex; + } + // We are at the end. + else + { + if (lastOffset < size) + { + // There is free space from lastOffset to size. + const VkDeviceSize unusedRangeSize = size - lastOffset; + PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize); + } + + // End of loop. + lastOffset = size; + } + } + } + + PrintDetailedMap_End(json); +} +#endif // VMA_STATS_STRING_ENABLED + +bool VmaBlockMetadata_Linear::CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) +{ + VMA_ASSERT(allocSize > 0); + VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE); + VMA_ASSERT(pAllocationRequest != VMA_NULL); + VMA_HEAVY_ASSERT(Validate()); + + if(allocSize > GetSize()) + return false; + + pAllocationRequest->size = allocSize; + return upperAddress ? + CreateAllocationRequest_UpperAddress( + allocSize, allocAlignment, allocType, strategy, pAllocationRequest) : + CreateAllocationRequest_LowerAddress( + allocSize, allocAlignment, allocType, strategy, pAllocationRequest); +} + +VkResult VmaBlockMetadata_Linear::CheckCorruption(const void* pBlockData) +{ + VMA_ASSERT(!IsVirtual()); + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + for (size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i) + { + const VmaSuballocation& suballoc = suballocations1st[i]; + if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) + { + if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) + { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); + return VK_ERROR_UNKNOWN_COPY; + } + } + } + + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + for (size_t i = 0, count = suballocations2nd.size(); i < count; ++i) + { + const VmaSuballocation& suballoc = suballocations2nd[i]; + if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE) + { + if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size)) + { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); + return VK_ERROR_UNKNOWN_COPY; + } + } + } + + return VK_SUCCESS; +} + +void VmaBlockMetadata_Linear::Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) +{ + const VkDeviceSize offset = (VkDeviceSize)request.allocHandle - 1; + const VmaSuballocation newSuballoc = { offset, request.size, userData, type }; + + switch (request.type) + { + case VmaAllocationRequestType::UpperAddress: + { + VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER && + "CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer."); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + suballocations2nd.push_back(newSuballoc); + m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK; + } + break; + case VmaAllocationRequestType::EndOf1st: + { + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + + VMA_ASSERT(suballocations1st.empty() || + offset >= suballocations1st.back().offset + suballocations1st.back().size); + // Check if it fits before the end of the block. + VMA_ASSERT(offset + request.size <= GetSize()); + + suballocations1st.push_back(newSuballoc); + } + break; + case VmaAllocationRequestType::EndOf2nd: + { + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + // New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector. + VMA_ASSERT(!suballocations1st.empty() && + offset + request.size <= suballocations1st[m_1stNullItemsBeginCount].offset); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + + switch (m_2ndVectorMode) + { + case SECOND_VECTOR_EMPTY: + // First allocation from second part ring buffer. + VMA_ASSERT(suballocations2nd.empty()); + m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER; + break; + case SECOND_VECTOR_RING_BUFFER: + // 2-part ring buffer is already started. + VMA_ASSERT(!suballocations2nd.empty()); + break; + case SECOND_VECTOR_DOUBLE_STACK: + VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack."); + break; + default: + VMA_ASSERT(0); + } + + suballocations2nd.push_back(newSuballoc); + } + break; + default: + VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR."); + } + + m_SumFreeSize -= newSuballoc.size; +} + +void VmaBlockMetadata_Linear::Free(VmaAllocHandle allocHandle) +{ + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + VkDeviceSize offset = (VkDeviceSize)allocHandle - 1; + + if (!suballocations1st.empty()) + { + // First allocation: Mark it as next empty at the beginning. + VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount]; + if (firstSuballoc.offset == offset) + { + firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE; + firstSuballoc.userData = VMA_NULL; + m_SumFreeSize += firstSuballoc.size; + ++m_1stNullItemsBeginCount; + CleanupAfterFree(); + return; + } + } + + // Last allocation in 2-part ring buffer or top of upper stack (same logic). + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER || + m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + VmaSuballocation& lastSuballoc = suballocations2nd.back(); + if (lastSuballoc.offset == offset) + { + m_SumFreeSize += lastSuballoc.size; + suballocations2nd.pop_back(); + CleanupAfterFree(); + return; + } + } + // Last allocation in 1st vector. + else if (m_2ndVectorMode == SECOND_VECTOR_EMPTY) + { + VmaSuballocation& lastSuballoc = suballocations1st.back(); + if (lastSuballoc.offset == offset) + { + m_SumFreeSize += lastSuballoc.size; + suballocations1st.pop_back(); + CleanupAfterFree(); + return; + } + } + + VmaSuballocation refSuballoc; + refSuballoc.offset = offset; + // Rest of members stays uninitialized intentionally for better performance. + + // Item from the middle of 1st vector. + { + const SuballocationVectorType::iterator it = VmaBinaryFindSorted( + suballocations1st.begin() + m_1stNullItemsBeginCount, + suballocations1st.end(), + refSuballoc, + VmaSuballocationOffsetLess()); + if (it != suballocations1st.end()) + { + it->type = VMA_SUBALLOCATION_TYPE_FREE; + it->userData = VMA_NULL; + ++m_1stNullItemsMiddleCount; + m_SumFreeSize += it->size; + CleanupAfterFree(); + return; + } + } + + if (m_2ndVectorMode != SECOND_VECTOR_EMPTY) + { + // Item from the middle of 2nd vector. + const SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ? + VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) : + VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater()); + if (it != suballocations2nd.end()) + { + it->type = VMA_SUBALLOCATION_TYPE_FREE; + it->userData = VMA_NULL; + ++m_2ndNullItemsCount; + m_SumFreeSize += it->size; + CleanupAfterFree(); + return; + } + } + + VMA_ASSERT(0 && "Allocation to free not found in linear allocator!"); +} + +void VmaBlockMetadata_Linear::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) +{ + outInfo.offset = (VkDeviceSize)allocHandle - 1; + VmaSuballocation& suballoc = FindSuballocation(outInfo.offset); + outInfo.size = suballoc.size; + outInfo.pUserData = suballoc.userData; +} + +void* VmaBlockMetadata_Linear::GetAllocationUserData(VmaAllocHandle allocHandle) const +{ + return FindSuballocation((VkDeviceSize)allocHandle - 1).userData; +} + +VmaAllocHandle VmaBlockMetadata_Linear::GetAllocationListBegin() const +{ + // Function only used for defragmentation, which is disabled for this algorithm + VMA_ASSERT(0); + return VK_NULL_HANDLE; +} + +VmaAllocHandle VmaBlockMetadata_Linear::GetNextAllocation(VmaAllocHandle prevAlloc) const +{ + // Function only used for defragmentation, which is disabled for this algorithm + VMA_ASSERT(0); + return VK_NULL_HANDLE; +} + +VkDeviceSize VmaBlockMetadata_Linear::GetNextFreeRegionSize(VmaAllocHandle alloc) const +{ + // Function only used for defragmentation, which is disabled for this algorithm + VMA_ASSERT(0); + return 0; +} + +void VmaBlockMetadata_Linear::Clear() +{ + m_SumFreeSize = GetSize(); + m_Suballocations0.clear(); + m_Suballocations1.clear(); + // Leaving m_1stVectorIndex unchanged - it doesn't matter. + m_2ndVectorMode = SECOND_VECTOR_EMPTY; + m_1stNullItemsBeginCount = 0; + m_1stNullItemsMiddleCount = 0; + m_2ndNullItemsCount = 0; +} + +void VmaBlockMetadata_Linear::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) +{ + VmaSuballocation& suballoc = FindSuballocation((VkDeviceSize)allocHandle - 1); + suballoc.userData = userData; +} + +void VmaBlockMetadata_Linear::DebugLogAllAllocations() const +{ + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + for (auto it = suballocations1st.begin() + m_1stNullItemsBeginCount; it != suballocations1st.end(); ++it) + if (it->type != VMA_SUBALLOCATION_TYPE_FREE) + DebugLogAllocation(it->offset, it->size, it->userData); + + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + for (auto it = suballocations2nd.begin(); it != suballocations2nd.end(); ++it) + if (it->type != VMA_SUBALLOCATION_TYPE_FREE) + DebugLogAllocation(it->offset, it->size, it->userData); +} + +VmaSuballocation& VmaBlockMetadata_Linear::FindSuballocation(VkDeviceSize offset) const +{ + const SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + + VmaSuballocation refSuballoc; + refSuballoc.offset = offset; + // Rest of members stays uninitialized intentionally for better performance. + + // Item from the 1st vector. + { + SuballocationVectorType::const_iterator it = VmaBinaryFindSorted( + suballocations1st.begin() + m_1stNullItemsBeginCount, + suballocations1st.end(), + refSuballoc, + VmaSuballocationOffsetLess()); + if (it != suballocations1st.end()) + { + return const_cast<VmaSuballocation&>(*it); + } + } + + if (m_2ndVectorMode != SECOND_VECTOR_EMPTY) + { + // Rest of members stays uninitialized intentionally for better performance. + SuballocationVectorType::const_iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ? + VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) : + VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater()); + if (it != suballocations2nd.end()) + { + return const_cast<VmaSuballocation&>(*it); + } + } + + VMA_ASSERT(0 && "Allocation not found in linear allocator!"); + return const_cast<VmaSuballocation&>(suballocations1st.back()); // Should never occur. +} + +bool VmaBlockMetadata_Linear::ShouldCompact1st() const +{ + const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; + const size_t suballocCount = AccessSuballocations1st().size(); + return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3; +} + +void VmaBlockMetadata_Linear::CleanupAfterFree() +{ + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + + if (IsEmpty()) + { + suballocations1st.clear(); + suballocations2nd.clear(); + m_1stNullItemsBeginCount = 0; + m_1stNullItemsMiddleCount = 0; + m_2ndNullItemsCount = 0; + m_2ndVectorMode = SECOND_VECTOR_EMPTY; + } + else + { + const size_t suballoc1stCount = suballocations1st.size(); + const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount; + VMA_ASSERT(nullItem1stCount <= suballoc1stCount); + + // Find more null items at the beginning of 1st vector. + while (m_1stNullItemsBeginCount < suballoc1stCount && + suballocations1st[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE) + { + ++m_1stNullItemsBeginCount; + --m_1stNullItemsMiddleCount; + } + + // Find more null items at the end of 1st vector. + while (m_1stNullItemsMiddleCount > 0 && + suballocations1st.back().type == VMA_SUBALLOCATION_TYPE_FREE) + { + --m_1stNullItemsMiddleCount; + suballocations1st.pop_back(); + } + + // Find more null items at the end of 2nd vector. + while (m_2ndNullItemsCount > 0 && + suballocations2nd.back().type == VMA_SUBALLOCATION_TYPE_FREE) + { + --m_2ndNullItemsCount; + suballocations2nd.pop_back(); + } + + // Find more null items at the beginning of 2nd vector. + while (m_2ndNullItemsCount > 0 && + suballocations2nd[0].type == VMA_SUBALLOCATION_TYPE_FREE) + { + --m_2ndNullItemsCount; + VmaVectorRemove(suballocations2nd, 0); + } + + if (ShouldCompact1st()) + { + const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount; + size_t srcIndex = m_1stNullItemsBeginCount; + for (size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex) + { + while (suballocations1st[srcIndex].type == VMA_SUBALLOCATION_TYPE_FREE) + { + ++srcIndex; + } + if (dstIndex != srcIndex) + { + suballocations1st[dstIndex] = suballocations1st[srcIndex]; + } + ++srcIndex; + } + suballocations1st.resize(nonNullItemCount); + m_1stNullItemsBeginCount = 0; + m_1stNullItemsMiddleCount = 0; + } + + // 2nd vector became empty. + if (suballocations2nd.empty()) + { + m_2ndVectorMode = SECOND_VECTOR_EMPTY; + } + + // 1st vector became empty. + if (suballocations1st.size() - m_1stNullItemsBeginCount == 0) + { + suballocations1st.clear(); + m_1stNullItemsBeginCount = 0; + + if (!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + // Swap 1st with 2nd. Now 2nd is empty. + m_2ndVectorMode = SECOND_VECTOR_EMPTY; + m_1stNullItemsMiddleCount = m_2ndNullItemsCount; + while (m_1stNullItemsBeginCount < suballocations2nd.size() && + suballocations2nd[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE) + { + ++m_1stNullItemsBeginCount; + --m_1stNullItemsMiddleCount; + } + m_2ndNullItemsCount = 0; + m_1stVectorIndex ^= 1; + } + } + } + + VMA_HEAVY_ASSERT(Validate()); +} + +bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) +{ + const VkDeviceSize blockSize = GetSize(); + const VkDeviceSize debugMargin = GetDebugMargin(); + const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity(); + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + + if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + // Try to allocate at the end of 1st vector. + + VkDeviceSize resultBaseOffset = 0; + if (!suballocations1st.empty()) + { + const VmaSuballocation& lastSuballoc = suballocations1st.back(); + resultBaseOffset = lastSuballoc.offset + lastSuballoc.size + debugMargin; + } + + // Start from offset equal to beginning of free space. + VkDeviceSize resultOffset = resultBaseOffset; + + // Apply alignment. + resultOffset = VmaAlignUp(resultOffset, allocAlignment); + + // Check previous suballocations for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations1st.empty()) + { + bool bufferImageGranularityConflict = false; + for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; ) + { + const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex]; + if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) + { + bufferImageGranularityConflict = true; + break; + } + } + else + // Already on previous page. + break; + } + if (bufferImageGranularityConflict) + { + resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); + } + } + + const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? + suballocations2nd.back().offset : blockSize; + + // There is enough free space at the end after alignment. + if (resultOffset + allocSize + debugMargin <= freeSpaceEnd) + { + // Check next suballocations for BufferImageGranularity conflicts. + // If conflict exists, allocation cannot be made here. + if ((allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity) && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK) + { + for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; ) + { + const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex]; + if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) + { + return false; + } + } + else + { + // Already on previous page. + break; + } + } + } + + // All tests passed: Success. + pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1); + // pAllocationRequest->item, customData unused. + pAllocationRequest->type = VmaAllocationRequestType::EndOf1st; + return true; + } + } + + // Wrap-around to end of 2nd vector. Try to allocate there, watching for the + // beginning of 1st vector as the end of free space. + if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + VMA_ASSERT(!suballocations1st.empty()); + + VkDeviceSize resultBaseOffset = 0; + if (!suballocations2nd.empty()) + { + const VmaSuballocation& lastSuballoc = suballocations2nd.back(); + resultBaseOffset = lastSuballoc.offset + lastSuballoc.size + debugMargin; + } + + // Start from offset equal to beginning of free space. + VkDeviceSize resultOffset = resultBaseOffset; + + // Apply alignment. + resultOffset = VmaAlignUp(resultOffset, allocAlignment); + + // Check previous suballocations for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty()) + { + bool bufferImageGranularityConflict = false; + for (size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--; ) + { + const VmaSuballocation& prevSuballoc = suballocations2nd[prevSuballocIndex]; + if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType)) + { + bufferImageGranularityConflict = true; + break; + } + } + else + // Already on previous page. + break; + } + if (bufferImageGranularityConflict) + { + resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity); + } + } + + size_t index1st = m_1stNullItemsBeginCount; + + // There is enough free space at the end after alignment. + if ((index1st == suballocations1st.size() && resultOffset + allocSize + debugMargin <= blockSize) || + (index1st < suballocations1st.size() && resultOffset + allocSize + debugMargin <= suballocations1st[index1st].offset)) + { + // Check next suballocations for BufferImageGranularity conflicts. + // If conflict exists, allocation cannot be made here. + if (allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity) + { + for (size_t nextSuballocIndex = index1st; + nextSuballocIndex < suballocations1st.size(); + nextSuballocIndex++) + { + const VmaSuballocation& nextSuballoc = suballocations1st[nextSuballocIndex]; + if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type)) + { + return false; + } + } + else + { + // Already on next page. + break; + } + } + } + + // All tests passed: Success. + pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1); + pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd; + // pAllocationRequest->item, customData unused. + return true; + } + } + + return false; +} + +bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) +{ + const VkDeviceSize blockSize = GetSize(); + const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity(); + SuballocationVectorType& suballocations1st = AccessSuballocations1st(); + SuballocationVectorType& suballocations2nd = AccessSuballocations2nd(); + + if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER) + { + VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer."); + return false; + } + + // Try to allocate before 2nd.back(), or end of block if 2nd.empty(). + if (allocSize > blockSize) + { + return false; + } + VkDeviceSize resultBaseOffset = blockSize - allocSize; + if (!suballocations2nd.empty()) + { + const VmaSuballocation& lastSuballoc = suballocations2nd.back(); + resultBaseOffset = lastSuballoc.offset - allocSize; + if (allocSize > lastSuballoc.offset) + { + return false; + } + } + + // Start from offset equal to end of free space. + VkDeviceSize resultOffset = resultBaseOffset; + + const VkDeviceSize debugMargin = GetDebugMargin(); + + // Apply debugMargin at the end. + if (debugMargin > 0) + { + if (resultOffset < debugMargin) + { + return false; + } + resultOffset -= debugMargin; + } + + // Apply alignment. + resultOffset = VmaAlignDown(resultOffset, allocAlignment); + + // Check next suballocations from 2nd for BufferImageGranularity conflicts. + // Make bigger alignment if necessary. + if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty()) + { + bool bufferImageGranularityConflict = false; + for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; ) + { + const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex]; + if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType)) + { + bufferImageGranularityConflict = true; + break; + } + } + else + // Already on previous page. + break; + } + if (bufferImageGranularityConflict) + { + resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity); + } + } + + // There is enough free space. + const VkDeviceSize endOf1st = !suballocations1st.empty() ? + suballocations1st.back().offset + suballocations1st.back().size : + 0; + if (endOf1st + debugMargin <= resultOffset) + { + // Check previous suballocations for BufferImageGranularity conflicts. + // If conflict exists, allocation cannot be made here. + if (bufferImageGranularity > 1) + { + for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; ) + { + const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex]; + if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity)) + { + if (VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type)) + { + return false; + } + } + else + { + // Already on next page. + break; + } + } + } + + // All tests passed: Success. + pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1); + // pAllocationRequest->item unused. + pAllocationRequest->type = VmaAllocationRequestType::UpperAddress; + return true; + } + + return false; +} +#endif // _VMA_BLOCK_METADATA_LINEAR_FUNCTIONS +#endif // _VMA_BLOCK_METADATA_LINEAR + +#ifndef _VMA_BLOCK_METADATA_TLSF +// To not search current larger region if first allocation won't succeed and skip to smaller range +// use with VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT as strategy in CreateAllocationRequest(). +// When fragmentation and reusal of previous blocks doesn't matter then use with +// VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT for fastest alloc time possible. +class VmaBlockMetadata_TLSF : public VmaBlockMetadata +{ + VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockMetadata_TLSF) +public: + VmaBlockMetadata_TLSF(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual); + virtual ~VmaBlockMetadata_TLSF(); + + size_t GetAllocationCount() const override { return m_AllocCount; } + size_t GetFreeRegionsCount() const override { return m_BlocksFreeCount + 1; } + VkDeviceSize GetSumFreeSize() const override { return m_BlocksFreeSize + m_NullBlock->size; } + bool IsEmpty() const override { return m_NullBlock->offset == 0; } + VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return ((Block*)allocHandle)->offset; } + + void Init(VkDeviceSize size) override; + bool Validate() const override; + + void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override; + void AddStatistics(VmaStatistics& inoutStats) const override; + +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap(class VmaJsonWriter& json) const override; +#endif + + bool CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) override; + + VkResult CheckCorruption(const void* pBlockData) override; + void Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) override; + + void Free(VmaAllocHandle allocHandle) override; + void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override; + void* GetAllocationUserData(VmaAllocHandle allocHandle) const override; + VmaAllocHandle GetAllocationListBegin() const override; + VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override; + VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const override; + void Clear() override; + void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override; + void DebugLogAllAllocations() const override; + +private: + // According to original paper it should be preferable 4 or 5: + // M. Masmano, I. Ripoll, A. Crespo, and J. Real "TLSF: a New Dynamic Memory Allocator for Real-Time Systems" + // http://www.gii.upv.es/tlsf/files/ecrts04_tlsf.pdf + static const uint8_t SECOND_LEVEL_INDEX = 5; + static const uint16_t SMALL_BUFFER_SIZE = 256; + static const uint32_t INITIAL_BLOCK_ALLOC_COUNT = 16; + static const uint8_t MEMORY_CLASS_SHIFT = 7; + static const uint8_t MAX_MEMORY_CLASSES = 65 - MEMORY_CLASS_SHIFT; + + class Block + { + public: + VkDeviceSize offset; + VkDeviceSize size; + Block* prevPhysical; + Block* nextPhysical; + + void MarkFree() { prevFree = VMA_NULL; } + void MarkTaken() { prevFree = this; } + bool IsFree() const { return prevFree != this; } + void*& UserData() { VMA_HEAVY_ASSERT(!IsFree()); return userData; } + Block*& PrevFree() { return prevFree; } + Block*& NextFree() { VMA_HEAVY_ASSERT(IsFree()); return nextFree; } + + private: + Block* prevFree; // Address of the same block here indicates that block is taken + union + { + Block* nextFree; + void* userData; + }; + }; + + size_t m_AllocCount; + // Total number of free blocks besides null block + size_t m_BlocksFreeCount; + // Total size of free blocks excluding null block + VkDeviceSize m_BlocksFreeSize; + uint32_t m_IsFreeBitmap; + uint8_t m_MemoryClasses; + uint32_t m_InnerIsFreeBitmap[MAX_MEMORY_CLASSES]; + uint32_t m_ListsCount; + /* + * 0: 0-3 lists for small buffers + * 1+: 0-(2^SLI-1) lists for normal buffers + */ + Block** m_FreeList; + VmaPoolAllocator<Block> m_BlockAllocator; + Block* m_NullBlock; + VmaBlockBufferImageGranularity m_GranularityHandler; + + uint8_t SizeToMemoryClass(VkDeviceSize size) const; + uint16_t SizeToSecondIndex(VkDeviceSize size, uint8_t memoryClass) const; + uint32_t GetListIndex(uint8_t memoryClass, uint16_t secondIndex) const; + uint32_t GetListIndex(VkDeviceSize size) const; + + void RemoveFreeBlock(Block* block); + void InsertFreeBlock(Block* block); + void MergeBlock(Block* block, Block* prev); + + Block* FindFreeBlock(VkDeviceSize size, uint32_t& listIndex) const; + bool CheckBlock( + Block& block, + uint32_t listIndex, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + VmaAllocationRequest* pAllocationRequest); +}; + +#ifndef _VMA_BLOCK_METADATA_TLSF_FUNCTIONS +VmaBlockMetadata_TLSF::VmaBlockMetadata_TLSF(const VkAllocationCallbacks* pAllocationCallbacks, + VkDeviceSize bufferImageGranularity, bool isVirtual) + : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual), + m_AllocCount(0), + m_BlocksFreeCount(0), + m_BlocksFreeSize(0), + m_IsFreeBitmap(0), + m_MemoryClasses(0), + m_ListsCount(0), + m_FreeList(VMA_NULL), + m_BlockAllocator(pAllocationCallbacks, INITIAL_BLOCK_ALLOC_COUNT), + m_NullBlock(VMA_NULL), + m_GranularityHandler(bufferImageGranularity) {} + +VmaBlockMetadata_TLSF::~VmaBlockMetadata_TLSF() +{ + if (m_FreeList) + vma_delete_array(GetAllocationCallbacks(), m_FreeList, m_ListsCount); + m_GranularityHandler.Destroy(GetAllocationCallbacks()); +} + +void VmaBlockMetadata_TLSF::Init(VkDeviceSize size) +{ + VmaBlockMetadata::Init(size); + + if (!IsVirtual()) + m_GranularityHandler.Init(GetAllocationCallbacks(), size); + + m_NullBlock = m_BlockAllocator.Alloc(); + m_NullBlock->size = size; + m_NullBlock->offset = 0; + m_NullBlock->prevPhysical = VMA_NULL; + m_NullBlock->nextPhysical = VMA_NULL; + m_NullBlock->MarkFree(); + m_NullBlock->NextFree() = VMA_NULL; + m_NullBlock->PrevFree() = VMA_NULL; + uint8_t memoryClass = SizeToMemoryClass(size); + uint16_t sli = SizeToSecondIndex(size, memoryClass); + m_ListsCount = (memoryClass == 0 ? 0 : (memoryClass - 1) * (1UL << SECOND_LEVEL_INDEX) + sli) + 1; + if (IsVirtual()) + m_ListsCount += 1UL << SECOND_LEVEL_INDEX; + else + m_ListsCount += 4; + + m_MemoryClasses = memoryClass + uint8_t(2); + memset(m_InnerIsFreeBitmap, 0, MAX_MEMORY_CLASSES * sizeof(uint32_t)); + + m_FreeList = vma_new_array(GetAllocationCallbacks(), Block*, m_ListsCount); + memset(m_FreeList, 0, m_ListsCount * sizeof(Block*)); +} + +bool VmaBlockMetadata_TLSF::Validate() const +{ + VMA_VALIDATE(GetSumFreeSize() <= GetSize()); + + VkDeviceSize calculatedSize = m_NullBlock->size; + VkDeviceSize calculatedFreeSize = m_NullBlock->size; + size_t allocCount = 0; + size_t freeCount = 0; + + // Check integrity of free lists + for (uint32_t list = 0; list < m_ListsCount; ++list) + { + Block* block = m_FreeList[list]; + if (block != VMA_NULL) + { + VMA_VALIDATE(block->IsFree()); + VMA_VALIDATE(block->PrevFree() == VMA_NULL); + while (block->NextFree()) + { + VMA_VALIDATE(block->NextFree()->IsFree()); + VMA_VALIDATE(block->NextFree()->PrevFree() == block); + block = block->NextFree(); + } + } + } + + VkDeviceSize nextOffset = m_NullBlock->offset; + auto validateCtx = m_GranularityHandler.StartValidation(GetAllocationCallbacks(), IsVirtual()); + + VMA_VALIDATE(m_NullBlock->nextPhysical == VMA_NULL); + if (m_NullBlock->prevPhysical) + { + VMA_VALIDATE(m_NullBlock->prevPhysical->nextPhysical == m_NullBlock); + } + // Check all blocks + for (Block* prev = m_NullBlock->prevPhysical; prev != VMA_NULL; prev = prev->prevPhysical) + { + VMA_VALIDATE(prev->offset + prev->size == nextOffset); + nextOffset = prev->offset; + calculatedSize += prev->size; + + uint32_t listIndex = GetListIndex(prev->size); + if (prev->IsFree()) + { + ++freeCount; + // Check if free block belongs to free list + Block* freeBlock = m_FreeList[listIndex]; + VMA_VALIDATE(freeBlock != VMA_NULL); + + bool found = false; + do + { + if (freeBlock == prev) + found = true; + + freeBlock = freeBlock->NextFree(); + } while (!found && freeBlock != VMA_NULL); + + VMA_VALIDATE(found); + calculatedFreeSize += prev->size; + } + else + { + ++allocCount; + // Check if taken block is not on a free list + Block* freeBlock = m_FreeList[listIndex]; + while (freeBlock) + { + VMA_VALIDATE(freeBlock != prev); + freeBlock = freeBlock->NextFree(); + } + + if (!IsVirtual()) + { + VMA_VALIDATE(m_GranularityHandler.Validate(validateCtx, prev->offset, prev->size)); + } + } + + if (prev->prevPhysical) + { + VMA_VALIDATE(prev->prevPhysical->nextPhysical == prev); + } + } + + if (!IsVirtual()) + { + VMA_VALIDATE(m_GranularityHandler.FinishValidation(validateCtx)); + } + + VMA_VALIDATE(nextOffset == 0); + VMA_VALIDATE(calculatedSize == GetSize()); + VMA_VALIDATE(calculatedFreeSize == GetSumFreeSize()); + VMA_VALIDATE(allocCount == m_AllocCount); + VMA_VALIDATE(freeCount == m_BlocksFreeCount); + + return true; +} + +void VmaBlockMetadata_TLSF::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const +{ + inoutStats.statistics.blockCount++; + inoutStats.statistics.blockBytes += GetSize(); + if (m_NullBlock->size > 0) + VmaAddDetailedStatisticsUnusedRange(inoutStats, m_NullBlock->size); + + for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) + { + if (block->IsFree()) + VmaAddDetailedStatisticsUnusedRange(inoutStats, block->size); + else + VmaAddDetailedStatisticsAllocation(inoutStats, block->size); + } +} + +void VmaBlockMetadata_TLSF::AddStatistics(VmaStatistics& inoutStats) const +{ + inoutStats.blockCount++; + inoutStats.allocationCount += (uint32_t)m_AllocCount; + inoutStats.blockBytes += GetSize(); + inoutStats.allocationBytes += GetSize() - GetSumFreeSize(); +} + +#if VMA_STATS_STRING_ENABLED +void VmaBlockMetadata_TLSF::PrintDetailedMap(class VmaJsonWriter& json) const +{ + size_t blockCount = m_AllocCount + m_BlocksFreeCount; + VmaStlAllocator<Block*> allocator(GetAllocationCallbacks()); + VmaVector<Block*, VmaStlAllocator<Block*>> blockList(blockCount, allocator); + + size_t i = blockCount; + for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) + { + blockList[--i] = block; + } + VMA_ASSERT(i == 0); + + VmaDetailedStatistics stats; + VmaClearDetailedStatistics(stats); + AddDetailedStatistics(stats); + + PrintDetailedMap_Begin(json, + stats.statistics.blockBytes - stats.statistics.allocationBytes, + stats.statistics.allocationCount, + stats.unusedRangeCount); + + for (; i < blockCount; ++i) + { + Block* block = blockList[i]; + if (block->IsFree()) + PrintDetailedMap_UnusedRange(json, block->offset, block->size); + else + PrintDetailedMap_Allocation(json, block->offset, block->size, block->UserData()); + } + if (m_NullBlock->size > 0) + PrintDetailedMap_UnusedRange(json, m_NullBlock->offset, m_NullBlock->size); + + PrintDetailedMap_End(json); +} +#endif + +bool VmaBlockMetadata_TLSF::CreateAllocationRequest( + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + bool upperAddress, + VmaSuballocationType allocType, + uint32_t strategy, + VmaAllocationRequest* pAllocationRequest) +{ + VMA_ASSERT(allocSize > 0 && "Cannot allocate empty block!"); + VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm."); + + // For small granularity round up + if (!IsVirtual()) + m_GranularityHandler.RoundupAllocRequest(allocType, allocSize, allocAlignment); + + allocSize += GetDebugMargin(); + // Quick check for too small pool + if (allocSize > GetSumFreeSize()) + return false; + + // If no free blocks in pool then check only null block + if (m_BlocksFreeCount == 0) + return CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest); + + // Round up to the next block + VkDeviceSize sizeForNextList = allocSize; + VkDeviceSize smallSizeStep = VkDeviceSize(SMALL_BUFFER_SIZE / (IsVirtual() ? 1 << SECOND_LEVEL_INDEX : 4)); + if (allocSize > SMALL_BUFFER_SIZE) + { + sizeForNextList += (1ULL << (VMA_BITSCAN_MSB(allocSize) - SECOND_LEVEL_INDEX)); + } + else if (allocSize > SMALL_BUFFER_SIZE - smallSizeStep) + sizeForNextList = SMALL_BUFFER_SIZE + 1; + else + sizeForNextList += smallSizeStep; + + uint32_t nextListIndex = m_ListsCount; + uint32_t prevListIndex = m_ListsCount; + Block* nextListBlock = VMA_NULL; + Block* prevListBlock = VMA_NULL; + + // Check blocks according to strategies + if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT) + { + // Quick check for larger block first + nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex); + if (nextListBlock != VMA_NULL && CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + + // If not fitted then null block + if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + + // Null block failed, search larger bucket + while (nextListBlock) + { + if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + nextListBlock = nextListBlock->NextFree(); + } + + // Failed again, check best fit bucket + prevListBlock = FindFreeBlock(allocSize, prevListIndex); + while (prevListBlock) + { + if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + prevListBlock = prevListBlock->NextFree(); + } + } + else if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT) + { + // Check best fit bucket + prevListBlock = FindFreeBlock(allocSize, prevListIndex); + while (prevListBlock) + { + if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + prevListBlock = prevListBlock->NextFree(); + } + + // If failed check null block + if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + + // Check larger bucket + nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex); + while (nextListBlock) + { + if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + nextListBlock = nextListBlock->NextFree(); + } + } + else if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT ) + { + // Perform search from the start + VmaStlAllocator<Block*> allocator(GetAllocationCallbacks()); + VmaVector<Block*, VmaStlAllocator<Block*>> blockList(m_BlocksFreeCount, allocator); + + size_t i = m_BlocksFreeCount; + for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) + { + if (block->IsFree() && block->size >= allocSize) + blockList[--i] = block; + } + + for (; i < m_BlocksFreeCount; ++i) + { + Block& block = *blockList[i]; + if (CheckBlock(block, GetListIndex(block.size), allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + } + + // If failed check null block + if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + + // Whole range searched, no more memory + return false; + } + else + { + // Check larger bucket + nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex); + while (nextListBlock) + { + if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + nextListBlock = nextListBlock->NextFree(); + } + + // If failed check null block + if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + + // Check best fit bucket + prevListBlock = FindFreeBlock(allocSize, prevListIndex); + while (prevListBlock) + { + if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + prevListBlock = prevListBlock->NextFree(); + } + } + + // Worst case, full search has to be done + while (++nextListIndex < m_ListsCount) + { + nextListBlock = m_FreeList[nextListIndex]; + while (nextListBlock) + { + if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest)) + return true; + nextListBlock = nextListBlock->NextFree(); + } + } + + // No more memory sadly + return false; +} + +VkResult VmaBlockMetadata_TLSF::CheckCorruption(const void* pBlockData) +{ + for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) + { + if (!block->IsFree()) + { + if (!VmaValidateMagicValue(pBlockData, block->offset + block->size)) + { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!"); + return VK_ERROR_UNKNOWN_COPY; + } + } + } + + return VK_SUCCESS; +} + +void VmaBlockMetadata_TLSF::Alloc( + const VmaAllocationRequest& request, + VmaSuballocationType type, + void* userData) +{ + VMA_ASSERT(request.type == VmaAllocationRequestType::TLSF); + + // Get block and pop it from the free list + Block* currentBlock = (Block*)request.allocHandle; + VkDeviceSize offset = request.algorithmData; + VMA_ASSERT(currentBlock != VMA_NULL); + VMA_ASSERT(currentBlock->offset <= offset); + + if (currentBlock != m_NullBlock) + RemoveFreeBlock(currentBlock); + + VkDeviceSize debugMargin = GetDebugMargin(); + VkDeviceSize misssingAlignment = offset - currentBlock->offset; + + // Append missing alignment to prev block or create new one + if (misssingAlignment) + { + Block* prevBlock = currentBlock->prevPhysical; + VMA_ASSERT(prevBlock != VMA_NULL && "There should be no missing alignment at offset 0!"); + + if (prevBlock->IsFree() && prevBlock->size != debugMargin) + { + uint32_t oldList = GetListIndex(prevBlock->size); + prevBlock->size += misssingAlignment; + // Check if new size crosses list bucket + if (oldList != GetListIndex(prevBlock->size)) + { + prevBlock->size -= misssingAlignment; + RemoveFreeBlock(prevBlock); + prevBlock->size += misssingAlignment; + InsertFreeBlock(prevBlock); + } + else + m_BlocksFreeSize += misssingAlignment; + } + else + { + Block* newBlock = m_BlockAllocator.Alloc(); + currentBlock->prevPhysical = newBlock; + prevBlock->nextPhysical = newBlock; + newBlock->prevPhysical = prevBlock; + newBlock->nextPhysical = currentBlock; + newBlock->size = misssingAlignment; + newBlock->offset = currentBlock->offset; + newBlock->MarkTaken(); + + InsertFreeBlock(newBlock); + } + + currentBlock->size -= misssingAlignment; + currentBlock->offset += misssingAlignment; + } + + VkDeviceSize size = request.size + debugMargin; + if (currentBlock->size == size) + { + if (currentBlock == m_NullBlock) + { + // Setup new null block + m_NullBlock = m_BlockAllocator.Alloc(); + m_NullBlock->size = 0; + m_NullBlock->offset = currentBlock->offset + size; + m_NullBlock->prevPhysical = currentBlock; + m_NullBlock->nextPhysical = VMA_NULL; + m_NullBlock->MarkFree(); + m_NullBlock->PrevFree() = VMA_NULL; + m_NullBlock->NextFree() = VMA_NULL; + currentBlock->nextPhysical = m_NullBlock; + currentBlock->MarkTaken(); + } + } + else + { + VMA_ASSERT(currentBlock->size > size && "Proper block already found, shouldn't find smaller one!"); + + // Create new free block + Block* newBlock = m_BlockAllocator.Alloc(); + newBlock->size = currentBlock->size - size; + newBlock->offset = currentBlock->offset + size; + newBlock->prevPhysical = currentBlock; + newBlock->nextPhysical = currentBlock->nextPhysical; + currentBlock->nextPhysical = newBlock; + currentBlock->size = size; + + if (currentBlock == m_NullBlock) + { + m_NullBlock = newBlock; + m_NullBlock->MarkFree(); + m_NullBlock->NextFree() = VMA_NULL; + m_NullBlock->PrevFree() = VMA_NULL; + currentBlock->MarkTaken(); + } + else + { + newBlock->nextPhysical->prevPhysical = newBlock; + newBlock->MarkTaken(); + InsertFreeBlock(newBlock); + } + } + currentBlock->UserData() = userData; + + if (debugMargin > 0) + { + currentBlock->size -= debugMargin; + Block* newBlock = m_BlockAllocator.Alloc(); + newBlock->size = debugMargin; + newBlock->offset = currentBlock->offset + currentBlock->size; + newBlock->prevPhysical = currentBlock; + newBlock->nextPhysical = currentBlock->nextPhysical; + newBlock->MarkTaken(); + currentBlock->nextPhysical->prevPhysical = newBlock; + currentBlock->nextPhysical = newBlock; + InsertFreeBlock(newBlock); + } + + if (!IsVirtual()) + m_GranularityHandler.AllocPages((uint8_t)(uintptr_t)request.customData, + currentBlock->offset, currentBlock->size); + ++m_AllocCount; +} + +void VmaBlockMetadata_TLSF::Free(VmaAllocHandle allocHandle) +{ + Block* block = (Block*)allocHandle; + Block* next = block->nextPhysical; + VMA_ASSERT(!block->IsFree() && "Block is already free!"); + + if (!IsVirtual()) + m_GranularityHandler.FreePages(block->offset, block->size); + --m_AllocCount; + + VkDeviceSize debugMargin = GetDebugMargin(); + if (debugMargin > 0) + { + RemoveFreeBlock(next); + MergeBlock(next, block); + block = next; + next = next->nextPhysical; + } + + // Try merging + Block* prev = block->prevPhysical; + if (prev != VMA_NULL && prev->IsFree() && prev->size != debugMargin) + { + RemoveFreeBlock(prev); + MergeBlock(block, prev); + } + + if (!next->IsFree()) + InsertFreeBlock(block); + else if (next == m_NullBlock) + MergeBlock(m_NullBlock, block); + else + { + RemoveFreeBlock(next); + MergeBlock(next, block); + InsertFreeBlock(next); + } +} + +void VmaBlockMetadata_TLSF::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) +{ + Block* block = (Block*)allocHandle; + VMA_ASSERT(!block->IsFree() && "Cannot get allocation info for free block!"); + outInfo.offset = block->offset; + outInfo.size = block->size; + outInfo.pUserData = block->UserData(); +} + +void* VmaBlockMetadata_TLSF::GetAllocationUserData(VmaAllocHandle allocHandle) const +{ + Block* block = (Block*)allocHandle; + VMA_ASSERT(!block->IsFree() && "Cannot get user data for free block!"); + return block->UserData(); +} + +VmaAllocHandle VmaBlockMetadata_TLSF::GetAllocationListBegin() const +{ + if (m_AllocCount == 0) + return VK_NULL_HANDLE; + + for (Block* block = m_NullBlock->prevPhysical; block; block = block->prevPhysical) + { + if (!block->IsFree()) + return (VmaAllocHandle)block; + } + VMA_ASSERT(false && "If m_AllocCount > 0 then should find any allocation!"); + return VK_NULL_HANDLE; +} + +VmaAllocHandle VmaBlockMetadata_TLSF::GetNextAllocation(VmaAllocHandle prevAlloc) const +{ + Block* startBlock = (Block*)prevAlloc; + VMA_ASSERT(!startBlock->IsFree() && "Incorrect block!"); + + for (Block* block = startBlock->prevPhysical; block; block = block->prevPhysical) + { + if (!block->IsFree()) + return (VmaAllocHandle)block; + } + return VK_NULL_HANDLE; +} + +VkDeviceSize VmaBlockMetadata_TLSF::GetNextFreeRegionSize(VmaAllocHandle alloc) const +{ + Block* block = (Block*)alloc; + VMA_ASSERT(!block->IsFree() && "Incorrect block!"); + + if (block->prevPhysical) + return block->prevPhysical->IsFree() ? block->prevPhysical->size : 0; + return 0; +} + +void VmaBlockMetadata_TLSF::Clear() +{ + m_AllocCount = 0; + m_BlocksFreeCount = 0; + m_BlocksFreeSize = 0; + m_IsFreeBitmap = 0; + m_NullBlock->offset = 0; + m_NullBlock->size = GetSize(); + Block* block = m_NullBlock->prevPhysical; + m_NullBlock->prevPhysical = VMA_NULL; + while (block) + { + Block* prev = block->prevPhysical; + m_BlockAllocator.Free(block); + block = prev; + } + memset(m_FreeList, 0, m_ListsCount * sizeof(Block*)); + memset(m_InnerIsFreeBitmap, 0, m_MemoryClasses * sizeof(uint32_t)); + m_GranularityHandler.Clear(); +} + +void VmaBlockMetadata_TLSF::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) +{ + Block* block = (Block*)allocHandle; + VMA_ASSERT(!block->IsFree() && "Trying to set user data for not allocated block!"); + block->UserData() = userData; +} + +void VmaBlockMetadata_TLSF::DebugLogAllAllocations() const +{ + for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical) + if (!block->IsFree()) + DebugLogAllocation(block->offset, block->size, block->UserData()); +} + +uint8_t VmaBlockMetadata_TLSF::SizeToMemoryClass(VkDeviceSize size) const +{ + if (size > SMALL_BUFFER_SIZE) + return uint8_t(VMA_BITSCAN_MSB(size) - MEMORY_CLASS_SHIFT); + return 0; +} + +uint16_t VmaBlockMetadata_TLSF::SizeToSecondIndex(VkDeviceSize size, uint8_t memoryClass) const +{ + if (memoryClass == 0) + { + if (IsVirtual()) + return static_cast<uint16_t>((size - 1) / 8); + else + return static_cast<uint16_t>((size - 1) / 64); + } + return static_cast<uint16_t>((size >> (memoryClass + MEMORY_CLASS_SHIFT - SECOND_LEVEL_INDEX)) ^ (1U << SECOND_LEVEL_INDEX)); +} + +uint32_t VmaBlockMetadata_TLSF::GetListIndex(uint8_t memoryClass, uint16_t secondIndex) const +{ + if (memoryClass == 0) + return secondIndex; + + const uint32_t index = static_cast<uint32_t>(memoryClass - 1) * (1 << SECOND_LEVEL_INDEX) + secondIndex; + if (IsVirtual()) + return index + (1 << SECOND_LEVEL_INDEX); + else + return index + 4; +} + +uint32_t VmaBlockMetadata_TLSF::GetListIndex(VkDeviceSize size) const +{ + uint8_t memoryClass = SizeToMemoryClass(size); + return GetListIndex(memoryClass, SizeToSecondIndex(size, memoryClass)); +} + +void VmaBlockMetadata_TLSF::RemoveFreeBlock(Block* block) +{ + VMA_ASSERT(block != m_NullBlock); + VMA_ASSERT(block->IsFree()); + + if (block->NextFree() != VMA_NULL) + block->NextFree()->PrevFree() = block->PrevFree(); + if (block->PrevFree() != VMA_NULL) + block->PrevFree()->NextFree() = block->NextFree(); + else + { + uint8_t memClass = SizeToMemoryClass(block->size); + uint16_t secondIndex = SizeToSecondIndex(block->size, memClass); + uint32_t index = GetListIndex(memClass, secondIndex); + VMA_ASSERT(m_FreeList[index] == block); + m_FreeList[index] = block->NextFree(); + if (block->NextFree() == VMA_NULL) + { + m_InnerIsFreeBitmap[memClass] &= ~(1U << secondIndex); + if (m_InnerIsFreeBitmap[memClass] == 0) + m_IsFreeBitmap &= ~(1UL << memClass); + } + } + block->MarkTaken(); + block->UserData() = VMA_NULL; + --m_BlocksFreeCount; + m_BlocksFreeSize -= block->size; +} + +void VmaBlockMetadata_TLSF::InsertFreeBlock(Block* block) +{ + VMA_ASSERT(block != m_NullBlock); + VMA_ASSERT(!block->IsFree() && "Cannot insert block twice!"); + + uint8_t memClass = SizeToMemoryClass(block->size); + uint16_t secondIndex = SizeToSecondIndex(block->size, memClass); + uint32_t index = GetListIndex(memClass, secondIndex); + VMA_ASSERT(index < m_ListsCount); + block->PrevFree() = VMA_NULL; + block->NextFree() = m_FreeList[index]; + m_FreeList[index] = block; + if (block->NextFree() != VMA_NULL) + block->NextFree()->PrevFree() = block; + else + { + m_InnerIsFreeBitmap[memClass] |= 1U << secondIndex; + m_IsFreeBitmap |= 1UL << memClass; + } + ++m_BlocksFreeCount; + m_BlocksFreeSize += block->size; +} + +void VmaBlockMetadata_TLSF::MergeBlock(Block* block, Block* prev) +{ + VMA_ASSERT(block->prevPhysical == prev && "Cannot merge separate physical regions!"); + VMA_ASSERT(!prev->IsFree() && "Cannot merge block that belongs to free list!"); + + block->offset = prev->offset; + block->size += prev->size; + block->prevPhysical = prev->prevPhysical; + if (block->prevPhysical) + block->prevPhysical->nextPhysical = block; + m_BlockAllocator.Free(prev); +} + +VmaBlockMetadata_TLSF::Block* VmaBlockMetadata_TLSF::FindFreeBlock(VkDeviceSize size, uint32_t& listIndex) const +{ + uint8_t memoryClass = SizeToMemoryClass(size); + uint32_t innerFreeMap = m_InnerIsFreeBitmap[memoryClass] & (~0U << SizeToSecondIndex(size, memoryClass)); + if (!innerFreeMap) + { + // Check higher levels for available blocks + uint32_t freeMap = m_IsFreeBitmap & (~0UL << (memoryClass + 1)); + if (!freeMap) + return VMA_NULL; // No more memory available + + // Find lowest free region + memoryClass = VMA_BITSCAN_LSB(freeMap); + innerFreeMap = m_InnerIsFreeBitmap[memoryClass]; + VMA_ASSERT(innerFreeMap != 0); + } + // Find lowest free subregion + listIndex = GetListIndex(memoryClass, VMA_BITSCAN_LSB(innerFreeMap)); + VMA_ASSERT(m_FreeList[listIndex]); + return m_FreeList[listIndex]; +} + +bool VmaBlockMetadata_TLSF::CheckBlock( + Block& block, + uint32_t listIndex, + VkDeviceSize allocSize, + VkDeviceSize allocAlignment, + VmaSuballocationType allocType, + VmaAllocationRequest* pAllocationRequest) +{ + VMA_ASSERT(block.IsFree() && "Block is already taken!"); + + VkDeviceSize alignedOffset = VmaAlignUp(block.offset, allocAlignment); + if (block.size < allocSize + alignedOffset - block.offset) + return false; + + // Check for granularity conflicts + if (!IsVirtual() && + m_GranularityHandler.CheckConflictAndAlignUp(alignedOffset, allocSize, block.offset, block.size, allocType)) + return false; + + // Alloc successful + pAllocationRequest->type = VmaAllocationRequestType::TLSF; + pAllocationRequest->allocHandle = (VmaAllocHandle)█ + pAllocationRequest->size = allocSize - GetDebugMargin(); + pAllocationRequest->customData = (void*)allocType; + pAllocationRequest->algorithmData = alignedOffset; + + // Place block at the start of list if it's normal block + if (listIndex != m_ListsCount && block.PrevFree()) + { + block.PrevFree()->NextFree() = block.NextFree(); + if (block.NextFree()) + block.NextFree()->PrevFree() = block.PrevFree(); + block.PrevFree() = VMA_NULL; + block.NextFree() = m_FreeList[listIndex]; + m_FreeList[listIndex] = █ + if (block.NextFree()) + block.NextFree()->PrevFree() = █ + } + + return true; +} +#endif // _VMA_BLOCK_METADATA_TLSF_FUNCTIONS +#endif // _VMA_BLOCK_METADATA_TLSF + +#ifndef _VMA_BLOCK_VECTOR +/* +Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific +Vulkan memory type. + +Synchronized internally with a mutex. +*/ +class VmaBlockVector +{ + friend struct VmaDefragmentationContext_T; + VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockVector) +public: + VmaBlockVector( + VmaAllocator hAllocator, + VmaPool hParentPool, + uint32_t memoryTypeIndex, + VkDeviceSize preferredBlockSize, + size_t minBlockCount, + size_t maxBlockCount, + VkDeviceSize bufferImageGranularity, + bool explicitBlockSize, + uint32_t algorithm, + float priority, + VkDeviceSize minAllocationAlignment, + void* pMemoryAllocateNext); + ~VmaBlockVector(); + + VmaAllocator GetAllocator() const { return m_hAllocator; } + VmaPool GetParentPool() const { return m_hParentPool; } + bool IsCustomPool() const { return m_hParentPool != VMA_NULL; } + uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; } + VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; } + VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; } + uint32_t GetAlgorithm() const { return m_Algorithm; } + bool HasExplicitBlockSize() const { return m_ExplicitBlockSize; } + float GetPriority() const { return m_Priority; } + const void* GetAllocationNextPtr() const { return m_pMemoryAllocateNext; } + // To be used only while the m_Mutex is locked. Used during defragmentation. + size_t GetBlockCount() const { return m_Blocks.size(); } + // To be used only while the m_Mutex is locked. Used during defragmentation. + VmaDeviceMemoryBlock* GetBlock(size_t index) const { return m_Blocks[index]; } + VMA_RW_MUTEX &GetMutex() { return m_Mutex; } + + VkResult CreateMinBlocks(); + void AddStatistics(VmaStatistics& inoutStats); + void AddDetailedStatistics(VmaDetailedStatistics& inoutStats); + bool IsEmpty(); + bool IsCorruptionDetectionEnabled() const; + + VkResult Allocate( + VkDeviceSize size, + VkDeviceSize alignment, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation* pAllocations); + + void Free(const VmaAllocation hAllocation); + +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap(class VmaJsonWriter& json); +#endif + + VkResult CheckCorruption(); + +private: + const VmaAllocator m_hAllocator; + const VmaPool m_hParentPool; + const uint32_t m_MemoryTypeIndex; + const VkDeviceSize m_PreferredBlockSize; + const size_t m_MinBlockCount; + const size_t m_MaxBlockCount; + const VkDeviceSize m_BufferImageGranularity; + const bool m_ExplicitBlockSize; + const uint32_t m_Algorithm; + const float m_Priority; + const VkDeviceSize m_MinAllocationAlignment; + + void* const m_pMemoryAllocateNext; + VMA_RW_MUTEX m_Mutex; + // Incrementally sorted by sumFreeSize, ascending. + VmaVector<VmaDeviceMemoryBlock*, VmaStlAllocator<VmaDeviceMemoryBlock*>> m_Blocks; + uint32_t m_NextBlockId; + bool m_IncrementalSort = true; + + void SetIncrementalSort(bool val) { m_IncrementalSort = val; } + + VkDeviceSize CalcMaxBlockSize() const; + // Finds and removes given block from vector. + void Remove(VmaDeviceMemoryBlock* pBlock); + // Performs single step in sorting m_Blocks. They may not be fully sorted + // after this call. + void IncrementallySortBlocks(); + void SortByFreeSize(); + + VkResult AllocatePage( + VkDeviceSize size, + VkDeviceSize alignment, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + VmaAllocation* pAllocation); + + VkResult AllocateFromBlock( + VmaDeviceMemoryBlock* pBlock, + VkDeviceSize size, + VkDeviceSize alignment, + VmaAllocationCreateFlags allocFlags, + void* pUserData, + VmaSuballocationType suballocType, + uint32_t strategy, + VmaAllocation* pAllocation); + + VkResult CommitAllocationRequest( + VmaAllocationRequest& allocRequest, + VmaDeviceMemoryBlock* pBlock, + VkDeviceSize alignment, + VmaAllocationCreateFlags allocFlags, + void* pUserData, + VmaSuballocationType suballocType, + VmaAllocation* pAllocation); + + VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex); + bool HasEmptyBlock(); +}; +#endif // _VMA_BLOCK_VECTOR + +#ifndef _VMA_DEFRAGMENTATION_CONTEXT +struct VmaDefragmentationContext_T +{ + VMA_CLASS_NO_COPY_NO_MOVE(VmaDefragmentationContext_T) +public: + VmaDefragmentationContext_T( + VmaAllocator hAllocator, + const VmaDefragmentationInfo& info); + ~VmaDefragmentationContext_T(); + + void GetStats(VmaDefragmentationStats& outStats) { outStats = m_GlobalStats; } + + VkResult DefragmentPassBegin(VmaDefragmentationPassMoveInfo& moveInfo); + VkResult DefragmentPassEnd(VmaDefragmentationPassMoveInfo& moveInfo); + +private: + // Max number of allocations to ignore due to size constraints before ending single pass + static const uint8_t MAX_ALLOCS_TO_IGNORE = 16; + enum class CounterStatus { Pass, Ignore, End }; + + struct FragmentedBlock + { + uint32_t data; + VmaDeviceMemoryBlock* block; + }; + struct StateBalanced + { + VkDeviceSize avgFreeSize = 0; + VkDeviceSize avgAllocSize = UINT64_MAX; + }; + struct StateExtensive + { + enum class Operation : uint8_t + { + FindFreeBlockBuffer, FindFreeBlockTexture, FindFreeBlockAll, + MoveBuffers, MoveTextures, MoveAll, + Cleanup, Done + }; + + Operation operation = Operation::FindFreeBlockTexture; + size_t firstFreeBlock = SIZE_MAX; + }; + struct MoveAllocationData + { + VkDeviceSize size; + VkDeviceSize alignment; + VmaSuballocationType type; + VmaAllocationCreateFlags flags; + VmaDefragmentationMove move = {}; + }; + + const VkDeviceSize m_MaxPassBytes; + const uint32_t m_MaxPassAllocations; + const PFN_vmaCheckDefragmentationBreakFunction m_BreakCallback; + void* m_BreakCallbackUserData; + + VmaStlAllocator<VmaDefragmentationMove> m_MoveAllocator; + VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove>> m_Moves; + + uint8_t m_IgnoredAllocs = 0; + uint32_t m_Algorithm; + uint32_t m_BlockVectorCount; + VmaBlockVector* m_PoolBlockVector; + VmaBlockVector** m_pBlockVectors; + size_t m_ImmovableBlockCount = 0; + VmaDefragmentationStats m_GlobalStats = { 0 }; + VmaDefragmentationStats m_PassStats = { 0 }; + void* m_AlgorithmState = VMA_NULL; + + static MoveAllocationData GetMoveData(VmaAllocHandle handle, VmaBlockMetadata* metadata); + CounterStatus CheckCounters(VkDeviceSize bytes); + bool IncrementCounters(VkDeviceSize bytes); + bool ReallocWithinBlock(VmaBlockVector& vector, VmaDeviceMemoryBlock* block); + bool AllocInOtherBlock(size_t start, size_t end, MoveAllocationData& data, VmaBlockVector& vector); + + bool ComputeDefragmentation(VmaBlockVector& vector, size_t index); + bool ComputeDefragmentation_Fast(VmaBlockVector& vector); + bool ComputeDefragmentation_Balanced(VmaBlockVector& vector, size_t index, bool update); + bool ComputeDefragmentation_Full(VmaBlockVector& vector); + bool ComputeDefragmentation_Extensive(VmaBlockVector& vector, size_t index); + + void UpdateVectorStatistics(VmaBlockVector& vector, StateBalanced& state); + bool MoveDataToFreeBlocks(VmaSuballocationType currentType, + VmaBlockVector& vector, size_t firstFreeBlock, + bool& texturePresent, bool& bufferPresent, bool& otherPresent); +}; +#endif // _VMA_DEFRAGMENTATION_CONTEXT + +#ifndef _VMA_POOL_T +struct VmaPool_T +{ + friend struct VmaPoolListItemTraits; + VMA_CLASS_NO_COPY_NO_MOVE(VmaPool_T) +public: + VmaBlockVector m_BlockVector; + VmaDedicatedAllocationList m_DedicatedAllocations; + + VmaPool_T( + VmaAllocator hAllocator, + const VmaPoolCreateInfo& createInfo, + VkDeviceSize preferredBlockSize); + ~VmaPool_T(); + + uint32_t GetId() const { return m_Id; } + void SetId(uint32_t id) { VMA_ASSERT(m_Id == 0); m_Id = id; } + + const char* GetName() const { return m_Name; } + void SetName(const char* pName); + +#if VMA_STATS_STRING_ENABLED + //void PrintDetailedMap(class VmaStringBuilder& sb); +#endif + +private: + uint32_t m_Id; + char* m_Name; + VmaPool_T* m_PrevPool = VMA_NULL; + VmaPool_T* m_NextPool = VMA_NULL; +}; + +struct VmaPoolListItemTraits +{ + typedef VmaPool_T ItemType; + + static ItemType* GetPrev(const ItemType* item) { return item->m_PrevPool; } + static ItemType* GetNext(const ItemType* item) { return item->m_NextPool; } + static ItemType*& AccessPrev(ItemType* item) { return item->m_PrevPool; } + static ItemType*& AccessNext(ItemType* item) { return item->m_NextPool; } +}; +#endif // _VMA_POOL_T + +#ifndef _VMA_CURRENT_BUDGET_DATA +struct VmaCurrentBudgetData +{ + VMA_CLASS_NO_COPY_NO_MOVE(VmaCurrentBudgetData) +public: + + VMA_ATOMIC_UINT32 m_BlockCount[VK_MAX_MEMORY_HEAPS]; + VMA_ATOMIC_UINT32 m_AllocationCount[VK_MAX_MEMORY_HEAPS]; + VMA_ATOMIC_UINT64 m_BlockBytes[VK_MAX_MEMORY_HEAPS]; + VMA_ATOMIC_UINT64 m_AllocationBytes[VK_MAX_MEMORY_HEAPS]; + +#if VMA_MEMORY_BUDGET + VMA_ATOMIC_UINT32 m_OperationsSinceBudgetFetch; + VMA_RW_MUTEX m_BudgetMutex; + uint64_t m_VulkanUsage[VK_MAX_MEMORY_HEAPS]; + uint64_t m_VulkanBudget[VK_MAX_MEMORY_HEAPS]; + uint64_t m_BlockBytesAtBudgetFetch[VK_MAX_MEMORY_HEAPS]; +#endif // VMA_MEMORY_BUDGET + + VmaCurrentBudgetData(); + + void AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize); + void RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize); +}; + +#ifndef _VMA_CURRENT_BUDGET_DATA_FUNCTIONS +VmaCurrentBudgetData::VmaCurrentBudgetData() +{ + for (uint32_t heapIndex = 0; heapIndex < VK_MAX_MEMORY_HEAPS; ++heapIndex) + { + m_BlockCount[heapIndex] = 0; + m_AllocationCount[heapIndex] = 0; + m_BlockBytes[heapIndex] = 0; + m_AllocationBytes[heapIndex] = 0; +#if VMA_MEMORY_BUDGET + m_VulkanUsage[heapIndex] = 0; + m_VulkanBudget[heapIndex] = 0; + m_BlockBytesAtBudgetFetch[heapIndex] = 0; +#endif + } + +#if VMA_MEMORY_BUDGET + m_OperationsSinceBudgetFetch = 0; +#endif +} + +void VmaCurrentBudgetData::AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize) +{ + m_AllocationBytes[heapIndex] += allocationSize; + ++m_AllocationCount[heapIndex]; +#if VMA_MEMORY_BUDGET + ++m_OperationsSinceBudgetFetch; +#endif +} + +void VmaCurrentBudgetData::RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize) +{ + VMA_ASSERT(m_AllocationBytes[heapIndex] >= allocationSize); + m_AllocationBytes[heapIndex] -= allocationSize; + VMA_ASSERT(m_AllocationCount[heapIndex] > 0); + --m_AllocationCount[heapIndex]; +#if VMA_MEMORY_BUDGET + ++m_OperationsSinceBudgetFetch; +#endif +} +#endif // _VMA_CURRENT_BUDGET_DATA_FUNCTIONS +#endif // _VMA_CURRENT_BUDGET_DATA + +#ifndef _VMA_ALLOCATION_OBJECT_ALLOCATOR +/* +Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects. +*/ +class VmaAllocationObjectAllocator +{ + VMA_CLASS_NO_COPY_NO_MOVE(VmaAllocationObjectAllocator) +public: + VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks) + : m_Allocator(pAllocationCallbacks, 1024) {} + + template<typename... Types> VmaAllocation Allocate(Types&&... args); + void Free(VmaAllocation hAlloc); + +private: + VMA_MUTEX m_Mutex; + VmaPoolAllocator<VmaAllocation_T> m_Allocator; +}; + +template<typename... Types> +VmaAllocation VmaAllocationObjectAllocator::Allocate(Types&&... args) +{ + VmaMutexLock mutexLock(m_Mutex); + return m_Allocator.Alloc<Types...>(std::forward<Types>(args)...); +} + +void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc) +{ + VmaMutexLock mutexLock(m_Mutex); + m_Allocator.Free(hAlloc); +} +#endif // _VMA_ALLOCATION_OBJECT_ALLOCATOR + +#ifndef _VMA_VIRTUAL_BLOCK_T +struct VmaVirtualBlock_T +{ + VMA_CLASS_NO_COPY_NO_MOVE(VmaVirtualBlock_T) +public: + const bool m_AllocationCallbacksSpecified; + const VkAllocationCallbacks m_AllocationCallbacks; + + VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo); + ~VmaVirtualBlock_T(); + + VkResult Init() { return VK_SUCCESS; } + bool IsEmpty() const { return m_Metadata->IsEmpty(); } + void Free(VmaVirtualAllocation allocation) { m_Metadata->Free((VmaAllocHandle)allocation); } + void SetAllocationUserData(VmaVirtualAllocation allocation, void* userData) { m_Metadata->SetAllocationUserData((VmaAllocHandle)allocation, userData); } + void Clear() { m_Metadata->Clear(); } + + const VkAllocationCallbacks* GetAllocationCallbacks() const; + void GetAllocationInfo(VmaVirtualAllocation allocation, VmaVirtualAllocationInfo& outInfo); + VkResult Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VmaVirtualAllocation& outAllocation, + VkDeviceSize* outOffset); + void GetStatistics(VmaStatistics& outStats) const; + void CalculateDetailedStatistics(VmaDetailedStatistics& outStats) const; +#if VMA_STATS_STRING_ENABLED + void BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const; +#endif + +private: + VmaBlockMetadata* m_Metadata; +}; + +#ifndef _VMA_VIRTUAL_BLOCK_T_FUNCTIONS +VmaVirtualBlock_T::VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo) + : m_AllocationCallbacksSpecified(createInfo.pAllocationCallbacks != VMA_NULL), + m_AllocationCallbacks(createInfo.pAllocationCallbacks != VMA_NULL ? *createInfo.pAllocationCallbacks : VmaEmptyAllocationCallbacks) +{ + const uint32_t algorithm = createInfo.flags & VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK; + switch (algorithm) + { + case 0: + m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_TLSF)(VK_NULL_HANDLE, 1, true); + break; + case VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT: + m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_Linear)(VK_NULL_HANDLE, 1, true); + break; + default: + VMA_ASSERT(0); + m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_TLSF)(VK_NULL_HANDLE, 1, true); + } + + m_Metadata->Init(createInfo.size); +} + +VmaVirtualBlock_T::~VmaVirtualBlock_T() +{ + // Define macro VMA_DEBUG_LOG_FORMAT or more specialized VMA_LEAK_LOG_FORMAT + // to receive the list of the unfreed allocations. + if (!m_Metadata->IsEmpty()) + m_Metadata->DebugLogAllAllocations(); + // This is the most important assert in the entire library. + // Hitting it means you have some memory leak - unreleased virtual allocations. + VMA_ASSERT_LEAK(m_Metadata->IsEmpty() && "Some virtual allocations were not freed before destruction of this virtual block!"); + + vma_delete(GetAllocationCallbacks(), m_Metadata); +} + +const VkAllocationCallbacks* VmaVirtualBlock_T::GetAllocationCallbacks() const +{ + return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL; +} + +void VmaVirtualBlock_T::GetAllocationInfo(VmaVirtualAllocation allocation, VmaVirtualAllocationInfo& outInfo) +{ + m_Metadata->GetAllocationInfo((VmaAllocHandle)allocation, outInfo); +} + +VkResult VmaVirtualBlock_T::Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VmaVirtualAllocation& outAllocation, + VkDeviceSize* outOffset) +{ + VmaAllocationRequest request = {}; + if (m_Metadata->CreateAllocationRequest( + createInfo.size, // allocSize + VMA_MAX(createInfo.alignment, (VkDeviceSize)1), // allocAlignment + (createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, // upperAddress + VMA_SUBALLOCATION_TYPE_UNKNOWN, // allocType - unimportant + createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK, // strategy + &request)) + { + m_Metadata->Alloc(request, + VMA_SUBALLOCATION_TYPE_UNKNOWN, // type - unimportant + createInfo.pUserData); + outAllocation = (VmaVirtualAllocation)request.allocHandle; + if(outOffset) + *outOffset = m_Metadata->GetAllocationOffset(request.allocHandle); + return VK_SUCCESS; + } + outAllocation = (VmaVirtualAllocation)VK_NULL_HANDLE; + if (outOffset) + *outOffset = UINT64_MAX; + return VK_ERROR_OUT_OF_DEVICE_MEMORY; +} + +void VmaVirtualBlock_T::GetStatistics(VmaStatistics& outStats) const +{ + VmaClearStatistics(outStats); + m_Metadata->AddStatistics(outStats); +} + +void VmaVirtualBlock_T::CalculateDetailedStatistics(VmaDetailedStatistics& outStats) const +{ + VmaClearDetailedStatistics(outStats); + m_Metadata->AddDetailedStatistics(outStats); +} + +#if VMA_STATS_STRING_ENABLED +void VmaVirtualBlock_T::BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const +{ + VmaJsonWriter json(GetAllocationCallbacks(), sb); + json.BeginObject(); + + VmaDetailedStatistics stats; + CalculateDetailedStatistics(stats); + + json.WriteString("Stats"); + VmaPrintDetailedStatistics(json, stats); + + if (detailedMap) + { + json.WriteString("Details"); + json.BeginObject(); + m_Metadata->PrintDetailedMap(json); + json.EndObject(); + } + + json.EndObject(); +} +#endif // VMA_STATS_STRING_ENABLED +#endif // _VMA_VIRTUAL_BLOCK_T_FUNCTIONS +#endif // _VMA_VIRTUAL_BLOCK_T + + +// Main allocator object. +struct VmaAllocator_T +{ + VMA_CLASS_NO_COPY_NO_MOVE(VmaAllocator_T) +public: + const bool m_UseMutex; + const uint32_t m_VulkanApiVersion; + bool m_UseKhrDedicatedAllocation; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0). + bool m_UseKhrBindMemory2; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0). + bool m_UseExtMemoryBudget; + bool m_UseAmdDeviceCoherentMemory; + bool m_UseKhrBufferDeviceAddress; + bool m_UseExtMemoryPriority; + bool m_UseKhrMaintenance4; + bool m_UseKhrMaintenance5; + const VkDevice m_hDevice; + const VkInstance m_hInstance; + const bool m_AllocationCallbacksSpecified; + const VkAllocationCallbacks m_AllocationCallbacks; + VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks; + VmaAllocationObjectAllocator m_AllocationObjectAllocator; + + // Each bit (1 << i) is set if HeapSizeLimit is enabled for that heap, so cannot allocate more than the heap size. + uint32_t m_HeapSizeLimitMask; + + VkPhysicalDeviceProperties m_PhysicalDeviceProperties; + VkPhysicalDeviceMemoryProperties m_MemProps; + + // Default pools. + VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES]; + VmaDedicatedAllocationList m_DedicatedAllocations[VK_MAX_MEMORY_TYPES]; + + VmaCurrentBudgetData m_Budget; + VMA_ATOMIC_UINT32 m_DeviceMemoryCount; // Total number of VkDeviceMemory objects. + + VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo); + VkResult Init(const VmaAllocatorCreateInfo* pCreateInfo); + ~VmaAllocator_T(); + + const VkAllocationCallbacks* GetAllocationCallbacks() const + { + return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL; + } + const VmaVulkanFunctions& GetVulkanFunctions() const + { + return m_VulkanFunctions; + } + + VkPhysicalDevice GetPhysicalDevice() const { return m_PhysicalDevice; } + + VkDeviceSize GetBufferImageGranularity() const + { + return VMA_MAX( + static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY), + m_PhysicalDeviceProperties.limits.bufferImageGranularity); + } + + uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; } + uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; } + + uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const + { + VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount); + return m_MemProps.memoryTypes[memTypeIndex].heapIndex; + } + // True when specific memory type is HOST_VISIBLE but not HOST_COHERENT. + bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const + { + return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) == + VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; + } + // Minimum alignment for all allocations in specific memory type. + VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const + { + return IsMemoryTypeNonCoherent(memTypeIndex) ? + VMA_MAX((VkDeviceSize)VMA_MIN_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) : + (VkDeviceSize)VMA_MIN_ALIGNMENT; + } + + bool IsIntegratedGpu() const + { + return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU; + } + + uint32_t GetGlobalMemoryTypeBits() const { return m_GlobalMemoryTypeBits; } + + void GetBufferMemoryRequirements( + VkBuffer hBuffer, + VkMemoryRequirements& memReq, + bool& requiresDedicatedAllocation, + bool& prefersDedicatedAllocation) const; + void GetImageMemoryRequirements( + VkImage hImage, + VkMemoryRequirements& memReq, + bool& requiresDedicatedAllocation, + bool& prefersDedicatedAllocation) const; + VkResult FindMemoryTypeIndex( + uint32_t memoryTypeBits, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + VmaBufferImageUsage bufImgUsage, + uint32_t* pMemoryTypeIndex) const; + + // Main allocation function. + VkResult AllocateMemory( + const VkMemoryRequirements& vkMemReq, + bool requiresDedicatedAllocation, + bool prefersDedicatedAllocation, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + VmaBufferImageUsage dedicatedBufferImageUsage, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation* pAllocations); + + // Main deallocation function. + void FreeMemory( + size_t allocationCount, + const VmaAllocation* pAllocations); + + void CalculateStatistics(VmaTotalStatistics* pStats); + + void GetHeapBudgets( + VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount); + +#if VMA_STATS_STRING_ENABLED + void PrintDetailedMap(class VmaJsonWriter& json); +#endif + + void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo); + void GetAllocationInfo2(VmaAllocation hAllocation, VmaAllocationInfo2* pAllocationInfo); + + VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool); + void DestroyPool(VmaPool pool); + void GetPoolStatistics(VmaPool pool, VmaStatistics* pPoolStats); + void CalculatePoolStatistics(VmaPool pool, VmaDetailedStatistics* pPoolStats); + + void SetCurrentFrameIndex(uint32_t frameIndex); + uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); } + + VkResult CheckPoolCorruption(VmaPool hPool); + VkResult CheckCorruption(uint32_t memoryTypeBits); + + // Call to Vulkan function vkAllocateMemory with accompanying bookkeeping. + VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory); + // Call to Vulkan function vkFreeMemory with accompanying bookkeeping. + void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory); + // Call to Vulkan function vkBindBufferMemory or vkBindBufferMemory2KHR. + VkResult BindVulkanBuffer( + VkDeviceMemory memory, + VkDeviceSize memoryOffset, + VkBuffer buffer, + const void* pNext); + // Call to Vulkan function vkBindImageMemory or vkBindImageMemory2KHR. + VkResult BindVulkanImage( + VkDeviceMemory memory, + VkDeviceSize memoryOffset, + VkImage image, + const void* pNext); + + VkResult Map(VmaAllocation hAllocation, void** ppData); + void Unmap(VmaAllocation hAllocation); + + VkResult BindBufferMemory( + VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkBuffer hBuffer, + const void* pNext); + VkResult BindImageMemory( + VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkImage hImage, + const void* pNext); + + VkResult FlushOrInvalidateAllocation( + VmaAllocation hAllocation, + VkDeviceSize offset, VkDeviceSize size, + VMA_CACHE_OPERATION op); + VkResult FlushOrInvalidateAllocations( + uint32_t allocationCount, + const VmaAllocation* allocations, + const VkDeviceSize* offsets, const VkDeviceSize* sizes, + VMA_CACHE_OPERATION op); + + VkResult CopyMemoryToAllocation( + const void* pSrcHostPointer, + VmaAllocation dstAllocation, + VkDeviceSize dstAllocationLocalOffset, + VkDeviceSize size); + VkResult CopyAllocationToMemory( + VmaAllocation srcAllocation, + VkDeviceSize srcAllocationLocalOffset, + void* pDstHostPointer, + VkDeviceSize size); + + void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern); + + /* + Returns bit mask of memory types that can support defragmentation on GPU as + they support creation of required buffer for copy operations. + */ + uint32_t GetGpuDefragmentationMemoryTypeBits(); + +#if VMA_EXTERNAL_MEMORY + VkExternalMemoryHandleTypeFlagsKHR GetExternalMemoryHandleTypeFlags(uint32_t memTypeIndex) const + { + return m_TypeExternalMemoryHandleTypes[memTypeIndex]; + } +#endif // #if VMA_EXTERNAL_MEMORY + +private: + VkDeviceSize m_PreferredLargeHeapBlockSize; + + VkPhysicalDevice m_PhysicalDevice; + VMA_ATOMIC_UINT32 m_CurrentFrameIndex; + VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized. +#if VMA_EXTERNAL_MEMORY + VkExternalMemoryHandleTypeFlagsKHR m_TypeExternalMemoryHandleTypes[VK_MAX_MEMORY_TYPES]; +#endif // #if VMA_EXTERNAL_MEMORY + + VMA_RW_MUTEX m_PoolsMutex; + typedef VmaIntrusiveLinkedList<VmaPoolListItemTraits> PoolList; + // Protected by m_PoolsMutex. + PoolList m_Pools; + uint32_t m_NextPoolId; + + VmaVulkanFunctions m_VulkanFunctions; + + // Global bit mask AND-ed with any memoryTypeBits to disallow certain memory types. + uint32_t m_GlobalMemoryTypeBits; + + void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions); + +#if VMA_STATIC_VULKAN_FUNCTIONS == 1 + void ImportVulkanFunctions_Static(); +#endif + + void ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions); + +#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 + void ImportVulkanFunctions_Dynamic(); +#endif + + void ValidateVulkanFunctions(); + + VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex); + + VkResult AllocateMemoryOfType( + VmaPool pool, + VkDeviceSize size, + VkDeviceSize alignment, + bool dedicatedPreferred, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + VmaBufferImageUsage dedicatedBufferImageUsage, + const VmaAllocationCreateInfo& createInfo, + uint32_t memTypeIndex, + VmaSuballocationType suballocType, + VmaDedicatedAllocationList& dedicatedAllocations, + VmaBlockVector& blockVector, + size_t allocationCount, + VmaAllocation* pAllocations); + + // Helper function only to be used inside AllocateDedicatedMemory. + VkResult AllocateDedicatedMemoryPage( + VmaPool pool, + VkDeviceSize size, + VmaSuballocationType suballocType, + uint32_t memTypeIndex, + const VkMemoryAllocateInfo& allocInfo, + bool map, + bool isUserDataString, + bool isMappingAllowed, + void* pUserData, + VmaAllocation* pAllocation); + + // Allocates and registers new VkDeviceMemory specifically for dedicated allocations. + VkResult AllocateDedicatedMemory( + VmaPool pool, + VkDeviceSize size, + VmaSuballocationType suballocType, + VmaDedicatedAllocationList& dedicatedAllocations, + uint32_t memTypeIndex, + bool map, + bool isUserDataString, + bool isMappingAllowed, + bool canAliasMemory, + void* pUserData, + float priority, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + VmaBufferImageUsage dedicatedBufferImageUsage, + size_t allocationCount, + VmaAllocation* pAllocations, + const void* pNextChain = VMA_NULL); + + void FreeDedicatedMemory(const VmaAllocation allocation); + + VkResult CalcMemTypeParams( + VmaAllocationCreateInfo& outCreateInfo, + uint32_t memTypeIndex, + VkDeviceSize size, + size_t allocationCount); + VkResult CalcAllocationParams( + VmaAllocationCreateInfo& outCreateInfo, + bool dedicatedRequired, + bool dedicatedPreferred); + + /* + Calculates and returns bit mask of memory types that can support defragmentation + on GPU as they support creation of required buffer for copy operations. + */ + uint32_t CalculateGpuDefragmentationMemoryTypeBits() const; + uint32_t CalculateGlobalMemoryTypeBits() const; + + bool GetFlushOrInvalidateRange( + VmaAllocation allocation, + VkDeviceSize offset, VkDeviceSize size, + VkMappedMemoryRange& outRange) const; + +#if VMA_MEMORY_BUDGET + void UpdateVulkanBudget(); +#endif // #if VMA_MEMORY_BUDGET +}; + + +#ifndef _VMA_MEMORY_FUNCTIONS +static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment) +{ + return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment); +} + +static void VmaFree(VmaAllocator hAllocator, void* ptr) +{ + VmaFree(&hAllocator->m_AllocationCallbacks, ptr); +} + +template<typename T> +static T* VmaAllocate(VmaAllocator hAllocator) +{ + return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T)); +} + +template<typename T> +static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count) +{ + return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T)); +} + +template<typename T> +static void vma_delete(VmaAllocator hAllocator, T* ptr) +{ + if(ptr != VMA_NULL) + { + ptr->~T(); + VmaFree(hAllocator, ptr); + } +} + +template<typename T> +static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count) +{ + if(ptr != VMA_NULL) + { + for(size_t i = count; i--; ) + ptr[i].~T(); + VmaFree(hAllocator, ptr); + } +} +#endif // _VMA_MEMORY_FUNCTIONS + +#ifndef _VMA_DEVICE_MEMORY_BLOCK_FUNCTIONS +VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) + : m_pMetadata(VMA_NULL), + m_MemoryTypeIndex(UINT32_MAX), + m_Id(0), + m_hMemory(VK_NULL_HANDLE), + m_MapCount(0), + m_pMappedData(VMA_NULL) {} + +VmaDeviceMemoryBlock::~VmaDeviceMemoryBlock() +{ + VMA_ASSERT_LEAK(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped."); + VMA_ASSERT_LEAK(m_hMemory == VK_NULL_HANDLE); +} + +void VmaDeviceMemoryBlock::Init( + VmaAllocator hAllocator, + VmaPool hParentPool, + uint32_t newMemoryTypeIndex, + VkDeviceMemory newMemory, + VkDeviceSize newSize, + uint32_t id, + uint32_t algorithm, + VkDeviceSize bufferImageGranularity) +{ + VMA_ASSERT(m_hMemory == VK_NULL_HANDLE); + + m_hParentPool = hParentPool; + m_MemoryTypeIndex = newMemoryTypeIndex; + m_Id = id; + m_hMemory = newMemory; + + switch (algorithm) + { + case 0: + m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_TLSF)(hAllocator->GetAllocationCallbacks(), + bufferImageGranularity, false); // isVirtual + break; + case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT: + m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator->GetAllocationCallbacks(), + bufferImageGranularity, false); // isVirtual + break; + default: + VMA_ASSERT(0); + m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_TLSF)(hAllocator->GetAllocationCallbacks(), + bufferImageGranularity, false); // isVirtual + } + m_pMetadata->Init(newSize); +} + +void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator) +{ + // Define macro VMA_DEBUG_LOG_FORMAT or more specialized VMA_LEAK_LOG_FORMAT + // to receive the list of the unfreed allocations. + if (!m_pMetadata->IsEmpty()) + m_pMetadata->DebugLogAllAllocations(); + // This is the most important assert in the entire library. + // Hitting it means you have some memory leak - unreleased VmaAllocation objects. + VMA_ASSERT_LEAK(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!"); + + VMA_ASSERT_LEAK(m_hMemory != VK_NULL_HANDLE); + allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory); + m_hMemory = VK_NULL_HANDLE; + + vma_delete(allocator, m_pMetadata); + m_pMetadata = VMA_NULL; +} + +void VmaDeviceMemoryBlock::PostAlloc(VmaAllocator hAllocator) +{ + VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); + m_MappingHysteresis.PostAlloc(); +} + +void VmaDeviceMemoryBlock::PostFree(VmaAllocator hAllocator) +{ + VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); + if(m_MappingHysteresis.PostFree()) + { + VMA_ASSERT(m_MappingHysteresis.GetExtraMapping() == 0); + if (m_MapCount == 0) + { + m_pMappedData = VMA_NULL; + (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory); + } + } +} + +bool VmaDeviceMemoryBlock::Validate() const +{ + VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) && + (m_pMetadata->GetSize() != 0)); + + return m_pMetadata->Validate(); +} + +VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator) +{ + void* pData = VMA_NULL; + VkResult res = Map(hAllocator, 1, &pData); + if (res != VK_SUCCESS) + { + return res; + } + + res = m_pMetadata->CheckCorruption(pData); + + Unmap(hAllocator, 1); + + return res; +} + +VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData) +{ + if (count == 0) + { + return VK_SUCCESS; + } + + VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); + const uint32_t oldTotalMapCount = m_MapCount + m_MappingHysteresis.GetExtraMapping(); + if (oldTotalMapCount != 0) + { + VMA_ASSERT(m_pMappedData != VMA_NULL); + m_MappingHysteresis.PostMap(); + m_MapCount += count; + if (ppData != VMA_NULL) + { + *ppData = m_pMappedData; + } + return VK_SUCCESS; + } + else + { + VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( + hAllocator->m_hDevice, + m_hMemory, + 0, // offset + VK_WHOLE_SIZE, + 0, // flags + &m_pMappedData); + if (result == VK_SUCCESS) + { + VMA_ASSERT(m_pMappedData != VMA_NULL); + m_MappingHysteresis.PostMap(); + m_MapCount = count; + if (ppData != VMA_NULL) + { + *ppData = m_pMappedData; + } + } + return result; + } +} + +void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count) +{ + if (count == 0) + { + return; + } + + VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); + if (m_MapCount >= count) + { + m_MapCount -= count; + const uint32_t totalMapCount = m_MapCount + m_MappingHysteresis.GetExtraMapping(); + if (totalMapCount == 0) + { + m_pMappedData = VMA_NULL; + (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory); + } + m_MappingHysteresis.PostUnmap(); + } + else + { + VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped."); + } +} + +VkResult VmaDeviceMemoryBlock::WriteMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) +{ + VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); + + void* pData; + VkResult res = Map(hAllocator, 1, &pData); + if (res != VK_SUCCESS) + { + return res; + } + + VmaWriteMagicValue(pData, allocOffset + allocSize); + + Unmap(hAllocator, 1); + return VK_SUCCESS; +} + +VkResult VmaDeviceMemoryBlock::ValidateMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize) +{ + VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION); + + void* pData; + VkResult res = Map(hAllocator, 1, &pData); + if (res != VK_SUCCESS) + { + return res; + } + + if (!VmaValidateMagicValue(pData, allocOffset + allocSize)) + { + VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!"); + } + + Unmap(hAllocator, 1); + return VK_SUCCESS; +} + +VkResult VmaDeviceMemoryBlock::BindBufferMemory( + const VmaAllocator hAllocator, + const VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkBuffer hBuffer, + const void* pNext) +{ + VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && + hAllocation->GetBlock() == this); + VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() && + "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?"); + const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset; + // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. + VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); + return hAllocator->BindVulkanBuffer(m_hMemory, memoryOffset, hBuffer, pNext); +} + +VkResult VmaDeviceMemoryBlock::BindImageMemory( + const VmaAllocator hAllocator, + const VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkImage hImage, + const void* pNext) +{ + VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK && + hAllocation->GetBlock() == this); + VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() && + "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?"); + const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset; + // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads. + VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex); + return hAllocator->BindVulkanImage(m_hMemory, memoryOffset, hImage, pNext); +} +#endif // _VMA_DEVICE_MEMORY_BLOCK_FUNCTIONS + +#ifndef _VMA_ALLOCATION_T_FUNCTIONS +VmaAllocation_T::VmaAllocation_T(bool mappingAllowed) + : m_Alignment{ 1 }, + m_Size{ 0 }, + m_pUserData{ VMA_NULL }, + m_pName{ VMA_NULL }, + m_MemoryTypeIndex{ 0 }, + m_Type{ (uint8_t)ALLOCATION_TYPE_NONE }, + m_SuballocationType{ (uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN }, + m_MapCount{ 0 }, + m_Flags{ 0 } +{ + if(mappingAllowed) + m_Flags |= (uint8_t)FLAG_MAPPING_ALLOWED; +} + +VmaAllocation_T::~VmaAllocation_T() +{ + VMA_ASSERT_LEAK(m_MapCount == 0 && "Allocation was not unmapped before destruction."); + + // Check if owned string was freed. + VMA_ASSERT(m_pName == VMA_NULL); +} + +void VmaAllocation_T::InitBlockAllocation( + VmaDeviceMemoryBlock* block, + VmaAllocHandle allocHandle, + VkDeviceSize alignment, + VkDeviceSize size, + uint32_t memoryTypeIndex, + VmaSuballocationType suballocationType, + bool mapped) +{ + VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); + VMA_ASSERT(block != VMA_NULL); + m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK; + m_Alignment = alignment; + m_Size = size; + m_MemoryTypeIndex = memoryTypeIndex; + if(mapped) + { + VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it."); + m_Flags |= (uint8_t)FLAG_PERSISTENT_MAP; + } + m_SuballocationType = (uint8_t)suballocationType; + m_BlockAllocation.m_Block = block; + m_BlockAllocation.m_AllocHandle = allocHandle; +} + +void VmaAllocation_T::InitDedicatedAllocation( + VmaPool hParentPool, + uint32_t memoryTypeIndex, + VkDeviceMemory hMemory, + VmaSuballocationType suballocationType, + void* pMappedData, + VkDeviceSize size) +{ + VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE); + VMA_ASSERT(hMemory != VK_NULL_HANDLE); + m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED; + m_Alignment = 0; + m_Size = size; + m_MemoryTypeIndex = memoryTypeIndex; + m_SuballocationType = (uint8_t)suballocationType; + if(pMappedData != VMA_NULL) + { + VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it."); + m_Flags |= (uint8_t)FLAG_PERSISTENT_MAP; + } + m_DedicatedAllocation.m_hParentPool = hParentPool; + m_DedicatedAllocation.m_hMemory = hMemory; + m_DedicatedAllocation.m_pMappedData = pMappedData; + m_DedicatedAllocation.m_Prev = VMA_NULL; + m_DedicatedAllocation.m_Next = VMA_NULL; +} + +void VmaAllocation_T::SetName(VmaAllocator hAllocator, const char* pName) +{ + VMA_ASSERT(pName == VMA_NULL || pName != m_pName); + + FreeName(hAllocator); + + if (pName != VMA_NULL) + m_pName = VmaCreateStringCopy(hAllocator->GetAllocationCallbacks(), pName); +} + +uint8_t VmaAllocation_T::SwapBlockAllocation(VmaAllocator hAllocator, VmaAllocation allocation) +{ + VMA_ASSERT(allocation != VMA_NULL); + VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); + VMA_ASSERT(allocation->m_Type == ALLOCATION_TYPE_BLOCK); + + if (m_MapCount != 0) + m_BlockAllocation.m_Block->Unmap(hAllocator, m_MapCount); + + m_BlockAllocation.m_Block->m_pMetadata->SetAllocationUserData(m_BlockAllocation.m_AllocHandle, allocation); + std::swap(m_BlockAllocation, allocation->m_BlockAllocation); + m_BlockAllocation.m_Block->m_pMetadata->SetAllocationUserData(m_BlockAllocation.m_AllocHandle, this); + +#if VMA_STATS_STRING_ENABLED + std::swap(m_BufferImageUsage, allocation->m_BufferImageUsage); +#endif + return m_MapCount; +} + +VmaAllocHandle VmaAllocation_T::GetAllocHandle() const +{ + switch (m_Type) + { + case ALLOCATION_TYPE_BLOCK: + return m_BlockAllocation.m_AllocHandle; + case ALLOCATION_TYPE_DEDICATED: + return VK_NULL_HANDLE; + default: + VMA_ASSERT(0); + return VK_NULL_HANDLE; + } +} + +VkDeviceSize VmaAllocation_T::GetOffset() const +{ + switch (m_Type) + { + case ALLOCATION_TYPE_BLOCK: + return m_BlockAllocation.m_Block->m_pMetadata->GetAllocationOffset(m_BlockAllocation.m_AllocHandle); + case ALLOCATION_TYPE_DEDICATED: + return 0; + default: + VMA_ASSERT(0); + return 0; + } +} + +VmaPool VmaAllocation_T::GetParentPool() const +{ + switch (m_Type) + { + case ALLOCATION_TYPE_BLOCK: + return m_BlockAllocation.m_Block->GetParentPool(); + case ALLOCATION_TYPE_DEDICATED: + return m_DedicatedAllocation.m_hParentPool; + default: + VMA_ASSERT(0); + return VK_NULL_HANDLE; + } +} + +VkDeviceMemory VmaAllocation_T::GetMemory() const +{ + switch (m_Type) + { + case ALLOCATION_TYPE_BLOCK: + return m_BlockAllocation.m_Block->GetDeviceMemory(); + case ALLOCATION_TYPE_DEDICATED: + return m_DedicatedAllocation.m_hMemory; + default: + VMA_ASSERT(0); + return VK_NULL_HANDLE; + } +} + +void* VmaAllocation_T::GetMappedData() const +{ + switch (m_Type) + { + case ALLOCATION_TYPE_BLOCK: + if (m_MapCount != 0 || IsPersistentMap()) + { + void* pBlockData = m_BlockAllocation.m_Block->GetMappedData(); + VMA_ASSERT(pBlockData != VMA_NULL); + return (char*)pBlockData + GetOffset(); + } + else + { + return VMA_NULL; + } + break; + case ALLOCATION_TYPE_DEDICATED: + VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0 || IsPersistentMap())); + return m_DedicatedAllocation.m_pMappedData; + default: + VMA_ASSERT(0); + return VMA_NULL; + } +} + +void VmaAllocation_T::BlockAllocMap() +{ + VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); + VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it."); + + if (m_MapCount < 0xFF) + { + ++m_MapCount; + } + else + { + VMA_ASSERT(0 && "Allocation mapped too many times simultaneously."); + } +} + +void VmaAllocation_T::BlockAllocUnmap() +{ + VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK); + + if (m_MapCount > 0) + { + --m_MapCount; + } + else + { + VMA_ASSERT(0 && "Unmapping allocation not previously mapped."); + } +} + +VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData) +{ + VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); + VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it."); + + if (m_MapCount != 0 || IsPersistentMap()) + { + if (m_MapCount < 0xFF) + { + VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL); + *ppData = m_DedicatedAllocation.m_pMappedData; + ++m_MapCount; + return VK_SUCCESS; + } + else + { + VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously."); + return VK_ERROR_MEMORY_MAP_FAILED; + } + } + else + { + VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)( + hAllocator->m_hDevice, + m_DedicatedAllocation.m_hMemory, + 0, // offset + VK_WHOLE_SIZE, + 0, // flags + ppData); + if (result == VK_SUCCESS) + { + m_DedicatedAllocation.m_pMappedData = *ppData; + m_MapCount = 1; + } + return result; + } +} + +void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator) +{ + VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED); + + if (m_MapCount > 0) + { + --m_MapCount; + if (m_MapCount == 0 && !IsPersistentMap()) + { + m_DedicatedAllocation.m_pMappedData = VMA_NULL; + (*hAllocator->GetVulkanFunctions().vkUnmapMemory)( + hAllocator->m_hDevice, + m_DedicatedAllocation.m_hMemory); + } + } + else + { + VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped."); + } +} + +#if VMA_STATS_STRING_ENABLED +void VmaAllocation_T::PrintParameters(class VmaJsonWriter& json) const +{ + json.WriteString("Type"); + json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]); + + json.WriteString("Size"); + json.WriteNumber(m_Size); + json.WriteString("Usage"); + json.WriteNumber(m_BufferImageUsage.Value); // It may be uint32_t or uint64_t. + + if (m_pUserData != VMA_NULL) + { + json.WriteString("CustomData"); + json.BeginString(); + json.ContinueString_Pointer(m_pUserData); + json.EndString(); + } + if (m_pName != VMA_NULL) + { + json.WriteString("Name"); + json.WriteString(m_pName); + } +} +#endif // VMA_STATS_STRING_ENABLED + +void VmaAllocation_T::FreeName(VmaAllocator hAllocator) +{ + if(m_pName) + { + VmaFreeString(hAllocator->GetAllocationCallbacks(), m_pName); + m_pName = VMA_NULL; + } +} +#endif // _VMA_ALLOCATION_T_FUNCTIONS + +#ifndef _VMA_BLOCK_VECTOR_FUNCTIONS +VmaBlockVector::VmaBlockVector( + VmaAllocator hAllocator, + VmaPool hParentPool, + uint32_t memoryTypeIndex, + VkDeviceSize preferredBlockSize, + size_t minBlockCount, + size_t maxBlockCount, + VkDeviceSize bufferImageGranularity, + bool explicitBlockSize, + uint32_t algorithm, + float priority, + VkDeviceSize minAllocationAlignment, + void* pMemoryAllocateNext) + : m_hAllocator(hAllocator), + m_hParentPool(hParentPool), + m_MemoryTypeIndex(memoryTypeIndex), + m_PreferredBlockSize(preferredBlockSize), + m_MinBlockCount(minBlockCount), + m_MaxBlockCount(maxBlockCount), + m_BufferImageGranularity(bufferImageGranularity), + m_ExplicitBlockSize(explicitBlockSize), + m_Algorithm(algorithm), + m_Priority(priority), + m_MinAllocationAlignment(minAllocationAlignment), + m_pMemoryAllocateNext(pMemoryAllocateNext), + m_Blocks(VmaStlAllocator<VmaDeviceMemoryBlock*>(hAllocator->GetAllocationCallbacks())), + m_NextBlockId(0) {} + +VmaBlockVector::~VmaBlockVector() +{ + for (size_t i = m_Blocks.size(); i--; ) + { + m_Blocks[i]->Destroy(m_hAllocator); + vma_delete(m_hAllocator, m_Blocks[i]); + } +} + +VkResult VmaBlockVector::CreateMinBlocks() +{ + for (size_t i = 0; i < m_MinBlockCount; ++i) + { + VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL); + if (res != VK_SUCCESS) + { + return res; + } + } + return VK_SUCCESS; +} + +void VmaBlockVector::AddStatistics(VmaStatistics& inoutStats) +{ + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + + const size_t blockCount = m_Blocks.size(); + for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) + { + const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pBlock); + VMA_HEAVY_ASSERT(pBlock->Validate()); + pBlock->m_pMetadata->AddStatistics(inoutStats); + } +} + +void VmaBlockVector::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) +{ + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + + const size_t blockCount = m_Blocks.size(); + for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex) + { + const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pBlock); + VMA_HEAVY_ASSERT(pBlock->Validate()); + pBlock->m_pMetadata->AddDetailedStatistics(inoutStats); + } +} + +bool VmaBlockVector::IsEmpty() +{ + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + return m_Blocks.empty(); +} + +bool VmaBlockVector::IsCorruptionDetectionEnabled() const +{ + const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT; + return (VMA_DEBUG_DETECT_CORRUPTION != 0) && + (VMA_DEBUG_MARGIN > 0) && + (m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) && + (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags; +} + +VkResult VmaBlockVector::Allocate( + VkDeviceSize size, + VkDeviceSize alignment, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation* pAllocations) +{ + size_t allocIndex; + VkResult res = VK_SUCCESS; + + alignment = VMA_MAX(alignment, m_MinAllocationAlignment); + + if (IsCorruptionDetectionEnabled()) + { + size = VmaAlignUp<VkDeviceSize>(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE)); + alignment = VmaAlignUp<VkDeviceSize>(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE)); + } + + { + VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); + for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex) + { + res = AllocatePage( + size, + alignment, + createInfo, + suballocType, + pAllocations + allocIndex); + if (res != VK_SUCCESS) + { + break; + } + } + } + + if (res != VK_SUCCESS) + { + // Free all already created allocations. + while (allocIndex--) + Free(pAllocations[allocIndex]); + memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); + } + + return res; +} + +VkResult VmaBlockVector::AllocatePage( + VkDeviceSize size, + VkDeviceSize alignment, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + VmaAllocation* pAllocation) +{ + const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; + + VkDeviceSize freeMemory; + { + const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); + VmaBudget heapBudget = {}; + m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1); + freeMemory = (heapBudget.usage < heapBudget.budget) ? (heapBudget.budget - heapBudget.usage) : 0; + } + + const bool canFallbackToDedicated = !HasExplicitBlockSize() && + (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0; + const bool canCreateNewBlock = + ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) && + (m_Blocks.size() < m_MaxBlockCount) && + (freeMemory >= size || !canFallbackToDedicated); + uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK; + + // Upper address can only be used with linear allocator and within single memory block. + if (isUpperAddress && + (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1)) + { + return VK_ERROR_FEATURE_NOT_PRESENT; + } + + // Early reject: requested allocation size is larger that maximum block size for this block vector. + if (size + VMA_DEBUG_MARGIN > m_PreferredBlockSize) + { + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + + // 1. Search existing allocations. Try to allocate. + if (m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) + { + // Use only last block. + if (!m_Blocks.empty()) + { + VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back(); + VMA_ASSERT(pCurrBlock); + VkResult res = AllocateFromBlock( + pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation); + if (res == VK_SUCCESS) + { + VMA_DEBUG_LOG_FORMAT(" Returned from last block #%" PRIu32, pCurrBlock->GetId()); + IncrementallySortBlocks(); + return VK_SUCCESS; + } + } + } + else + { + if (strategy != VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT) // MIN_MEMORY or default + { + const bool isHostVisible = + (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0; + if(isHostVisible) + { + const bool isMappingAllowed = (createInfo.flags & + (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0; + /* + For non-mappable allocations, check blocks that are not mapped first. + For mappable allocations, check blocks that are already mapped first. + This way, having many blocks, we will separate mappable and non-mappable allocations, + hopefully limiting the number of blocks that are mapped, which will help tools like RenderDoc. + */ + for(size_t mappingI = 0; mappingI < 2; ++mappingI) + { + // Forward order in m_Blocks - prefer blocks with smallest amount of free space. + for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) + { + VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pCurrBlock); + const bool isBlockMapped = pCurrBlock->GetMappedData() != VMA_NULL; + if((mappingI == 0) == (isMappingAllowed == isBlockMapped)) + { + VkResult res = AllocateFromBlock( + pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation); + if (res == VK_SUCCESS) + { + VMA_DEBUG_LOG_FORMAT(" Returned from existing block #%" PRIu32, pCurrBlock->GetId()); + IncrementallySortBlocks(); + return VK_SUCCESS; + } + } + } + } + } + else + { + // Forward order in m_Blocks - prefer blocks with smallest amount of free space. + for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) + { + VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pCurrBlock); + VkResult res = AllocateFromBlock( + pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation); + if (res == VK_SUCCESS) + { + VMA_DEBUG_LOG_FORMAT(" Returned from existing block #%" PRIu32, pCurrBlock->GetId()); + IncrementallySortBlocks(); + return VK_SUCCESS; + } + } + } + } + else // VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT + { + // Backward order in m_Blocks - prefer blocks with largest amount of free space. + for (size_t blockIndex = m_Blocks.size(); blockIndex--; ) + { + VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pCurrBlock); + VkResult res = AllocateFromBlock(pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation); + if (res == VK_SUCCESS) + { + VMA_DEBUG_LOG_FORMAT(" Returned from existing block #%" PRIu32, pCurrBlock->GetId()); + IncrementallySortBlocks(); + return VK_SUCCESS; + } + } + } + } + + // 2. Try to create new block. + if (canCreateNewBlock) + { + // Calculate optimal size for new block. + VkDeviceSize newBlockSize = m_PreferredBlockSize; + uint32_t newBlockSizeShift = 0; + const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3; + + if (!m_ExplicitBlockSize) + { + // Allocate 1/8, 1/4, 1/2 as first blocks. + const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize(); + for (uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i) + { + const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; + if (smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2) + { + newBlockSize = smallerNewBlockSize; + ++newBlockSizeShift; + } + else + { + break; + } + } + } + + size_t newBlockIndex = 0; + VkResult res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ? + CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY; + // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize. + if (!m_ExplicitBlockSize) + { + while (res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX) + { + const VkDeviceSize smallerNewBlockSize = newBlockSize / 2; + if (smallerNewBlockSize >= size) + { + newBlockSize = smallerNewBlockSize; + ++newBlockSizeShift; + res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ? + CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + else + { + break; + } + } + } + + if (res == VK_SUCCESS) + { + VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex]; + VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size); + + res = AllocateFromBlock( + pBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation); + if (res == VK_SUCCESS) + { + VMA_DEBUG_LOG_FORMAT(" Created new block #%" PRIu32 " Size=%" PRIu64, pBlock->GetId(), newBlockSize); + IncrementallySortBlocks(); + return VK_SUCCESS; + } + else + { + // Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment. + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + } + } + + return VK_ERROR_OUT_OF_DEVICE_MEMORY; +} + +void VmaBlockVector::Free(const VmaAllocation hAllocation) +{ + VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL; + + bool budgetExceeded = false; + { + const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex); + VmaBudget heapBudget = {}; + m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1); + budgetExceeded = heapBudget.usage >= heapBudget.budget; + } + + // Scope for lock. + { + VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex); + + VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); + + if (IsCorruptionDetectionEnabled()) + { + VkResult res = pBlock->ValidateMagicValueAfterAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize()); + VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value."); + } + + if (hAllocation->IsPersistentMap()) + { + pBlock->Unmap(m_hAllocator, 1); + } + + const bool hadEmptyBlockBeforeFree = HasEmptyBlock(); + pBlock->m_pMetadata->Free(hAllocation->GetAllocHandle()); + pBlock->PostFree(m_hAllocator); + VMA_HEAVY_ASSERT(pBlock->Validate()); + + VMA_DEBUG_LOG_FORMAT(" Freed from MemoryTypeIndex=%" PRIu32, m_MemoryTypeIndex); + + const bool canDeleteBlock = m_Blocks.size() > m_MinBlockCount; + // pBlock became empty after this deallocation. + if (pBlock->m_pMetadata->IsEmpty()) + { + // Already had empty block. We don't want to have two, so delete this one. + if ((hadEmptyBlockBeforeFree || budgetExceeded) && canDeleteBlock) + { + pBlockToDelete = pBlock; + Remove(pBlock); + } + // else: We now have one empty block - leave it. A hysteresis to avoid allocating whole block back and forth. + } + // pBlock didn't become empty, but we have another empty block - find and free that one. + // (This is optional, heuristics.) + else if (hadEmptyBlockBeforeFree && canDeleteBlock) + { + VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back(); + if (pLastBlock->m_pMetadata->IsEmpty()) + { + pBlockToDelete = pLastBlock; + m_Blocks.pop_back(); + } + } + + IncrementallySortBlocks(); + } + + // Destruction of a free block. Deferred until this point, outside of mutex + // lock, for performance reason. + if (pBlockToDelete != VMA_NULL) + { + VMA_DEBUG_LOG_FORMAT(" Deleted empty block #%" PRIu32, pBlockToDelete->GetId()); + pBlockToDelete->Destroy(m_hAllocator); + vma_delete(m_hAllocator, pBlockToDelete); + } + + m_hAllocator->m_Budget.RemoveAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), hAllocation->GetSize()); + m_hAllocator->m_AllocationObjectAllocator.Free(hAllocation); +} + +VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const +{ + VkDeviceSize result = 0; + for (size_t i = m_Blocks.size(); i--; ) + { + result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize()); + if (result >= m_PreferredBlockSize) + { + break; + } + } + return result; +} + +void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock) +{ + for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) + { + if (m_Blocks[blockIndex] == pBlock) + { + VmaVectorRemove(m_Blocks, blockIndex); + return; + } + } + VMA_ASSERT(0); +} + +void VmaBlockVector::IncrementallySortBlocks() +{ + if (!m_IncrementalSort) + return; + if (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) + { + // Bubble sort only until first swap. + for (size_t i = 1; i < m_Blocks.size(); ++i) + { + if (m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize()) + { + std::swap(m_Blocks[i - 1], m_Blocks[i]); + return; + } + } + } +} + +void VmaBlockVector::SortByFreeSize() +{ + VMA_SORT(m_Blocks.begin(), m_Blocks.end(), + [](VmaDeviceMemoryBlock* b1, VmaDeviceMemoryBlock* b2) -> bool + { + return b1->m_pMetadata->GetSumFreeSize() < b2->m_pMetadata->GetSumFreeSize(); + }); +} + +VkResult VmaBlockVector::AllocateFromBlock( + VmaDeviceMemoryBlock* pBlock, + VkDeviceSize size, + VkDeviceSize alignment, + VmaAllocationCreateFlags allocFlags, + void* pUserData, + VmaSuballocationType suballocType, + uint32_t strategy, + VmaAllocation* pAllocation) +{ + const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0; + + VmaAllocationRequest currRequest = {}; + if (pBlock->m_pMetadata->CreateAllocationRequest( + size, + alignment, + isUpperAddress, + suballocType, + strategy, + &currRequest)) + { + return CommitAllocationRequest(currRequest, pBlock, alignment, allocFlags, pUserData, suballocType, pAllocation); + } + return VK_ERROR_OUT_OF_DEVICE_MEMORY; +} + +VkResult VmaBlockVector::CommitAllocationRequest( + VmaAllocationRequest& allocRequest, + VmaDeviceMemoryBlock* pBlock, + VkDeviceSize alignment, + VmaAllocationCreateFlags allocFlags, + void* pUserData, + VmaSuballocationType suballocType, + VmaAllocation* pAllocation) +{ + const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0; + const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0; + const bool isMappingAllowed = (allocFlags & + (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0; + + pBlock->PostAlloc(m_hAllocator); + // Allocate from pCurrBlock. + if (mapped) + { + VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL); + if (res != VK_SUCCESS) + { + return res; + } + } + + *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(isMappingAllowed); + pBlock->m_pMetadata->Alloc(allocRequest, suballocType, *pAllocation); + (*pAllocation)->InitBlockAllocation( + pBlock, + allocRequest.allocHandle, + alignment, + allocRequest.size, // Not size, as actual allocation size may be larger than requested! + m_MemoryTypeIndex, + suballocType, + mapped); + VMA_HEAVY_ASSERT(pBlock->Validate()); + if (isUserDataString) + (*pAllocation)->SetName(m_hAllocator, (const char*)pUserData); + else + (*pAllocation)->SetUserData(m_hAllocator, pUserData); + m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), allocRequest.size); + if (VMA_DEBUG_INITIALIZE_ALLOCATIONS) + { + m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); + } + if (IsCorruptionDetectionEnabled()) + { + VkResult res = pBlock->WriteMagicValueAfterAllocation(m_hAllocator, (*pAllocation)->GetOffset(), allocRequest.size); + VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value."); + } + return VK_SUCCESS; +} + +VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex) +{ + VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; + allocInfo.pNext = m_pMemoryAllocateNext; + allocInfo.memoryTypeIndex = m_MemoryTypeIndex; + allocInfo.allocationSize = blockSize; + +#if VMA_BUFFER_DEVICE_ADDRESS + // Every standalone block can potentially contain a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT - always enable the feature. + VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR }; + if (m_hAllocator->m_UseKhrBufferDeviceAddress) + { + allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR; + VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo); + } +#endif // VMA_BUFFER_DEVICE_ADDRESS + +#if VMA_MEMORY_PRIORITY + VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT }; + if (m_hAllocator->m_UseExtMemoryPriority) + { + VMA_ASSERT(m_Priority >= 0.f && m_Priority <= 1.f); + priorityInfo.priority = m_Priority; + VmaPnextChainPushFront(&allocInfo, &priorityInfo); + } +#endif // VMA_MEMORY_PRIORITY + +#if VMA_EXTERNAL_MEMORY + // Attach VkExportMemoryAllocateInfoKHR if necessary. + VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR }; + exportMemoryAllocInfo.handleTypes = m_hAllocator->GetExternalMemoryHandleTypeFlags(m_MemoryTypeIndex); + if (exportMemoryAllocInfo.handleTypes != 0) + { + VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo); + } +#endif // VMA_EXTERNAL_MEMORY + + VkDeviceMemory mem = VK_NULL_HANDLE; + VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem); + if (res < 0) + { + return res; + } + + // New VkDeviceMemory successfully created. + + // Create new Allocation for it. + VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator); + pBlock->Init( + m_hAllocator, + m_hParentPool, + m_MemoryTypeIndex, + mem, + allocInfo.allocationSize, + m_NextBlockId++, + m_Algorithm, + m_BufferImageGranularity); + + m_Blocks.push_back(pBlock); + if (pNewBlockIndex != VMA_NULL) + { + *pNewBlockIndex = m_Blocks.size() - 1; + } + + return VK_SUCCESS; +} + +bool VmaBlockVector::HasEmptyBlock() +{ + for (size_t index = 0, count = m_Blocks.size(); index < count; ++index) + { + VmaDeviceMemoryBlock* const pBlock = m_Blocks[index]; + if (pBlock->m_pMetadata->IsEmpty()) + { + return true; + } + } + return false; +} + +#if VMA_STATS_STRING_ENABLED +void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json) +{ + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + + + json.BeginObject(); + for (size_t i = 0; i < m_Blocks.size(); ++i) + { + json.BeginString(); + json.ContinueString(m_Blocks[i]->GetId()); + json.EndString(); + + json.BeginObject(); + json.WriteString("MapRefCount"); + json.WriteNumber(m_Blocks[i]->GetMapRefCount()); + + m_Blocks[i]->m_pMetadata->PrintDetailedMap(json); + json.EndObject(); + } + json.EndObject(); +} +#endif // VMA_STATS_STRING_ENABLED + +VkResult VmaBlockVector::CheckCorruption() +{ + if (!IsCorruptionDetectionEnabled()) + { + return VK_ERROR_FEATURE_NOT_PRESENT; + } + + VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex); + for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex) + { + VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex]; + VMA_ASSERT(pBlock); + VkResult res = pBlock->CheckCorruption(m_hAllocator); + if (res != VK_SUCCESS) + { + return res; + } + } + return VK_SUCCESS; +} + +#endif // _VMA_BLOCK_VECTOR_FUNCTIONS + +#ifndef _VMA_DEFRAGMENTATION_CONTEXT_FUNCTIONS +VmaDefragmentationContext_T::VmaDefragmentationContext_T( + VmaAllocator hAllocator, + const VmaDefragmentationInfo& info) + : m_MaxPassBytes(info.maxBytesPerPass == 0 ? VK_WHOLE_SIZE : info.maxBytesPerPass), + m_MaxPassAllocations(info.maxAllocationsPerPass == 0 ? UINT32_MAX : info.maxAllocationsPerPass), + m_BreakCallback(info.pfnBreakCallback), + m_BreakCallbackUserData(info.pBreakCallbackUserData), + m_MoveAllocator(hAllocator->GetAllocationCallbacks()), + m_Moves(m_MoveAllocator) +{ + m_Algorithm = info.flags & VMA_DEFRAGMENTATION_FLAG_ALGORITHM_MASK; + + if (info.pool != VMA_NULL) + { + m_BlockVectorCount = 1; + m_PoolBlockVector = &info.pool->m_BlockVector; + m_pBlockVectors = &m_PoolBlockVector; + m_PoolBlockVector->SetIncrementalSort(false); + m_PoolBlockVector->SortByFreeSize(); + } + else + { + m_BlockVectorCount = hAllocator->GetMemoryTypeCount(); + m_PoolBlockVector = VMA_NULL; + m_pBlockVectors = hAllocator->m_pBlockVectors; + for (uint32_t i = 0; i < m_BlockVectorCount; ++i) + { + VmaBlockVector* vector = m_pBlockVectors[i]; + if (vector != VMA_NULL) + { + vector->SetIncrementalSort(false); + vector->SortByFreeSize(); + } + } + } + + switch (m_Algorithm) + { + case 0: // Default algorithm + m_Algorithm = VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT; + m_AlgorithmState = vma_new_array(hAllocator, StateBalanced, m_BlockVectorCount); + break; + case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT: + m_AlgorithmState = vma_new_array(hAllocator, StateBalanced, m_BlockVectorCount); + break; + case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT: + if (hAllocator->GetBufferImageGranularity() > 1) + { + m_AlgorithmState = vma_new_array(hAllocator, StateExtensive, m_BlockVectorCount); + } + break; + } +} + +VmaDefragmentationContext_T::~VmaDefragmentationContext_T() +{ + if (m_PoolBlockVector != VMA_NULL) + { + m_PoolBlockVector->SetIncrementalSort(true); + } + else + { + for (uint32_t i = 0; i < m_BlockVectorCount; ++i) + { + VmaBlockVector* vector = m_pBlockVectors[i]; + if (vector != VMA_NULL) + vector->SetIncrementalSort(true); + } + } + + if (m_AlgorithmState) + { + switch (m_Algorithm) + { + case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT: + vma_delete_array(m_MoveAllocator.m_pCallbacks, reinterpret_cast<StateBalanced*>(m_AlgorithmState), m_BlockVectorCount); + break; + case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT: + vma_delete_array(m_MoveAllocator.m_pCallbacks, reinterpret_cast<StateExtensive*>(m_AlgorithmState), m_BlockVectorCount); + break; + default: + VMA_ASSERT(0); + } + } +} + +VkResult VmaDefragmentationContext_T::DefragmentPassBegin(VmaDefragmentationPassMoveInfo& moveInfo) +{ + if (m_PoolBlockVector != VMA_NULL) + { + VmaMutexLockWrite lock(m_PoolBlockVector->GetMutex(), m_PoolBlockVector->GetAllocator()->m_UseMutex); + + if (m_PoolBlockVector->GetBlockCount() > 1) + ComputeDefragmentation(*m_PoolBlockVector, 0); + else if (m_PoolBlockVector->GetBlockCount() == 1) + ReallocWithinBlock(*m_PoolBlockVector, m_PoolBlockVector->GetBlock(0)); + } + else + { + for (uint32_t i = 0; i < m_BlockVectorCount; ++i) + { + if (m_pBlockVectors[i] != VMA_NULL) + { + VmaMutexLockWrite lock(m_pBlockVectors[i]->GetMutex(), m_pBlockVectors[i]->GetAllocator()->m_UseMutex); + + if (m_pBlockVectors[i]->GetBlockCount() > 1) + { + if (ComputeDefragmentation(*m_pBlockVectors[i], i)) + break; + } + else if (m_pBlockVectors[i]->GetBlockCount() == 1) + { + if (ReallocWithinBlock(*m_pBlockVectors[i], m_pBlockVectors[i]->GetBlock(0))) + break; + } + } + } + } + + moveInfo.moveCount = static_cast<uint32_t>(m_Moves.size()); + if (moveInfo.moveCount > 0) + { + moveInfo.pMoves = m_Moves.data(); + return VK_INCOMPLETE; + } + + moveInfo.pMoves = VMA_NULL; + return VK_SUCCESS; +} + +VkResult VmaDefragmentationContext_T::DefragmentPassEnd(VmaDefragmentationPassMoveInfo& moveInfo) +{ + VMA_ASSERT(moveInfo.moveCount > 0 ? moveInfo.pMoves != VMA_NULL : true); + + VkResult result = VK_SUCCESS; + VmaStlAllocator<FragmentedBlock> blockAllocator(m_MoveAllocator.m_pCallbacks); + VmaVector<FragmentedBlock, VmaStlAllocator<FragmentedBlock>> immovableBlocks(blockAllocator); + VmaVector<FragmentedBlock, VmaStlAllocator<FragmentedBlock>> mappedBlocks(blockAllocator); + + VmaAllocator allocator = VMA_NULL; + for (uint32_t i = 0; i < moveInfo.moveCount; ++i) + { + VmaDefragmentationMove& move = moveInfo.pMoves[i]; + size_t prevCount = 0, currentCount = 0; + VkDeviceSize freedBlockSize = 0; + + uint32_t vectorIndex; + VmaBlockVector* vector; + if (m_PoolBlockVector != VMA_NULL) + { + vectorIndex = 0; + vector = m_PoolBlockVector; + } + else + { + vectorIndex = move.srcAllocation->GetMemoryTypeIndex(); + vector = m_pBlockVectors[vectorIndex]; + VMA_ASSERT(vector != VMA_NULL); + } + + switch (move.operation) + { + case VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY: + { + uint8_t mapCount = move.srcAllocation->SwapBlockAllocation(vector->m_hAllocator, move.dstTmpAllocation); + if (mapCount > 0) + { + allocator = vector->m_hAllocator; + VmaDeviceMemoryBlock* newMapBlock = move.srcAllocation->GetBlock(); + bool notPresent = true; + for (FragmentedBlock& block : mappedBlocks) + { + if (block.block == newMapBlock) + { + notPresent = false; + block.data += mapCount; + break; + } + } + if (notPresent) + mappedBlocks.push_back({ mapCount, newMapBlock }); + } + + // Scope for locks, Free have it's own lock + { + VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); + prevCount = vector->GetBlockCount(); + freedBlockSize = move.dstTmpAllocation->GetBlock()->m_pMetadata->GetSize(); + } + vector->Free(move.dstTmpAllocation); + { + VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); + currentCount = vector->GetBlockCount(); + } + + result = VK_INCOMPLETE; + break; + } + case VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE: + { + m_PassStats.bytesMoved -= move.srcAllocation->GetSize(); + --m_PassStats.allocationsMoved; + vector->Free(move.dstTmpAllocation); + + VmaDeviceMemoryBlock* newBlock = move.srcAllocation->GetBlock(); + bool notPresent = true; + for (const FragmentedBlock& block : immovableBlocks) + { + if (block.block == newBlock) + { + notPresent = false; + break; + } + } + if (notPresent) + immovableBlocks.push_back({ vectorIndex, newBlock }); + break; + } + case VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY: + { + m_PassStats.bytesMoved -= move.srcAllocation->GetSize(); + --m_PassStats.allocationsMoved; + // Scope for locks, Free have it's own lock + { + VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); + prevCount = vector->GetBlockCount(); + freedBlockSize = move.srcAllocation->GetBlock()->m_pMetadata->GetSize(); + } + vector->Free(move.srcAllocation); + { + VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); + currentCount = vector->GetBlockCount(); + } + freedBlockSize *= prevCount - currentCount; + + VkDeviceSize dstBlockSize; + { + VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); + dstBlockSize = move.dstTmpAllocation->GetBlock()->m_pMetadata->GetSize(); + } + vector->Free(move.dstTmpAllocation); + { + VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); + freedBlockSize += dstBlockSize * (currentCount - vector->GetBlockCount()); + currentCount = vector->GetBlockCount(); + } + + result = VK_INCOMPLETE; + break; + } + default: + VMA_ASSERT(0); + } + + if (prevCount > currentCount) + { + size_t freedBlocks = prevCount - currentCount; + m_PassStats.deviceMemoryBlocksFreed += static_cast<uint32_t>(freedBlocks); + m_PassStats.bytesFreed += freedBlockSize; + } + + if(m_Algorithm == VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT && + m_AlgorithmState != VMA_NULL) + { + // Avoid unnecessary tries to allocate when new free block is available + StateExtensive& state = reinterpret_cast<StateExtensive*>(m_AlgorithmState)[vectorIndex]; + if (state.firstFreeBlock != SIZE_MAX) + { + const size_t diff = prevCount - currentCount; + if (state.firstFreeBlock >= diff) + { + state.firstFreeBlock -= diff; + if (state.firstFreeBlock != 0) + state.firstFreeBlock -= vector->GetBlock(state.firstFreeBlock - 1)->m_pMetadata->IsEmpty(); + } + else + state.firstFreeBlock = 0; + } + } + } + moveInfo.moveCount = 0; + moveInfo.pMoves = VMA_NULL; + m_Moves.clear(); + + // Update stats + m_GlobalStats.allocationsMoved += m_PassStats.allocationsMoved; + m_GlobalStats.bytesFreed += m_PassStats.bytesFreed; + m_GlobalStats.bytesMoved += m_PassStats.bytesMoved; + m_GlobalStats.deviceMemoryBlocksFreed += m_PassStats.deviceMemoryBlocksFreed; + m_PassStats = { 0 }; + + // Move blocks with immovable allocations according to algorithm + if (immovableBlocks.size() > 0) + { + do + { + if(m_Algorithm == VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT) + { + if (m_AlgorithmState != VMA_NULL) + { + bool swapped = false; + // Move to the start of free blocks range + for (const FragmentedBlock& block : immovableBlocks) + { + StateExtensive& state = reinterpret_cast<StateExtensive*>(m_AlgorithmState)[block.data]; + if (state.operation != StateExtensive::Operation::Cleanup) + { + VmaBlockVector* vector = m_pBlockVectors[block.data]; + VmaMutexLockWrite lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); + + for (size_t i = 0, count = vector->GetBlockCount() - m_ImmovableBlockCount; i < count; ++i) + { + if (vector->GetBlock(i) == block.block) + { + std::swap(vector->m_Blocks[i], vector->m_Blocks[vector->GetBlockCount() - ++m_ImmovableBlockCount]); + if (state.firstFreeBlock != SIZE_MAX) + { + if (i + 1 < state.firstFreeBlock) + { + if (state.firstFreeBlock > 1) + std::swap(vector->m_Blocks[i], vector->m_Blocks[--state.firstFreeBlock]); + else + --state.firstFreeBlock; + } + } + swapped = true; + break; + } + } + } + } + if (swapped) + result = VK_INCOMPLETE; + break; + } + } + + // Move to the beginning + for (const FragmentedBlock& block : immovableBlocks) + { + VmaBlockVector* vector = m_pBlockVectors[block.data]; + VmaMutexLockWrite lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex); + + for (size_t i = m_ImmovableBlockCount; i < vector->GetBlockCount(); ++i) + { + if (vector->GetBlock(i) == block.block) + { + std::swap(vector->m_Blocks[i], vector->m_Blocks[m_ImmovableBlockCount++]); + break; + } + } + } + } while (false); + } + + // Bulk-map destination blocks + for (const FragmentedBlock& block : mappedBlocks) + { + VkResult res = block.block->Map(allocator, block.data, VMA_NULL); + VMA_ASSERT(res == VK_SUCCESS); + } + return result; +} + +bool VmaDefragmentationContext_T::ComputeDefragmentation(VmaBlockVector& vector, size_t index) +{ + switch (m_Algorithm) + { + case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT: + return ComputeDefragmentation_Fast(vector); + case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT: + return ComputeDefragmentation_Balanced(vector, index, true); + case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT: + return ComputeDefragmentation_Full(vector); + case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT: + return ComputeDefragmentation_Extensive(vector, index); + default: + VMA_ASSERT(0); + return ComputeDefragmentation_Balanced(vector, index, true); + } +} + +VmaDefragmentationContext_T::MoveAllocationData VmaDefragmentationContext_T::GetMoveData( + VmaAllocHandle handle, VmaBlockMetadata* metadata) +{ + MoveAllocationData moveData; + moveData.move.srcAllocation = (VmaAllocation)metadata->GetAllocationUserData(handle); + moveData.size = moveData.move.srcAllocation->GetSize(); + moveData.alignment = moveData.move.srcAllocation->GetAlignment(); + moveData.type = moveData.move.srcAllocation->GetSuballocationType(); + moveData.flags = 0; + + if (moveData.move.srcAllocation->IsPersistentMap()) + moveData.flags |= VMA_ALLOCATION_CREATE_MAPPED_BIT; + if (moveData.move.srcAllocation->IsMappingAllowed()) + moveData.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT; + + return moveData; +} + +VmaDefragmentationContext_T::CounterStatus VmaDefragmentationContext_T::CheckCounters(VkDeviceSize bytes) +{ + // Check custom criteria if exists + if (m_BreakCallback && m_BreakCallback(m_BreakCallbackUserData)) + return CounterStatus::End; + + // Ignore allocation if will exceed max size for copy + if (m_PassStats.bytesMoved + bytes > m_MaxPassBytes) + { + if (++m_IgnoredAllocs < MAX_ALLOCS_TO_IGNORE) + return CounterStatus::Ignore; + else + return CounterStatus::End; + } + else + m_IgnoredAllocs = 0; + return CounterStatus::Pass; +} + +bool VmaDefragmentationContext_T::IncrementCounters(VkDeviceSize bytes) +{ + m_PassStats.bytesMoved += bytes; + // Early return when max found + if (++m_PassStats.allocationsMoved >= m_MaxPassAllocations || m_PassStats.bytesMoved >= m_MaxPassBytes) + { + VMA_ASSERT((m_PassStats.allocationsMoved == m_MaxPassAllocations || + m_PassStats.bytesMoved == m_MaxPassBytes) && "Exceeded maximal pass threshold!"); + return true; + } + return false; +} + +bool VmaDefragmentationContext_T::ReallocWithinBlock(VmaBlockVector& vector, VmaDeviceMemoryBlock* block) +{ + VmaBlockMetadata* metadata = block->m_pMetadata; + + for (VmaAllocHandle handle = metadata->GetAllocationListBegin(); + handle != VK_NULL_HANDLE; + handle = metadata->GetNextAllocation(handle)) + { + MoveAllocationData moveData = GetMoveData(handle, metadata); + // Ignore newly created allocations by defragmentation algorithm + if (moveData.move.srcAllocation->GetUserData() == this) + continue; + switch (CheckCounters(moveData.move.srcAllocation->GetSize())) + { + case CounterStatus::Ignore: + continue; + case CounterStatus::End: + return true; + case CounterStatus::Pass: + break; + default: + VMA_ASSERT(0); + } + + VkDeviceSize offset = moveData.move.srcAllocation->GetOffset(); + if (offset != 0 && metadata->GetSumFreeSize() >= moveData.size) + { + VmaAllocationRequest request = {}; + if (metadata->CreateAllocationRequest( + moveData.size, + moveData.alignment, + false, + moveData.type, + VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT, + &request)) + { + if (metadata->GetAllocationOffset(request.allocHandle) < offset) + { + if (vector.CommitAllocationRequest( + request, + block, + moveData.alignment, + moveData.flags, + this, + moveData.type, + &moveData.move.dstTmpAllocation) == VK_SUCCESS) + { + m_Moves.push_back(moveData.move); + if (IncrementCounters(moveData.size)) + return true; + } + } + } + } + } + return false; +} + +bool VmaDefragmentationContext_T::AllocInOtherBlock(size_t start, size_t end, MoveAllocationData& data, VmaBlockVector& vector) +{ + for (; start < end; ++start) + { + VmaDeviceMemoryBlock* dstBlock = vector.GetBlock(start); + if (dstBlock->m_pMetadata->GetSumFreeSize() >= data.size) + { + if (vector.AllocateFromBlock(dstBlock, + data.size, + data.alignment, + data.flags, + this, + data.type, + 0, + &data.move.dstTmpAllocation) == VK_SUCCESS) + { + m_Moves.push_back(data.move); + if (IncrementCounters(data.size)) + return true; + break; + } + } + } + return false; +} + +bool VmaDefragmentationContext_T::ComputeDefragmentation_Fast(VmaBlockVector& vector) +{ + // Move only between blocks + + // Go through allocations in last blocks and try to fit them inside first ones + for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i) + { + VmaBlockMetadata* metadata = vector.GetBlock(i)->m_pMetadata; + + for (VmaAllocHandle handle = metadata->GetAllocationListBegin(); + handle != VK_NULL_HANDLE; + handle = metadata->GetNextAllocation(handle)) + { + MoveAllocationData moveData = GetMoveData(handle, metadata); + // Ignore newly created allocations by defragmentation algorithm + if (moveData.move.srcAllocation->GetUserData() == this) + continue; + switch (CheckCounters(moveData.move.srcAllocation->GetSize())) + { + case CounterStatus::Ignore: + continue; + case CounterStatus::End: + return true; + case CounterStatus::Pass: + break; + default: + VMA_ASSERT(0); + } + + // Check all previous blocks for free space + if (AllocInOtherBlock(0, i, moveData, vector)) + return true; + } + } + return false; +} + +bool VmaDefragmentationContext_T::ComputeDefragmentation_Balanced(VmaBlockVector& vector, size_t index, bool update) +{ + // Go over every allocation and try to fit it in previous blocks at lowest offsets, + // if not possible: realloc within single block to minimize offset (exclude offset == 0), + // but only if there are noticeable gaps between them (some heuristic, ex. average size of allocation in block) + VMA_ASSERT(m_AlgorithmState != VMA_NULL); + + StateBalanced& vectorState = reinterpret_cast<StateBalanced*>(m_AlgorithmState)[index]; + if (update && vectorState.avgAllocSize == UINT64_MAX) + UpdateVectorStatistics(vector, vectorState); + + const size_t startMoveCount = m_Moves.size(); + VkDeviceSize minimalFreeRegion = vectorState.avgFreeSize / 2; + for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i) + { + VmaDeviceMemoryBlock* block = vector.GetBlock(i); + VmaBlockMetadata* metadata = block->m_pMetadata; + VkDeviceSize prevFreeRegionSize = 0; + + for (VmaAllocHandle handle = metadata->GetAllocationListBegin(); + handle != VK_NULL_HANDLE; + handle = metadata->GetNextAllocation(handle)) + { + MoveAllocationData moveData = GetMoveData(handle, metadata); + // Ignore newly created allocations by defragmentation algorithm + if (moveData.move.srcAllocation->GetUserData() == this) + continue; + switch (CheckCounters(moveData.move.srcAllocation->GetSize())) + { + case CounterStatus::Ignore: + continue; + case CounterStatus::End: + return true; + case CounterStatus::Pass: + break; + default: + VMA_ASSERT(0); + } + + // Check all previous blocks for free space + const size_t prevMoveCount = m_Moves.size(); + if (AllocInOtherBlock(0, i, moveData, vector)) + return true; + + VkDeviceSize nextFreeRegionSize = metadata->GetNextFreeRegionSize(handle); + // If no room found then realloc within block for lower offset + VkDeviceSize offset = moveData.move.srcAllocation->GetOffset(); + if (prevMoveCount == m_Moves.size() && offset != 0 && metadata->GetSumFreeSize() >= moveData.size) + { + // Check if realloc will make sense + if (prevFreeRegionSize >= minimalFreeRegion || + nextFreeRegionSize >= minimalFreeRegion || + moveData.size <= vectorState.avgFreeSize || + moveData.size <= vectorState.avgAllocSize) + { + VmaAllocationRequest request = {}; + if (metadata->CreateAllocationRequest( + moveData.size, + moveData.alignment, + false, + moveData.type, + VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT, + &request)) + { + if (metadata->GetAllocationOffset(request.allocHandle) < offset) + { + if (vector.CommitAllocationRequest( + request, + block, + moveData.alignment, + moveData.flags, + this, + moveData.type, + &moveData.move.dstTmpAllocation) == VK_SUCCESS) + { + m_Moves.push_back(moveData.move); + if (IncrementCounters(moveData.size)) + return true; + } + } + } + } + } + prevFreeRegionSize = nextFreeRegionSize; + } + } + + // No moves performed, update statistics to current vector state + if (startMoveCount == m_Moves.size() && !update) + { + vectorState.avgAllocSize = UINT64_MAX; + return ComputeDefragmentation_Balanced(vector, index, false); + } + return false; +} + +bool VmaDefragmentationContext_T::ComputeDefragmentation_Full(VmaBlockVector& vector) +{ + // Go over every allocation and try to fit it in previous blocks at lowest offsets, + // if not possible: realloc within single block to minimize offset (exclude offset == 0) + + for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i) + { + VmaDeviceMemoryBlock* block = vector.GetBlock(i); + VmaBlockMetadata* metadata = block->m_pMetadata; + + for (VmaAllocHandle handle = metadata->GetAllocationListBegin(); + handle != VK_NULL_HANDLE; + handle = metadata->GetNextAllocation(handle)) + { + MoveAllocationData moveData = GetMoveData(handle, metadata); + // Ignore newly created allocations by defragmentation algorithm + if (moveData.move.srcAllocation->GetUserData() == this) + continue; + switch (CheckCounters(moveData.move.srcAllocation->GetSize())) + { + case CounterStatus::Ignore: + continue; + case CounterStatus::End: + return true; + case CounterStatus::Pass: + break; + default: + VMA_ASSERT(0); + } + + // Check all previous blocks for free space + const size_t prevMoveCount = m_Moves.size(); + if (AllocInOtherBlock(0, i, moveData, vector)) + return true; + + // If no room found then realloc within block for lower offset + VkDeviceSize offset = moveData.move.srcAllocation->GetOffset(); + if (prevMoveCount == m_Moves.size() && offset != 0 && metadata->GetSumFreeSize() >= moveData.size) + { + VmaAllocationRequest request = {}; + if (metadata->CreateAllocationRequest( + moveData.size, + moveData.alignment, + false, + moveData.type, + VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT, + &request)) + { + if (metadata->GetAllocationOffset(request.allocHandle) < offset) + { + if (vector.CommitAllocationRequest( + request, + block, + moveData.alignment, + moveData.flags, + this, + moveData.type, + &moveData.move.dstTmpAllocation) == VK_SUCCESS) + { + m_Moves.push_back(moveData.move); + if (IncrementCounters(moveData.size)) + return true; + } + } + } + } + } + } + return false; +} + +bool VmaDefragmentationContext_T::ComputeDefragmentation_Extensive(VmaBlockVector& vector, size_t index) +{ + // First free single block, then populate it to the brim, then free another block, and so on + + // Fallback to previous algorithm since without granularity conflicts it can achieve max packing + if (vector.m_BufferImageGranularity == 1) + return ComputeDefragmentation_Full(vector); + + VMA_ASSERT(m_AlgorithmState != VMA_NULL); + + StateExtensive& vectorState = reinterpret_cast<StateExtensive*>(m_AlgorithmState)[index]; + + bool texturePresent = false, bufferPresent = false, otherPresent = false; + switch (vectorState.operation) + { + case StateExtensive::Operation::Done: // Vector defragmented + return false; + case StateExtensive::Operation::FindFreeBlockBuffer: + case StateExtensive::Operation::FindFreeBlockTexture: + case StateExtensive::Operation::FindFreeBlockAll: + { + // No more blocks to free, just perform fast realloc and move to cleanup + if (vectorState.firstFreeBlock == 0) + { + vectorState.operation = StateExtensive::Operation::Cleanup; + return ComputeDefragmentation_Fast(vector); + } + + // No free blocks, have to clear last one + size_t last = (vectorState.firstFreeBlock == SIZE_MAX ? vector.GetBlockCount() : vectorState.firstFreeBlock) - 1; + VmaBlockMetadata* freeMetadata = vector.GetBlock(last)->m_pMetadata; + + const size_t prevMoveCount = m_Moves.size(); + for (VmaAllocHandle handle = freeMetadata->GetAllocationListBegin(); + handle != VK_NULL_HANDLE; + handle = freeMetadata->GetNextAllocation(handle)) + { + MoveAllocationData moveData = GetMoveData(handle, freeMetadata); + switch (CheckCounters(moveData.move.srcAllocation->GetSize())) + { + case CounterStatus::Ignore: + continue; + case CounterStatus::End: + return true; + case CounterStatus::Pass: + break; + default: + VMA_ASSERT(0); + } + + // Check all previous blocks for free space + if (AllocInOtherBlock(0, last, moveData, vector)) + { + // Full clear performed already + if (prevMoveCount != m_Moves.size() && freeMetadata->GetNextAllocation(handle) == VK_NULL_HANDLE) + vectorState.firstFreeBlock = last; + return true; + } + } + + if (prevMoveCount == m_Moves.size()) + { + // Cannot perform full clear, have to move data in other blocks around + if (last != 0) + { + for (size_t i = last - 1; i; --i) + { + if (ReallocWithinBlock(vector, vector.GetBlock(i))) + return true; + } + } + + if (prevMoveCount == m_Moves.size()) + { + // No possible reallocs within blocks, try to move them around fast + return ComputeDefragmentation_Fast(vector); + } + } + else + { + switch (vectorState.operation) + { + case StateExtensive::Operation::FindFreeBlockBuffer: + vectorState.operation = StateExtensive::Operation::MoveBuffers; + break; + case StateExtensive::Operation::FindFreeBlockTexture: + vectorState.operation = StateExtensive::Operation::MoveTextures; + break; + case StateExtensive::Operation::FindFreeBlockAll: + vectorState.operation = StateExtensive::Operation::MoveAll; + break; + default: + VMA_ASSERT(0); + vectorState.operation = StateExtensive::Operation::MoveTextures; + } + vectorState.firstFreeBlock = last; + // Nothing done, block found without reallocations, can perform another reallocs in same pass + return ComputeDefragmentation_Extensive(vector, index); + } + break; + } + case StateExtensive::Operation::MoveTextures: + { + if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL, vector, + vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent)) + { + if (texturePresent) + { + vectorState.operation = StateExtensive::Operation::FindFreeBlockTexture; + return ComputeDefragmentation_Extensive(vector, index); + } + + if (!bufferPresent && !otherPresent) + { + vectorState.operation = StateExtensive::Operation::Cleanup; + break; + } + + // No more textures to move, check buffers + vectorState.operation = StateExtensive::Operation::MoveBuffers; + bufferPresent = false; + otherPresent = false; + } + else + break; + VMA_FALLTHROUGH; // Fallthrough + } + case StateExtensive::Operation::MoveBuffers: + { + if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_BUFFER, vector, + vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent)) + { + if (bufferPresent) + { + vectorState.operation = StateExtensive::Operation::FindFreeBlockBuffer; + return ComputeDefragmentation_Extensive(vector, index); + } + + if (!otherPresent) + { + vectorState.operation = StateExtensive::Operation::Cleanup; + break; + } + + // No more buffers to move, check all others + vectorState.operation = StateExtensive::Operation::MoveAll; + otherPresent = false; + } + else + break; + VMA_FALLTHROUGH; // Fallthrough + } + case StateExtensive::Operation::MoveAll: + { + if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_FREE, vector, + vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent)) + { + if (otherPresent) + { + vectorState.operation = StateExtensive::Operation::FindFreeBlockBuffer; + return ComputeDefragmentation_Extensive(vector, index); + } + // Everything moved + vectorState.operation = StateExtensive::Operation::Cleanup; + } + break; + } + case StateExtensive::Operation::Cleanup: + // Cleanup is handled below so that other operations may reuse the cleanup code. This case is here to prevent the unhandled enum value warning (C4062). + break; + } + + if (vectorState.operation == StateExtensive::Operation::Cleanup) + { + // All other work done, pack data in blocks even tighter if possible + const size_t prevMoveCount = m_Moves.size(); + for (size_t i = 0; i < vector.GetBlockCount(); ++i) + { + if (ReallocWithinBlock(vector, vector.GetBlock(i))) + return true; + } + + if (prevMoveCount == m_Moves.size()) + vectorState.operation = StateExtensive::Operation::Done; + } + return false; +} + +void VmaDefragmentationContext_T::UpdateVectorStatistics(VmaBlockVector& vector, StateBalanced& state) +{ + size_t allocCount = 0; + size_t freeCount = 0; + state.avgFreeSize = 0; + state.avgAllocSize = 0; + + for (size_t i = 0; i < vector.GetBlockCount(); ++i) + { + VmaBlockMetadata* metadata = vector.GetBlock(i)->m_pMetadata; + + allocCount += metadata->GetAllocationCount(); + freeCount += metadata->GetFreeRegionsCount(); + state.avgFreeSize += metadata->GetSumFreeSize(); + state.avgAllocSize += metadata->GetSize(); + } + + state.avgAllocSize = (state.avgAllocSize - state.avgFreeSize) / allocCount; + state.avgFreeSize /= freeCount; +} + +bool VmaDefragmentationContext_T::MoveDataToFreeBlocks(VmaSuballocationType currentType, + VmaBlockVector& vector, size_t firstFreeBlock, + bool& texturePresent, bool& bufferPresent, bool& otherPresent) +{ + const size_t prevMoveCount = m_Moves.size(); + for (size_t i = firstFreeBlock ; i;) + { + VmaDeviceMemoryBlock* block = vector.GetBlock(--i); + VmaBlockMetadata* metadata = block->m_pMetadata; + + for (VmaAllocHandle handle = metadata->GetAllocationListBegin(); + handle != VK_NULL_HANDLE; + handle = metadata->GetNextAllocation(handle)) + { + MoveAllocationData moveData = GetMoveData(handle, metadata); + // Ignore newly created allocations by defragmentation algorithm + if (moveData.move.srcAllocation->GetUserData() == this) + continue; + switch (CheckCounters(moveData.move.srcAllocation->GetSize())) + { + case CounterStatus::Ignore: + continue; + case CounterStatus::End: + return true; + case CounterStatus::Pass: + break; + default: + VMA_ASSERT(0); + } + + // Move only single type of resources at once + if (!VmaIsBufferImageGranularityConflict(moveData.type, currentType)) + { + // Try to fit allocation into free blocks + if (AllocInOtherBlock(firstFreeBlock, vector.GetBlockCount(), moveData, vector)) + return false; + } + + if (!VmaIsBufferImageGranularityConflict(moveData.type, VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL)) + texturePresent = true; + else if (!VmaIsBufferImageGranularityConflict(moveData.type, VMA_SUBALLOCATION_TYPE_BUFFER)) + bufferPresent = true; + else + otherPresent = true; + } + } + return prevMoveCount == m_Moves.size(); +} +#endif // _VMA_DEFRAGMENTATION_CONTEXT_FUNCTIONS + +#ifndef _VMA_POOL_T_FUNCTIONS +VmaPool_T::VmaPool_T( + VmaAllocator hAllocator, + const VmaPoolCreateInfo& createInfo, + VkDeviceSize preferredBlockSize) + : m_BlockVector( + hAllocator, + this, // hParentPool + createInfo.memoryTypeIndex, + createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize, + createInfo.minBlockCount, + createInfo.maxBlockCount, + (createInfo.flags& VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(), + createInfo.blockSize != 0, // explicitBlockSize + createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK, // algorithm + createInfo.priority, + VMA_MAX(hAllocator->GetMemoryTypeMinAlignment(createInfo.memoryTypeIndex), createInfo.minAllocationAlignment), + createInfo.pMemoryAllocateNext), + m_Id(0), + m_Name(VMA_NULL) {} + +VmaPool_T::~VmaPool_T() +{ + VMA_ASSERT(m_PrevPool == VMA_NULL && m_NextPool == VMA_NULL); + + const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks(); + VmaFreeString(allocs, m_Name); +} + +void VmaPool_T::SetName(const char* pName) +{ + const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks(); + VmaFreeString(allocs, m_Name); + + if (pName != VMA_NULL) + { + m_Name = VmaCreateStringCopy(allocs, pName); + } + else + { + m_Name = VMA_NULL; + } +} +#endif // _VMA_POOL_T_FUNCTIONS + +#ifndef _VMA_ALLOCATOR_T_FUNCTIONS +VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) : + m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0), + m_VulkanApiVersion(pCreateInfo->vulkanApiVersion != 0 ? pCreateInfo->vulkanApiVersion : VK_API_VERSION_1_0), + m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0), + m_UseKhrBindMemory2((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0), + m_UseExtMemoryBudget((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0), + m_UseAmdDeviceCoherentMemory((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT) != 0), + m_UseKhrBufferDeviceAddress((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT) != 0), + m_UseExtMemoryPriority((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT) != 0), + m_UseKhrMaintenance4((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE4_BIT) != 0), + m_UseKhrMaintenance5((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT) != 0), + m_hDevice(pCreateInfo->device), + m_hInstance(pCreateInfo->instance), + m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL), + m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ? + *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks), + m_AllocationObjectAllocator(&m_AllocationCallbacks), + m_HeapSizeLimitMask(0), + m_DeviceMemoryCount(0), + m_PreferredLargeHeapBlockSize(0), + m_PhysicalDevice(pCreateInfo->physicalDevice), + m_GpuDefragmentationMemoryTypeBits(UINT32_MAX), + m_NextPoolId(0), + m_GlobalMemoryTypeBits(UINT32_MAX) +{ + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + m_UseKhrDedicatedAllocation = false; + m_UseKhrBindMemory2 = false; + } + + if(VMA_DEBUG_DETECT_CORRUPTION) + { + // Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it. + VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0); + } + + VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device && pCreateInfo->instance); + + if(m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0)) + { +#if !(VMA_DEDICATED_ALLOCATION) + if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0) + { + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros."); + } +#endif +#if !(VMA_BIND_MEMORY2) + if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0) + { + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT set but required extension is disabled by preprocessor macros."); + } +#endif + } +#if !(VMA_MEMORY_BUDGET) + if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0) + { + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT set but required extension is disabled by preprocessor macros."); + } +#endif +#if !(VMA_BUFFER_DEVICE_ADDRESS) + if(m_UseKhrBufferDeviceAddress) + { + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT is set but required extension or Vulkan 1.2 is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro."); + } +#endif +#if VMA_VULKAN_VERSION < 1003000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0)) + { + VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_3 but required Vulkan version is disabled by preprocessor macros."); + } +#endif +#if VMA_VULKAN_VERSION < 1002000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 2, 0)) + { + VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_2 but required Vulkan version is disabled by preprocessor macros."); + } +#endif +#if VMA_VULKAN_VERSION < 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_1 but required Vulkan version is disabled by preprocessor macros."); + } +#endif +#if !(VMA_MEMORY_PRIORITY) + if(m_UseExtMemoryPriority) + { + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro."); + } +#endif +#if !(VMA_KHR_MAINTENANCE4) + if(m_UseKhrMaintenance4) + { + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE4_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro."); + } +#endif +#if !(VMA_KHR_MAINTENANCE5) + if(m_UseKhrMaintenance5) + { + VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro."); + } +#endif + + memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks)); + memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties)); + memset(&m_MemProps, 0, sizeof(m_MemProps)); + + memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors)); + memset(&m_VulkanFunctions, 0, sizeof(m_VulkanFunctions)); + +#if VMA_EXTERNAL_MEMORY + memset(&m_TypeExternalMemoryHandleTypes, 0, sizeof(m_TypeExternalMemoryHandleTypes)); +#endif // #if VMA_EXTERNAL_MEMORY + + if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL) + { + m_DeviceMemoryCallbacks.pUserData = pCreateInfo->pDeviceMemoryCallbacks->pUserData; + m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate; + m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree; + } + + ImportVulkanFunctions(pCreateInfo->pVulkanFunctions); + + (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties); + (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps); + + VMA_ASSERT(VmaIsPow2(VMA_MIN_ALIGNMENT)); + VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY)); + VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity)); + VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize)); + + m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ? + pCreateInfo->preferredLargeHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE); + + m_GlobalMemoryTypeBits = CalculateGlobalMemoryTypeBits(); + +#if VMA_EXTERNAL_MEMORY + if(pCreateInfo->pTypeExternalMemoryHandleTypes != VMA_NULL) + { + memcpy(m_TypeExternalMemoryHandleTypes, pCreateInfo->pTypeExternalMemoryHandleTypes, + sizeof(VkExternalMemoryHandleTypeFlagsKHR) * GetMemoryTypeCount()); + } +#endif // #if VMA_EXTERNAL_MEMORY + + if(pCreateInfo->pHeapSizeLimit != VMA_NULL) + { + for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) + { + const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex]; + if(limit != VK_WHOLE_SIZE) + { + m_HeapSizeLimitMask |= 1u << heapIndex; + if(limit < m_MemProps.memoryHeaps[heapIndex].size) + { + m_MemProps.memoryHeaps[heapIndex].size = limit; + } + } + } + } + + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + // Create only supported types + if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0) + { + const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex); + m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)( + this, + VK_NULL_HANDLE, // hParentPool + memTypeIndex, + preferredBlockSize, + 0, + SIZE_MAX, + GetBufferImageGranularity(), + false, // explicitBlockSize + 0, // algorithm + 0.5f, // priority (0.5 is the default per Vulkan spec) + GetMemoryTypeMinAlignment(memTypeIndex), // minAllocationAlignment + VMA_NULL); // // pMemoryAllocateNext + // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here, + // because minBlockCount is 0. + } + } +} + +VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo* pCreateInfo) +{ + VkResult res = VK_SUCCESS; + +#if VMA_MEMORY_BUDGET + if(m_UseExtMemoryBudget) + { + UpdateVulkanBudget(); + } +#endif // #if VMA_MEMORY_BUDGET + + return res; +} + +VmaAllocator_T::~VmaAllocator_T() +{ + VMA_ASSERT(m_Pools.IsEmpty()); + + for(size_t memTypeIndex = GetMemoryTypeCount(); memTypeIndex--; ) + { + vma_delete(this, m_pBlockVectors[memTypeIndex]); + } +} + +void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions) +{ +#if VMA_STATIC_VULKAN_FUNCTIONS == 1 + ImportVulkanFunctions_Static(); +#endif + + if(pVulkanFunctions != VMA_NULL) + { + ImportVulkanFunctions_Custom(pVulkanFunctions); + } + +#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 + ImportVulkanFunctions_Dynamic(); +#endif + + ValidateVulkanFunctions(); +} + +#if VMA_STATIC_VULKAN_FUNCTIONS == 1 + +void VmaAllocator_T::ImportVulkanFunctions_Static() +{ + // Vulkan 1.0 + m_VulkanFunctions.vkGetInstanceProcAddr = (PFN_vkGetInstanceProcAddr)vkGetInstanceProcAddr; + m_VulkanFunctions.vkGetDeviceProcAddr = (PFN_vkGetDeviceProcAddr)vkGetDeviceProcAddr; + m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties; + m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties; + m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory; + m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory; + m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory; + m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory; + m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges; + m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges; + m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory; + m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory; + m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements; + m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements; + m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer; + m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer; + m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage; + m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage; + m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer; + + // Vulkan 1.1 +#if VMA_VULKAN_VERSION >= 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = (PFN_vkGetBufferMemoryRequirements2)vkGetBufferMemoryRequirements2; + m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = (PFN_vkGetImageMemoryRequirements2)vkGetImageMemoryRequirements2; + m_VulkanFunctions.vkBindBufferMemory2KHR = (PFN_vkBindBufferMemory2)vkBindBufferMemory2; + m_VulkanFunctions.vkBindImageMemory2KHR = (PFN_vkBindImageMemory2)vkBindImageMemory2; + } +#endif + +#if VMA_VULKAN_VERSION >= 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR = (PFN_vkGetPhysicalDeviceMemoryProperties2)vkGetPhysicalDeviceMemoryProperties2; + } +#endif + +#if VMA_VULKAN_VERSION >= 1003000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0)) + { + m_VulkanFunctions.vkGetDeviceBufferMemoryRequirements = (PFN_vkGetDeviceBufferMemoryRequirements)vkGetDeviceBufferMemoryRequirements; + m_VulkanFunctions.vkGetDeviceImageMemoryRequirements = (PFN_vkGetDeviceImageMemoryRequirements)vkGetDeviceImageMemoryRequirements; + } +#endif +} + +#endif // VMA_STATIC_VULKAN_FUNCTIONS == 1 + +void VmaAllocator_T::ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions) +{ + VMA_ASSERT(pVulkanFunctions != VMA_NULL); + +#define VMA_COPY_IF_NOT_NULL(funcName) \ + if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName; + + VMA_COPY_IF_NOT_NULL(vkGetInstanceProcAddr); + VMA_COPY_IF_NOT_NULL(vkGetDeviceProcAddr); + VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties); + VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties); + VMA_COPY_IF_NOT_NULL(vkAllocateMemory); + VMA_COPY_IF_NOT_NULL(vkFreeMemory); + VMA_COPY_IF_NOT_NULL(vkMapMemory); + VMA_COPY_IF_NOT_NULL(vkUnmapMemory); + VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges); + VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges); + VMA_COPY_IF_NOT_NULL(vkBindBufferMemory); + VMA_COPY_IF_NOT_NULL(vkBindImageMemory); + VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements); + VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements); + VMA_COPY_IF_NOT_NULL(vkCreateBuffer); + VMA_COPY_IF_NOT_NULL(vkDestroyBuffer); + VMA_COPY_IF_NOT_NULL(vkCreateImage); + VMA_COPY_IF_NOT_NULL(vkDestroyImage); + VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer); + +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR); + VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR); +#endif + +#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 + VMA_COPY_IF_NOT_NULL(vkBindBufferMemory2KHR); + VMA_COPY_IF_NOT_NULL(vkBindImageMemory2KHR); +#endif + +#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 + VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties2KHR); +#endif + +#if VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000 + VMA_COPY_IF_NOT_NULL(vkGetDeviceBufferMemoryRequirements); + VMA_COPY_IF_NOT_NULL(vkGetDeviceImageMemoryRequirements); +#endif + +#undef VMA_COPY_IF_NOT_NULL +} + +#if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 + +void VmaAllocator_T::ImportVulkanFunctions_Dynamic() +{ + VMA_ASSERT(m_VulkanFunctions.vkGetInstanceProcAddr && m_VulkanFunctions.vkGetDeviceProcAddr && + "To use VMA_DYNAMIC_VULKAN_FUNCTIONS in new versions of VMA you now have to pass " + "VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as VmaAllocatorCreateInfo::pVulkanFunctions. " + "Other members can be null."); + +#define VMA_FETCH_INSTANCE_FUNC(memberName, functionPointerType, functionNameString) \ + if(m_VulkanFunctions.memberName == VMA_NULL) \ + m_VulkanFunctions.memberName = \ + (functionPointerType)m_VulkanFunctions.vkGetInstanceProcAddr(m_hInstance, functionNameString); +#define VMA_FETCH_DEVICE_FUNC(memberName, functionPointerType, functionNameString) \ + if(m_VulkanFunctions.memberName == VMA_NULL) \ + m_VulkanFunctions.memberName = \ + (functionPointerType)m_VulkanFunctions.vkGetDeviceProcAddr(m_hDevice, functionNameString); + + VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceProperties, PFN_vkGetPhysicalDeviceProperties, "vkGetPhysicalDeviceProperties"); + VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties, PFN_vkGetPhysicalDeviceMemoryProperties, "vkGetPhysicalDeviceMemoryProperties"); + VMA_FETCH_DEVICE_FUNC(vkAllocateMemory, PFN_vkAllocateMemory, "vkAllocateMemory"); + VMA_FETCH_DEVICE_FUNC(vkFreeMemory, PFN_vkFreeMemory, "vkFreeMemory"); + VMA_FETCH_DEVICE_FUNC(vkMapMemory, PFN_vkMapMemory, "vkMapMemory"); + VMA_FETCH_DEVICE_FUNC(vkUnmapMemory, PFN_vkUnmapMemory, "vkUnmapMemory"); + VMA_FETCH_DEVICE_FUNC(vkFlushMappedMemoryRanges, PFN_vkFlushMappedMemoryRanges, "vkFlushMappedMemoryRanges"); + VMA_FETCH_DEVICE_FUNC(vkInvalidateMappedMemoryRanges, PFN_vkInvalidateMappedMemoryRanges, "vkInvalidateMappedMemoryRanges"); + VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory, PFN_vkBindBufferMemory, "vkBindBufferMemory"); + VMA_FETCH_DEVICE_FUNC(vkBindImageMemory, PFN_vkBindImageMemory, "vkBindImageMemory"); + VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements, PFN_vkGetBufferMemoryRequirements, "vkGetBufferMemoryRequirements"); + VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements, PFN_vkGetImageMemoryRequirements, "vkGetImageMemoryRequirements"); + VMA_FETCH_DEVICE_FUNC(vkCreateBuffer, PFN_vkCreateBuffer, "vkCreateBuffer"); + VMA_FETCH_DEVICE_FUNC(vkDestroyBuffer, PFN_vkDestroyBuffer, "vkDestroyBuffer"); + VMA_FETCH_DEVICE_FUNC(vkCreateImage, PFN_vkCreateImage, "vkCreateImage"); + VMA_FETCH_DEVICE_FUNC(vkDestroyImage, PFN_vkDestroyImage, "vkDestroyImage"); + VMA_FETCH_DEVICE_FUNC(vkCmdCopyBuffer, PFN_vkCmdCopyBuffer, "vkCmdCopyBuffer"); + +#if VMA_VULKAN_VERSION >= 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2, "vkGetBufferMemoryRequirements2"); + VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2, "vkGetImageMemoryRequirements2"); + VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2, "vkBindBufferMemory2"); + VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2, "vkBindImageMemory2"); + } +#endif + +#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2"); + } + else if(m_UseExtMemoryBudget) + { + VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2KHR"); + } +#endif + +#if VMA_DEDICATED_ALLOCATION + if(m_UseKhrDedicatedAllocation) + { + VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2KHR, "vkGetBufferMemoryRequirements2KHR"); + VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2KHR, "vkGetImageMemoryRequirements2KHR"); + } +#endif + +#if VMA_BIND_MEMORY2 + if(m_UseKhrBindMemory2) + { + VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2KHR, "vkBindBufferMemory2KHR"); + VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2KHR, "vkBindImageMemory2KHR"); + } +#endif // #if VMA_BIND_MEMORY2 + +#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2"); + } + else if(m_UseExtMemoryBudget) + { + VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2KHR"); + } +#endif // #if VMA_MEMORY_BUDGET + +#if VMA_VULKAN_VERSION >= 1003000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0)) + { + VMA_FETCH_DEVICE_FUNC(vkGetDeviceBufferMemoryRequirements, PFN_vkGetDeviceBufferMemoryRequirements, "vkGetDeviceBufferMemoryRequirements"); + VMA_FETCH_DEVICE_FUNC(vkGetDeviceImageMemoryRequirements, PFN_vkGetDeviceImageMemoryRequirements, "vkGetDeviceImageMemoryRequirements"); + } +#endif +#if VMA_KHR_MAINTENANCE4 + if(m_UseKhrMaintenance4) + { + VMA_FETCH_DEVICE_FUNC(vkGetDeviceBufferMemoryRequirements, PFN_vkGetDeviceBufferMemoryRequirementsKHR, "vkGetDeviceBufferMemoryRequirementsKHR"); + VMA_FETCH_DEVICE_FUNC(vkGetDeviceImageMemoryRequirements, PFN_vkGetDeviceImageMemoryRequirementsKHR, "vkGetDeviceImageMemoryRequirementsKHR"); + } +#endif + +#undef VMA_FETCH_DEVICE_FUNC +#undef VMA_FETCH_INSTANCE_FUNC +} + +#endif // VMA_DYNAMIC_VULKAN_FUNCTIONS == 1 + +void VmaAllocator_T::ValidateVulkanFunctions() +{ + VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL); + +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrDedicatedAllocation) + { + VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL); + } +#endif + +#if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000 + if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrBindMemory2) + { + VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL); + VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL); + } +#endif + +#if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000 + if(m_UseExtMemoryBudget || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR != VMA_NULL); + } +#endif + + // Not validating these due to suspected driver bugs with these function + // pointers being null despite correct extension or Vulkan version is enabled. + // See issue #397. Their usage in VMA is optional anyway. + // + // VMA_ASSERT(m_VulkanFunctions.vkGetDeviceBufferMemoryRequirements != VMA_NULL); + // VMA_ASSERT(m_VulkanFunctions.vkGetDeviceImageMemoryRequirements != VMA_NULL); +} + +VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex) +{ + const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); + const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size; + const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE; + return VmaAlignUp(isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize, (VkDeviceSize)32); +} + +VkResult VmaAllocator_T::AllocateMemoryOfType( + VmaPool pool, + VkDeviceSize size, + VkDeviceSize alignment, + bool dedicatedPreferred, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + VmaBufferImageUsage dedicatedBufferImageUsage, + const VmaAllocationCreateInfo& createInfo, + uint32_t memTypeIndex, + VmaSuballocationType suballocType, + VmaDedicatedAllocationList& dedicatedAllocations, + VmaBlockVector& blockVector, + size_t allocationCount, + VmaAllocation* pAllocations) +{ + VMA_ASSERT(pAllocations != VMA_NULL); + VMA_DEBUG_LOG_FORMAT(" AllocateMemory: MemoryTypeIndex=%" PRIu32 ", AllocationCount=%zu, Size=%" PRIu64, memTypeIndex, allocationCount, size); + + VmaAllocationCreateInfo finalCreateInfo = createInfo; + VkResult res = CalcMemTypeParams( + finalCreateInfo, + memTypeIndex, + size, + allocationCount); + if(res != VK_SUCCESS) + return res; + + if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) + { + return AllocateDedicatedMemory( + pool, + size, + suballocType, + dedicatedAllocations, + memTypeIndex, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, + (finalCreateInfo.flags & + (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0, + finalCreateInfo.pUserData, + finalCreateInfo.priority, + dedicatedBuffer, + dedicatedImage, + dedicatedBufferImageUsage, + allocationCount, + pAllocations, + blockVector.GetAllocationNextPtr()); + } + else + { + const bool canAllocateDedicated = + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 && + (pool == VK_NULL_HANDLE || !blockVector.HasExplicitBlockSize()); + + if(canAllocateDedicated) + { + // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size. + if(size > blockVector.GetPreferredBlockSize() / 2) + { + dedicatedPreferred = true; + } + // Protection against creating each allocation as dedicated when we reach or exceed heap size/budget, + // which can quickly deplete maxMemoryAllocationCount: Don't prefer dedicated allocations when above + // 3/4 of the maximum allocation count. + if(m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount < UINT32_MAX / 4 && + m_DeviceMemoryCount.load() > m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount * 3 / 4) + { + dedicatedPreferred = false; + } + + if(dedicatedPreferred) + { + res = AllocateDedicatedMemory( + pool, + size, + suballocType, + dedicatedAllocations, + memTypeIndex, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, + (finalCreateInfo.flags & + (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0, + finalCreateInfo.pUserData, + finalCreateInfo.priority, + dedicatedBuffer, + dedicatedImage, + dedicatedBufferImageUsage, + allocationCount, + pAllocations, + blockVector.GetAllocationNextPtr()); + if(res == VK_SUCCESS) + { + // Succeeded: AllocateDedicatedMemory function already filled pMemory, nothing more to do here. + VMA_DEBUG_LOG(" Allocated as DedicatedMemory"); + return VK_SUCCESS; + } + } + } + + res = blockVector.Allocate( + size, + alignment, + finalCreateInfo, + suballocType, + allocationCount, + pAllocations); + if(res == VK_SUCCESS) + return VK_SUCCESS; + + // Try dedicated memory. + if(canAllocateDedicated && !dedicatedPreferred) + { + res = AllocateDedicatedMemory( + pool, + size, + suballocType, + dedicatedAllocations, + memTypeIndex, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0, + (finalCreateInfo.flags & + (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0, + (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0, + finalCreateInfo.pUserData, + finalCreateInfo.priority, + dedicatedBuffer, + dedicatedImage, + dedicatedBufferImageUsage, + allocationCount, + pAllocations, + blockVector.GetAllocationNextPtr()); + if(res == VK_SUCCESS) + { + // Succeeded: AllocateDedicatedMemory function already filled pMemory, nothing more to do here. + VMA_DEBUG_LOG(" Allocated as DedicatedMemory"); + return VK_SUCCESS; + } + } + // Everything failed: Return error code. + VMA_DEBUG_LOG(" vkAllocateMemory FAILED"); + return res; + } +} + +VkResult VmaAllocator_T::AllocateDedicatedMemory( + VmaPool pool, + VkDeviceSize size, + VmaSuballocationType suballocType, + VmaDedicatedAllocationList& dedicatedAllocations, + uint32_t memTypeIndex, + bool map, + bool isUserDataString, + bool isMappingAllowed, + bool canAliasMemory, + void* pUserData, + float priority, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + VmaBufferImageUsage dedicatedBufferImageUsage, + size_t allocationCount, + VmaAllocation* pAllocations, + const void* pNextChain) +{ + VMA_ASSERT(allocationCount > 0 && pAllocations); + + VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO }; + allocInfo.memoryTypeIndex = memTypeIndex; + allocInfo.allocationSize = size; + allocInfo.pNext = pNextChain; + +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR }; + if(!canAliasMemory) + { + if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + if(dedicatedBuffer != VK_NULL_HANDLE) + { + VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE); + dedicatedAllocInfo.buffer = dedicatedBuffer; + VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo); + } + else if(dedicatedImage != VK_NULL_HANDLE) + { + dedicatedAllocInfo.image = dedicatedImage; + VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo); + } + } + } +#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + +#if VMA_BUFFER_DEVICE_ADDRESS + VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR }; + if(m_UseKhrBufferDeviceAddress) + { + bool canContainBufferWithDeviceAddress = true; + if(dedicatedBuffer != VK_NULL_HANDLE) + { + canContainBufferWithDeviceAddress = dedicatedBufferImageUsage == VmaBufferImageUsage::UNKNOWN || + dedicatedBufferImageUsage.Contains(VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT); + } + else if(dedicatedImage != VK_NULL_HANDLE) + { + canContainBufferWithDeviceAddress = false; + } + if(canContainBufferWithDeviceAddress) + { + allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR; + VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo); + } + } +#endif // #if VMA_BUFFER_DEVICE_ADDRESS + +#if VMA_MEMORY_PRIORITY + VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT }; + if(m_UseExtMemoryPriority) + { + VMA_ASSERT(priority >= 0.f && priority <= 1.f); + priorityInfo.priority = priority; + VmaPnextChainPushFront(&allocInfo, &priorityInfo); + } +#endif // #if VMA_MEMORY_PRIORITY + +#if VMA_EXTERNAL_MEMORY + // Attach VkExportMemoryAllocateInfoKHR if necessary. + VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR }; + exportMemoryAllocInfo.handleTypes = GetExternalMemoryHandleTypeFlags(memTypeIndex); + if(exportMemoryAllocInfo.handleTypes != 0) + { + VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo); + } +#endif // #if VMA_EXTERNAL_MEMORY + + size_t allocIndex; + VkResult res = VK_SUCCESS; + for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex) + { + res = AllocateDedicatedMemoryPage( + pool, + size, + suballocType, + memTypeIndex, + allocInfo, + map, + isUserDataString, + isMappingAllowed, + pUserData, + pAllocations + allocIndex); + if(res != VK_SUCCESS) + { + break; + } + } + + if(res == VK_SUCCESS) + { + for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex) + { + dedicatedAllocations.Register(pAllocations[allocIndex]); + } + VMA_DEBUG_LOG_FORMAT(" Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%" PRIu32, allocationCount, memTypeIndex); + } + else + { + // Free all already created allocations. + while(allocIndex--) + { + VmaAllocation currAlloc = pAllocations[allocIndex]; + VkDeviceMemory hMemory = currAlloc->GetMemory(); + + /* + There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory + before vkFreeMemory. + + if(currAlloc->GetMappedData() != VMA_NULL) + { + (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); + } + */ + + FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory); + m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), currAlloc->GetSize()); + m_AllocationObjectAllocator.Free(currAlloc); + } + + memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); + } + + return res; +} + +VkResult VmaAllocator_T::AllocateDedicatedMemoryPage( + VmaPool pool, + VkDeviceSize size, + VmaSuballocationType suballocType, + uint32_t memTypeIndex, + const VkMemoryAllocateInfo& allocInfo, + bool map, + bool isUserDataString, + bool isMappingAllowed, + void* pUserData, + VmaAllocation* pAllocation) +{ + VkDeviceMemory hMemory = VK_NULL_HANDLE; + VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory); + if(res < 0) + { + VMA_DEBUG_LOG(" vkAllocateMemory FAILED"); + return res; + } + + void* pMappedData = VMA_NULL; + if(map) + { + res = (*m_VulkanFunctions.vkMapMemory)( + m_hDevice, + hMemory, + 0, + VK_WHOLE_SIZE, + 0, + &pMappedData); + if(res < 0) + { + VMA_DEBUG_LOG(" vkMapMemory FAILED"); + FreeVulkanMemory(memTypeIndex, size, hMemory); + return res; + } + } + + *pAllocation = m_AllocationObjectAllocator.Allocate(isMappingAllowed); + (*pAllocation)->InitDedicatedAllocation(pool, memTypeIndex, hMemory, suballocType, pMappedData, size); + if (isUserDataString) + (*pAllocation)->SetName(this, (const char*)pUserData); + else + (*pAllocation)->SetUserData(this, pUserData); + m_Budget.AddAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), size); + if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) + { + FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED); + } + + return VK_SUCCESS; +} + +void VmaAllocator_T::GetBufferMemoryRequirements( + VkBuffer hBuffer, + VkMemoryRequirements& memReq, + bool& requiresDedicatedAllocation, + bool& prefersDedicatedAllocation) const +{ +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR }; + memReqInfo.buffer = hBuffer; + + VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR }; + + VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR }; + VmaPnextChainPushFront(&memReq2, &memDedicatedReq); + + (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); + + memReq = memReq2.memoryRequirements; + requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); + prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); + } + else +#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + { + (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq); + requiresDedicatedAllocation = false; + prefersDedicatedAllocation = false; + } +} + +void VmaAllocator_T::GetImageMemoryRequirements( + VkImage hImage, + VkMemoryRequirements& memReq, + bool& requiresDedicatedAllocation, + bool& prefersDedicatedAllocation) const +{ +#if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) + { + VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR }; + memReqInfo.image = hImage; + + VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR }; + + VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR }; + VmaPnextChainPushFront(&memReq2, &memDedicatedReq); + + (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2); + + memReq = memReq2.memoryRequirements; + requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE); + prefersDedicatedAllocation = (memDedicatedReq.prefersDedicatedAllocation != VK_FALSE); + } + else +#endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000 + { + (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq); + requiresDedicatedAllocation = false; + prefersDedicatedAllocation = false; + } +} + +VkResult VmaAllocator_T::FindMemoryTypeIndex( + uint32_t memoryTypeBits, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + VmaBufferImageUsage bufImgUsage, + uint32_t* pMemoryTypeIndex) const +{ + memoryTypeBits &= GetGlobalMemoryTypeBits(); + + if(pAllocationCreateInfo->memoryTypeBits != 0) + { + memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits; + } + + VkMemoryPropertyFlags requiredFlags = 0, preferredFlags = 0, notPreferredFlags = 0; + if(!FindMemoryPreferences( + IsIntegratedGpu(), + *pAllocationCreateInfo, + bufImgUsage, + requiredFlags, preferredFlags, notPreferredFlags)) + { + return VK_ERROR_FEATURE_NOT_PRESENT; + } + + *pMemoryTypeIndex = UINT32_MAX; + uint32_t minCost = UINT32_MAX; + for(uint32_t memTypeIndex = 0, memTypeBit = 1; + memTypeIndex < GetMemoryTypeCount(); + ++memTypeIndex, memTypeBit <<= 1) + { + // This memory type is acceptable according to memoryTypeBits bitmask. + if((memTypeBit & memoryTypeBits) != 0) + { + const VkMemoryPropertyFlags currFlags = + m_MemProps.memoryTypes[memTypeIndex].propertyFlags; + // This memory type contains requiredFlags. + if((requiredFlags & ~currFlags) == 0) + { + // Calculate cost as number of bits from preferredFlags not present in this memory type. + uint32_t currCost = VMA_COUNT_BITS_SET(preferredFlags & ~currFlags) + + VMA_COUNT_BITS_SET(currFlags & notPreferredFlags); + // Remember memory type with lowest cost. + if(currCost < minCost) + { + *pMemoryTypeIndex = memTypeIndex; + if(currCost == 0) + { + return VK_SUCCESS; + } + minCost = currCost; + } + } + } + } + return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT; +} + +VkResult VmaAllocator_T::CalcMemTypeParams( + VmaAllocationCreateInfo& inoutCreateInfo, + uint32_t memTypeIndex, + VkDeviceSize size, + size_t allocationCount) +{ + // If memory type is not HOST_VISIBLE, disable MAPPED. + if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 && + (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0) + { + inoutCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT; + } + + if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 && + (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0) + { + const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex); + VmaBudget heapBudget = {}; + GetHeapBudgets(&heapBudget, heapIndex, 1); + if(heapBudget.usage + size * allocationCount > heapBudget.budget) + { + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + } + return VK_SUCCESS; +} + +VkResult VmaAllocator_T::CalcAllocationParams( + VmaAllocationCreateInfo& inoutCreateInfo, + bool dedicatedRequired, + bool dedicatedPreferred) +{ + VMA_ASSERT((inoutCreateInfo.flags & + (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != + (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT) && + "Specifying both flags VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT and VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT is incorrect."); + VMA_ASSERT((((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT) == 0 || + (inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0)) && + "Specifying VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT requires also VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT."); + if(inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO || inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE || inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_HOST) + { + if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0) + { + VMA_ASSERT((inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0 && + "When using VMA_ALLOCATION_CREATE_MAPPED_BIT and usage = VMA_MEMORY_USAGE_AUTO*, you must also specify VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT."); + } + } + + // If memory is lazily allocated, it should be always dedicated. + if(dedicatedRequired || + inoutCreateInfo.usage == VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED) + { + inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; + } + + if(inoutCreateInfo.pool != VK_NULL_HANDLE) + { + if(inoutCreateInfo.pool->m_BlockVector.HasExplicitBlockSize() && + (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0) + { + VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT while current custom pool doesn't support dedicated allocations."); + return VK_ERROR_FEATURE_NOT_PRESENT; + } + inoutCreateInfo.priority = inoutCreateInfo.pool->m_BlockVector.GetPriority(); + } + + if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 && + (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) + { + VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense."); + return VK_ERROR_FEATURE_NOT_PRESENT; + } + + if(VMA_DEBUG_ALWAYS_DEDICATED_MEMORY && + (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0) + { + inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; + } + + // Non-auto USAGE values imply HOST_ACCESS flags. + // And so does VMA_MEMORY_USAGE_UNKNOWN because it is used with custom pools. + // Which specific flag is used doesn't matter. They change things only when used with VMA_MEMORY_USAGE_AUTO*. + // Otherwise they just protect from assert on mapping. + if(inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO && + inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE && + inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO_PREFER_HOST) + { + if((inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) == 0) + { + inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT; + } + } + + return VK_SUCCESS; +} + +VkResult VmaAllocator_T::AllocateMemory( + const VkMemoryRequirements& vkMemReq, + bool requiresDedicatedAllocation, + bool prefersDedicatedAllocation, + VkBuffer dedicatedBuffer, + VkImage dedicatedImage, + VmaBufferImageUsage dedicatedBufferImageUsage, + const VmaAllocationCreateInfo& createInfo, + VmaSuballocationType suballocType, + size_t allocationCount, + VmaAllocation* pAllocations) +{ + memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount); + + VMA_ASSERT(VmaIsPow2(vkMemReq.alignment)); + + if(vkMemReq.size == 0) + { + return VK_ERROR_INITIALIZATION_FAILED; + } + + VmaAllocationCreateInfo createInfoFinal = createInfo; + VkResult res = CalcAllocationParams(createInfoFinal, requiresDedicatedAllocation, prefersDedicatedAllocation); + if(res != VK_SUCCESS) + return res; + + if(createInfoFinal.pool != VK_NULL_HANDLE) + { + VmaBlockVector& blockVector = createInfoFinal.pool->m_BlockVector; + return AllocateMemoryOfType( + createInfoFinal.pool, + vkMemReq.size, + vkMemReq.alignment, + prefersDedicatedAllocation, + dedicatedBuffer, + dedicatedImage, + dedicatedBufferImageUsage, + createInfoFinal, + blockVector.GetMemoryTypeIndex(), + suballocType, + createInfoFinal.pool->m_DedicatedAllocations, + blockVector, + allocationCount, + pAllocations); + } + else + { + // Bit mask of memory Vulkan types acceptable for this allocation. + uint32_t memoryTypeBits = vkMemReq.memoryTypeBits; + uint32_t memTypeIndex = UINT32_MAX; + res = FindMemoryTypeIndex(memoryTypeBits, &createInfoFinal, dedicatedBufferImageUsage, &memTypeIndex); + // Can't find any single memory type matching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT. + if(res != VK_SUCCESS) + return res; + do + { + VmaBlockVector* blockVector = m_pBlockVectors[memTypeIndex]; + VMA_ASSERT(blockVector && "Trying to use unsupported memory type!"); + res = AllocateMemoryOfType( + VK_NULL_HANDLE, + vkMemReq.size, + vkMemReq.alignment, + requiresDedicatedAllocation || prefersDedicatedAllocation, + dedicatedBuffer, + dedicatedImage, + dedicatedBufferImageUsage, + createInfoFinal, + memTypeIndex, + suballocType, + m_DedicatedAllocations[memTypeIndex], + *blockVector, + allocationCount, + pAllocations); + // Allocation succeeded + if(res == VK_SUCCESS) + return VK_SUCCESS; + + // Remove old memTypeIndex from list of possibilities. + memoryTypeBits &= ~(1u << memTypeIndex); + // Find alternative memTypeIndex. + res = FindMemoryTypeIndex(memoryTypeBits, &createInfoFinal, dedicatedBufferImageUsage, &memTypeIndex); + } while(res == VK_SUCCESS); + + // No other matching memory type index could be found. + // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once. + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } +} + +void VmaAllocator_T::FreeMemory( + size_t allocationCount, + const VmaAllocation* pAllocations) +{ + VMA_ASSERT(pAllocations); + + for(size_t allocIndex = allocationCount; allocIndex--; ) + { + VmaAllocation allocation = pAllocations[allocIndex]; + + if(allocation != VK_NULL_HANDLE) + { + if(VMA_DEBUG_INITIALIZE_ALLOCATIONS) + { + FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED); + } + + allocation->FreeName(this); + + switch(allocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + VmaBlockVector* pBlockVector = VMA_NULL; + VmaPool hPool = allocation->GetParentPool(); + if(hPool != VK_NULL_HANDLE) + { + pBlockVector = &hPool->m_BlockVector; + } + else + { + const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); + pBlockVector = m_pBlockVectors[memTypeIndex]; + VMA_ASSERT(pBlockVector && "Trying to free memory of unsupported type!"); + } + pBlockVector->Free(allocation); + } + break; + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + FreeDedicatedMemory(allocation); + break; + default: + VMA_ASSERT(0); + } + } + } +} + +void VmaAllocator_T::CalculateStatistics(VmaTotalStatistics* pStats) +{ + // Initialize. + VmaClearDetailedStatistics(pStats->total); + for(uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i) + VmaClearDetailedStatistics(pStats->memoryType[i]); + for(uint32_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i) + VmaClearDetailedStatistics(pStats->memoryHeap[i]); + + // Process default pools. + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex]; + if (pBlockVector != VMA_NULL) + pBlockVector->AddDetailedStatistics(pStats->memoryType[memTypeIndex]); + } + + // Process custom pools. + { + VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); + for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) + { + VmaBlockVector& blockVector = pool->m_BlockVector; + const uint32_t memTypeIndex = blockVector.GetMemoryTypeIndex(); + blockVector.AddDetailedStatistics(pStats->memoryType[memTypeIndex]); + pool->m_DedicatedAllocations.AddDetailedStatistics(pStats->memoryType[memTypeIndex]); + } + } + + // Process dedicated allocations. + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + m_DedicatedAllocations[memTypeIndex].AddDetailedStatistics(pStats->memoryType[memTypeIndex]); + } + + // Sum from memory types to memory heaps. + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + const uint32_t memHeapIndex = m_MemProps.memoryTypes[memTypeIndex].heapIndex; + VmaAddDetailedStatistics(pStats->memoryHeap[memHeapIndex], pStats->memoryType[memTypeIndex]); + } + + // Sum from memory heaps to total. + for(uint32_t memHeapIndex = 0; memHeapIndex < GetMemoryHeapCount(); ++memHeapIndex) + VmaAddDetailedStatistics(pStats->total, pStats->memoryHeap[memHeapIndex]); + + VMA_ASSERT(pStats->total.statistics.allocationCount == 0 || + pStats->total.allocationSizeMax >= pStats->total.allocationSizeMin); + VMA_ASSERT(pStats->total.unusedRangeCount == 0 || + pStats->total.unusedRangeSizeMax >= pStats->total.unusedRangeSizeMin); +} + +void VmaAllocator_T::GetHeapBudgets(VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount) +{ +#if VMA_MEMORY_BUDGET + if(m_UseExtMemoryBudget) + { + if(m_Budget.m_OperationsSinceBudgetFetch < 30) + { + VmaMutexLockRead lockRead(m_Budget.m_BudgetMutex, m_UseMutex); + for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets) + { + const uint32_t heapIndex = firstHeap + i; + + outBudgets->statistics.blockCount = m_Budget.m_BlockCount[heapIndex]; + outBudgets->statistics.allocationCount = m_Budget.m_AllocationCount[heapIndex]; + outBudgets->statistics.blockBytes = m_Budget.m_BlockBytes[heapIndex]; + outBudgets->statistics.allocationBytes = m_Budget.m_AllocationBytes[heapIndex]; + + if(m_Budget.m_VulkanUsage[heapIndex] + outBudgets->statistics.blockBytes > m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]) + { + outBudgets->usage = m_Budget.m_VulkanUsage[heapIndex] + + outBudgets->statistics.blockBytes - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]; + } + else + { + outBudgets->usage = 0; + } + + // Have to take MIN with heap size because explicit HeapSizeLimit is included in it. + outBudgets->budget = VMA_MIN( + m_Budget.m_VulkanBudget[heapIndex], m_MemProps.memoryHeaps[heapIndex].size); + } + } + else + { + UpdateVulkanBudget(); // Outside of mutex lock + GetHeapBudgets(outBudgets, firstHeap, heapCount); // Recursion + } + } + else +#endif + { + for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets) + { + const uint32_t heapIndex = firstHeap + i; + + outBudgets->statistics.blockCount = m_Budget.m_BlockCount[heapIndex]; + outBudgets->statistics.allocationCount = m_Budget.m_AllocationCount[heapIndex]; + outBudgets->statistics.blockBytes = m_Budget.m_BlockBytes[heapIndex]; + outBudgets->statistics.allocationBytes = m_Budget.m_AllocationBytes[heapIndex]; + + outBudgets->usage = outBudgets->statistics.blockBytes; + outBudgets->budget = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics. + } + } +} + +void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo) +{ + pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex(); + pAllocationInfo->deviceMemory = hAllocation->GetMemory(); + pAllocationInfo->offset = hAllocation->GetOffset(); + pAllocationInfo->size = hAllocation->GetSize(); + pAllocationInfo->pMappedData = hAllocation->GetMappedData(); + pAllocationInfo->pUserData = hAllocation->GetUserData(); + pAllocationInfo->pName = hAllocation->GetName(); +} + +void VmaAllocator_T::GetAllocationInfo2(VmaAllocation hAllocation, VmaAllocationInfo2* pAllocationInfo) +{ + GetAllocationInfo(hAllocation, &pAllocationInfo->allocationInfo); + + switch (hAllocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + pAllocationInfo->blockSize = hAllocation->GetBlock()->m_pMetadata->GetSize(); + pAllocationInfo->dedicatedMemory = VK_FALSE; + break; + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + pAllocationInfo->blockSize = pAllocationInfo->allocationInfo.size; + pAllocationInfo->dedicatedMemory = VK_TRUE; + break; + default: + VMA_ASSERT(0); + } +} + +VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool) +{ + VMA_DEBUG_LOG_FORMAT(" CreatePool: MemoryTypeIndex=%" PRIu32 ", flags=%" PRIu32, pCreateInfo->memoryTypeIndex, pCreateInfo->flags); + + VmaPoolCreateInfo newCreateInfo = *pCreateInfo; + + // Protection against uninitialized new structure member. If garbage data are left there, this pointer dereference would crash. + if(pCreateInfo->pMemoryAllocateNext) + { + VMA_ASSERT(((const VkBaseInStructure*)pCreateInfo->pMemoryAllocateNext)->sType != 0); + } + + if(newCreateInfo.maxBlockCount == 0) + { + newCreateInfo.maxBlockCount = SIZE_MAX; + } + if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount) + { + return VK_ERROR_INITIALIZATION_FAILED; + } + // Memory type index out of range or forbidden. + if(pCreateInfo->memoryTypeIndex >= GetMemoryTypeCount() || + ((1u << pCreateInfo->memoryTypeIndex) & m_GlobalMemoryTypeBits) == 0) + { + return VK_ERROR_FEATURE_NOT_PRESENT; + } + if(newCreateInfo.minAllocationAlignment > 0) + { + VMA_ASSERT(VmaIsPow2(newCreateInfo.minAllocationAlignment)); + } + + const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex); + + *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize); + + VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks(); + if(res != VK_SUCCESS) + { + vma_delete(this, *pPool); + *pPool = VMA_NULL; + return res; + } + + // Add to m_Pools. + { + VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); + (*pPool)->SetId(m_NextPoolId++); + m_Pools.PushBack(*pPool); + } + + return VK_SUCCESS; +} + +void VmaAllocator_T::DestroyPool(VmaPool pool) +{ + // Remove from m_Pools. + { + VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex); + m_Pools.Remove(pool); + } + + vma_delete(this, pool); +} + +void VmaAllocator_T::GetPoolStatistics(VmaPool pool, VmaStatistics* pPoolStats) +{ + VmaClearStatistics(*pPoolStats); + pool->m_BlockVector.AddStatistics(*pPoolStats); + pool->m_DedicatedAllocations.AddStatistics(*pPoolStats); +} + +void VmaAllocator_T::CalculatePoolStatistics(VmaPool pool, VmaDetailedStatistics* pPoolStats) +{ + VmaClearDetailedStatistics(*pPoolStats); + pool->m_BlockVector.AddDetailedStatistics(*pPoolStats); + pool->m_DedicatedAllocations.AddDetailedStatistics(*pPoolStats); +} + +void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex) +{ + m_CurrentFrameIndex.store(frameIndex); + +#if VMA_MEMORY_BUDGET + if(m_UseExtMemoryBudget) + { + UpdateVulkanBudget(); + } +#endif // #if VMA_MEMORY_BUDGET +} + +VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool) +{ + return hPool->m_BlockVector.CheckCorruption(); +} + +VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits) +{ + VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT; + + // Process default pools. + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex]; + if(pBlockVector != VMA_NULL) + { + VkResult localRes = pBlockVector->CheckCorruption(); + switch(localRes) + { + case VK_ERROR_FEATURE_NOT_PRESENT: + break; + case VK_SUCCESS: + finalRes = VK_SUCCESS; + break; + default: + return localRes; + } + } + } + + // Process custom pools. + { + VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); + for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) + { + if(((1u << pool->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0) + { + VkResult localRes = pool->m_BlockVector.CheckCorruption(); + switch(localRes) + { + case VK_ERROR_FEATURE_NOT_PRESENT: + break; + case VK_SUCCESS: + finalRes = VK_SUCCESS; + break; + default: + return localRes; + } + } + } + } + + return finalRes; +} + +VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory) +{ + AtomicTransactionalIncrement<VMA_ATOMIC_UINT32> deviceMemoryCountIncrement; + const uint64_t prevDeviceMemoryCount = deviceMemoryCountIncrement.Increment(&m_DeviceMemoryCount); +#if VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT + if(prevDeviceMemoryCount >= m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount) + { + return VK_ERROR_TOO_MANY_OBJECTS; + } +#endif + + const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex); + + // HeapSizeLimit is in effect for this heap. + if((m_HeapSizeLimitMask & (1u << heapIndex)) != 0) + { + const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size; + VkDeviceSize blockBytes = m_Budget.m_BlockBytes[heapIndex]; + for(;;) + { + const VkDeviceSize blockBytesAfterAllocation = blockBytes + pAllocateInfo->allocationSize; + if(blockBytesAfterAllocation > heapSize) + { + return VK_ERROR_OUT_OF_DEVICE_MEMORY; + } + if(m_Budget.m_BlockBytes[heapIndex].compare_exchange_strong(blockBytes, blockBytesAfterAllocation)) + { + break; + } + } + } + else + { + m_Budget.m_BlockBytes[heapIndex] += pAllocateInfo->allocationSize; + } + ++m_Budget.m_BlockCount[heapIndex]; + + // VULKAN CALL vkAllocateMemory. + VkResult res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory); + + if(res == VK_SUCCESS) + { +#if VMA_MEMORY_BUDGET + ++m_Budget.m_OperationsSinceBudgetFetch; +#endif + + // Informative callback. + if(m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL) + { + (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize, m_DeviceMemoryCallbacks.pUserData); + } + + deviceMemoryCountIncrement.Commit(); + } + else + { + --m_Budget.m_BlockCount[heapIndex]; + m_Budget.m_BlockBytes[heapIndex] -= pAllocateInfo->allocationSize; + } + + return res; +} + +void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory) +{ + // Informative callback. + if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL) + { + (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size, m_DeviceMemoryCallbacks.pUserData); + } + + // VULKAN CALL vkFreeMemory. + (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks()); + + const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memoryType); + --m_Budget.m_BlockCount[heapIndex]; + m_Budget.m_BlockBytes[heapIndex] -= size; + + --m_DeviceMemoryCount; +} + +VkResult VmaAllocator_T::BindVulkanBuffer( + VkDeviceMemory memory, + VkDeviceSize memoryOffset, + VkBuffer buffer, + const void* pNext) +{ + if(pNext != VMA_NULL) + { +#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 + if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) && + m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL) + { + VkBindBufferMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR }; + bindBufferMemoryInfo.pNext = pNext; + bindBufferMemoryInfo.buffer = buffer; + bindBufferMemoryInfo.memory = memory; + bindBufferMemoryInfo.memoryOffset = memoryOffset; + return (*m_VulkanFunctions.vkBindBufferMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo); + } + else +#endif // #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 + { + return VK_ERROR_EXTENSION_NOT_PRESENT; + } + } + else + { + return (*m_VulkanFunctions.vkBindBufferMemory)(m_hDevice, buffer, memory, memoryOffset); + } +} + +VkResult VmaAllocator_T::BindVulkanImage( + VkDeviceMemory memory, + VkDeviceSize memoryOffset, + VkImage image, + const void* pNext) +{ + if(pNext != VMA_NULL) + { +#if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2 + if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) && + m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL) + { + VkBindImageMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR }; + bindBufferMemoryInfo.pNext = pNext; + bindBufferMemoryInfo.image = image; + bindBufferMemoryInfo.memory = memory; + bindBufferMemoryInfo.memoryOffset = memoryOffset; + return (*m_VulkanFunctions.vkBindImageMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo); + } + else +#endif // #if VMA_BIND_MEMORY2 + { + return VK_ERROR_EXTENSION_NOT_PRESENT; + } + } + else + { + return (*m_VulkanFunctions.vkBindImageMemory)(m_hDevice, image, memory, memoryOffset); + } +} + +VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData) +{ + switch(hAllocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); + char *pBytes = VMA_NULL; + VkResult res = pBlock->Map(this, 1, (void**)&pBytes); + if(res == VK_SUCCESS) + { + *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset(); + hAllocation->BlockAllocMap(); + } + return res; + } + VMA_FALLTHROUGH; // Fallthrough + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + return hAllocation->DedicatedAllocMap(this, ppData); + default: + VMA_ASSERT(0); + return VK_ERROR_MEMORY_MAP_FAILED; + } +} + +void VmaAllocator_T::Unmap(VmaAllocation hAllocation) +{ + switch(hAllocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); + hAllocation->BlockAllocUnmap(); + pBlock->Unmap(this, 1); + } + break; + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + hAllocation->DedicatedAllocUnmap(this); + break; + default: + VMA_ASSERT(0); + } +} + +VkResult VmaAllocator_T::BindBufferMemory( + VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkBuffer hBuffer, + const void* pNext) +{ + VkResult res = VK_ERROR_UNKNOWN_COPY; + switch(hAllocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + res = BindVulkanBuffer(hAllocation->GetMemory(), allocationLocalOffset, hBuffer, pNext); + break; + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock(); + VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block."); + res = pBlock->BindBufferMemory(this, hAllocation, allocationLocalOffset, hBuffer, pNext); + break; + } + default: + VMA_ASSERT(0); + } + return res; +} + +VkResult VmaAllocator_T::BindImageMemory( + VmaAllocation hAllocation, + VkDeviceSize allocationLocalOffset, + VkImage hImage, + const void* pNext) +{ + VkResult res = VK_ERROR_UNKNOWN_COPY; + switch(hAllocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + res = BindVulkanImage(hAllocation->GetMemory(), allocationLocalOffset, hImage, pNext); + break; + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock(); + VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block."); + res = pBlock->BindImageMemory(this, hAllocation, allocationLocalOffset, hImage, pNext); + break; + } + default: + VMA_ASSERT(0); + } + return res; +} + +VkResult VmaAllocator_T::FlushOrInvalidateAllocation( + VmaAllocation hAllocation, + VkDeviceSize offset, VkDeviceSize size, + VMA_CACHE_OPERATION op) +{ + VkResult res = VK_SUCCESS; + + VkMappedMemoryRange memRange = {}; + if(GetFlushOrInvalidateRange(hAllocation, offset, size, memRange)) + { + switch(op) + { + case VMA_CACHE_FLUSH: + res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange); + break; + case VMA_CACHE_INVALIDATE: + res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange); + break; + default: + VMA_ASSERT(0); + } + } + // else: Just ignore this call. + return res; +} + +VkResult VmaAllocator_T::FlushOrInvalidateAllocations( + uint32_t allocationCount, + const VmaAllocation* allocations, + const VkDeviceSize* offsets, const VkDeviceSize* sizes, + VMA_CACHE_OPERATION op) +{ + typedef VmaStlAllocator<VkMappedMemoryRange> RangeAllocator; + typedef VmaSmallVector<VkMappedMemoryRange, RangeAllocator, 16> RangeVector; + RangeVector ranges = RangeVector(RangeAllocator(GetAllocationCallbacks())); + + for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex) + { + const VmaAllocation alloc = allocations[allocIndex]; + const VkDeviceSize offset = offsets != VMA_NULL ? offsets[allocIndex] : 0; + const VkDeviceSize size = sizes != VMA_NULL ? sizes[allocIndex] : VK_WHOLE_SIZE; + VkMappedMemoryRange newRange; + if(GetFlushOrInvalidateRange(alloc, offset, size, newRange)) + { + ranges.push_back(newRange); + } + } + + VkResult res = VK_SUCCESS; + if(!ranges.empty()) + { + switch(op) + { + case VMA_CACHE_FLUSH: + res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data()); + break; + case VMA_CACHE_INVALIDATE: + res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data()); + break; + default: + VMA_ASSERT(0); + } + } + // else: Just ignore this call. + return res; +} + +VkResult VmaAllocator_T::CopyMemoryToAllocation( + const void* pSrcHostPointer, + VmaAllocation dstAllocation, + VkDeviceSize dstAllocationLocalOffset, + VkDeviceSize size) +{ + void* dstMappedData = VMA_NULL; + VkResult res = Map(dstAllocation, &dstMappedData); + if(res == VK_SUCCESS) + { + memcpy((char*)dstMappedData + dstAllocationLocalOffset, pSrcHostPointer, (size_t)size); + Unmap(dstAllocation); + res = FlushOrInvalidateAllocation(dstAllocation, dstAllocationLocalOffset, size, VMA_CACHE_FLUSH); + } + return res; +} + +VkResult VmaAllocator_T::CopyAllocationToMemory( + VmaAllocation srcAllocation, + VkDeviceSize srcAllocationLocalOffset, + void* pDstHostPointer, + VkDeviceSize size) +{ + void* srcMappedData = VMA_NULL; + VkResult res = Map(srcAllocation, &srcMappedData); + if(res == VK_SUCCESS) + { + res = FlushOrInvalidateAllocation(srcAllocation, srcAllocationLocalOffset, size, VMA_CACHE_INVALIDATE); + if(res == VK_SUCCESS) + { + memcpy(pDstHostPointer, (const char*)srcMappedData + srcAllocationLocalOffset, (size_t)size); + Unmap(srcAllocation); + } + } + return res; +} + +void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation) +{ + VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED); + + const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); + VmaPool parentPool = allocation->GetParentPool(); + if(parentPool == VK_NULL_HANDLE) + { + // Default pool + m_DedicatedAllocations[memTypeIndex].Unregister(allocation); + } + else + { + // Custom pool + parentPool->m_DedicatedAllocations.Unregister(allocation); + } + + VkDeviceMemory hMemory = allocation->GetMemory(); + + /* + There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory + before vkFreeMemory. + + if(allocation->GetMappedData() != VMA_NULL) + { + (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory); + } + */ + + FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory); + + m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(allocation->GetMemoryTypeIndex()), allocation->GetSize()); + m_AllocationObjectAllocator.Free(allocation); + + VMA_DEBUG_LOG_FORMAT(" Freed DedicatedMemory MemoryTypeIndex=%" PRIu32, memTypeIndex); +} + +uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const +{ + VkBufferCreateInfo dummyBufCreateInfo; + VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo); + + uint32_t memoryTypeBits = 0; + + // Create buffer. + VkBuffer buf = VK_NULL_HANDLE; + VkResult res = (*GetVulkanFunctions().vkCreateBuffer)( + m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf); + if(res == VK_SUCCESS) + { + // Query for supported memory types. + VkMemoryRequirements memReq; + (*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq); + memoryTypeBits = memReq.memoryTypeBits; + + // Destroy buffer. + (*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks()); + } + + return memoryTypeBits; +} + +uint32_t VmaAllocator_T::CalculateGlobalMemoryTypeBits() const +{ + // Make sure memory information is already fetched. + VMA_ASSERT(GetMemoryTypeCount() > 0); + + uint32_t memoryTypeBits = UINT32_MAX; + + if(!m_UseAmdDeviceCoherentMemory) + { + // Exclude memory types that have VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD. + for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0) + { + memoryTypeBits &= ~(1u << memTypeIndex); + } + } + } + + return memoryTypeBits; +} + +bool VmaAllocator_T::GetFlushOrInvalidateRange( + VmaAllocation allocation, + VkDeviceSize offset, VkDeviceSize size, + VkMappedMemoryRange& outRange) const +{ + const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); + if(size > 0 && IsMemoryTypeNonCoherent(memTypeIndex)) + { + const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize; + const VkDeviceSize allocationSize = allocation->GetSize(); + VMA_ASSERT(offset <= allocationSize); + + outRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE; + outRange.pNext = VMA_NULL; + outRange.memory = allocation->GetMemory(); + + switch(allocation->GetType()) + { + case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED: + outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); + if(size == VK_WHOLE_SIZE) + { + outRange.size = allocationSize - outRange.offset; + } + else + { + VMA_ASSERT(offset + size <= allocationSize); + outRange.size = VMA_MIN( + VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize), + allocationSize - outRange.offset); + } + break; + case VmaAllocation_T::ALLOCATION_TYPE_BLOCK: + { + // 1. Still within this allocation. + outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize); + if(size == VK_WHOLE_SIZE) + { + size = allocationSize - offset; + } + else + { + VMA_ASSERT(offset + size <= allocationSize); + } + outRange.size = VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize); + + // 2. Adjust to whole block. + const VkDeviceSize allocationOffset = allocation->GetOffset(); + VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0); + const VkDeviceSize blockSize = allocation->GetBlock()->m_pMetadata->GetSize(); + outRange.offset += allocationOffset; + outRange.size = VMA_MIN(outRange.size, blockSize - outRange.offset); + + break; + } + default: + VMA_ASSERT(0); + } + return true; + } + return false; +} + +#if VMA_MEMORY_BUDGET +void VmaAllocator_T::UpdateVulkanBudget() +{ + VMA_ASSERT(m_UseExtMemoryBudget); + + VkPhysicalDeviceMemoryProperties2KHR memProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR }; + + VkPhysicalDeviceMemoryBudgetPropertiesEXT budgetProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT }; + VmaPnextChainPushFront(&memProps, &budgetProps); + + GetVulkanFunctions().vkGetPhysicalDeviceMemoryProperties2KHR(m_PhysicalDevice, &memProps); + + { + VmaMutexLockWrite lockWrite(m_Budget.m_BudgetMutex, m_UseMutex); + + for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex) + { + m_Budget.m_VulkanUsage[heapIndex] = budgetProps.heapUsage[heapIndex]; + m_Budget.m_VulkanBudget[heapIndex] = budgetProps.heapBudget[heapIndex]; + m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] = m_Budget.m_BlockBytes[heapIndex].load(); + + // Some bugged drivers return the budget incorrectly, e.g. 0 or much bigger than heap size. + if(m_Budget.m_VulkanBudget[heapIndex] == 0) + { + m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics. + } + else if(m_Budget.m_VulkanBudget[heapIndex] > m_MemProps.memoryHeaps[heapIndex].size) + { + m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size; + } + if(m_Budget.m_VulkanUsage[heapIndex] == 0 && m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] > 0) + { + m_Budget.m_VulkanUsage[heapIndex] = m_Budget.m_BlockBytesAtBudgetFetch[heapIndex]; + } + } + m_Budget.m_OperationsSinceBudgetFetch = 0; + } +} +#endif // VMA_MEMORY_BUDGET + +void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern) +{ + if(VMA_DEBUG_INITIALIZE_ALLOCATIONS && + hAllocation->IsMappingAllowed() && + (m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0) + { + void* pData = VMA_NULL; + VkResult res = Map(hAllocation, &pData); + if(res == VK_SUCCESS) + { + memset(pData, (int)pattern, (size_t)hAllocation->GetSize()); + FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH); + Unmap(hAllocation); + } + else + { + VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation."); + } + } +} + +uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits() +{ + uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load(); + if(memoryTypeBits == UINT32_MAX) + { + memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits(); + m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits); + } + return memoryTypeBits; +} + +#if VMA_STATS_STRING_ENABLED +void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json) +{ + json.WriteString("DefaultPools"); + json.BeginObject(); + { + for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + VmaBlockVector* pBlockVector = m_pBlockVectors[memTypeIndex]; + VmaDedicatedAllocationList& dedicatedAllocList = m_DedicatedAllocations[memTypeIndex]; + if (pBlockVector != VMA_NULL) + { + json.BeginString("Type "); + json.ContinueString(memTypeIndex); + json.EndString(); + json.BeginObject(); + { + json.WriteString("PreferredBlockSize"); + json.WriteNumber(pBlockVector->GetPreferredBlockSize()); + + json.WriteString("Blocks"); + pBlockVector->PrintDetailedMap(json); + + json.WriteString("DedicatedAllocations"); + dedicatedAllocList.BuildStatsString(json); + } + json.EndObject(); + } + } + } + json.EndObject(); + + json.WriteString("CustomPools"); + json.BeginObject(); + { + VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex); + if (!m_Pools.IsEmpty()) + { + for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex) + { + bool displayType = true; + size_t index = 0; + for (VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool)) + { + VmaBlockVector& blockVector = pool->m_BlockVector; + if (blockVector.GetMemoryTypeIndex() == memTypeIndex) + { + if (displayType) + { + json.BeginString("Type "); + json.ContinueString(memTypeIndex); + json.EndString(); + json.BeginArray(); + displayType = false; + } + + json.BeginObject(); + { + json.WriteString("Name"); + json.BeginString(); + json.ContinueString((uint64_t)index++); + if (pool->GetName()) + { + json.ContinueString(" - "); + json.ContinueString(pool->GetName()); + } + json.EndString(); + + json.WriteString("PreferredBlockSize"); + json.WriteNumber(blockVector.GetPreferredBlockSize()); + + json.WriteString("Blocks"); + blockVector.PrintDetailedMap(json); + + json.WriteString("DedicatedAllocations"); + pool->m_DedicatedAllocations.BuildStatsString(json); + } + json.EndObject(); + } + } + + if (!displayType) + json.EndArray(); + } + } + } + json.EndObject(); +} +#endif // VMA_STATS_STRING_ENABLED +#endif // _VMA_ALLOCATOR_T_FUNCTIONS + + +#ifndef _VMA_PUBLIC_INTERFACE +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator( + const VmaAllocatorCreateInfo* pCreateInfo, + VmaAllocator* pAllocator) +{ + VMA_ASSERT(pCreateInfo && pAllocator); + VMA_ASSERT(pCreateInfo->vulkanApiVersion == 0 || + (VK_VERSION_MAJOR(pCreateInfo->vulkanApiVersion) == 1 && VK_VERSION_MINOR(pCreateInfo->vulkanApiVersion) <= 3)); + VMA_DEBUG_LOG("vmaCreateAllocator"); + *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo); + VkResult result = (*pAllocator)->Init(pCreateInfo); + if(result < 0) + { + vma_delete(pCreateInfo->pAllocationCallbacks, *pAllocator); + *pAllocator = VK_NULL_HANDLE; + } + return result; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator( + VmaAllocator allocator) +{ + if(allocator != VK_NULL_HANDLE) + { + VMA_DEBUG_LOG("vmaDestroyAllocator"); + VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks; // Have to copy the callbacks when destroying. + vma_delete(&allocationCallbacks, allocator); + } +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(VmaAllocator allocator, VmaAllocatorInfo* pAllocatorInfo) +{ + VMA_ASSERT(allocator && pAllocatorInfo); + pAllocatorInfo->instance = allocator->m_hInstance; + pAllocatorInfo->physicalDevice = allocator->GetPhysicalDevice(); + pAllocatorInfo->device = allocator->m_hDevice; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties( + VmaAllocator allocator, + const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties) +{ + VMA_ASSERT(allocator && ppPhysicalDeviceProperties); + *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties( + VmaAllocator allocator, + const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties) +{ + VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties); + *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties( + VmaAllocator allocator, + uint32_t memoryTypeIndex, + VkMemoryPropertyFlags* pFlags) +{ + VMA_ASSERT(allocator && pFlags); + VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount()); + *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex( + VmaAllocator allocator, + uint32_t frameIndex) +{ + VMA_ASSERT(allocator); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->SetCurrentFrameIndex(frameIndex); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStatistics( + VmaAllocator allocator, + VmaTotalStatistics* pStats) +{ + VMA_ASSERT(allocator && pStats); + VMA_DEBUG_GLOBAL_MUTEX_LOCK + allocator->CalculateStatistics(pStats); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets( + VmaAllocator allocator, + VmaBudget* pBudgets) +{ + VMA_ASSERT(allocator && pBudgets); + VMA_DEBUG_GLOBAL_MUTEX_LOCK + allocator->GetHeapBudgets(pBudgets, 0, allocator->GetMemoryHeapCount()); +} + +#if VMA_STATS_STRING_ENABLED + +VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString( + VmaAllocator allocator, + char** ppStatsString, + VkBool32 detailedMap) +{ + VMA_ASSERT(allocator && ppStatsString); + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VmaStringBuilder sb(allocator->GetAllocationCallbacks()); + { + VmaBudget budgets[VK_MAX_MEMORY_HEAPS]; + allocator->GetHeapBudgets(budgets, 0, allocator->GetMemoryHeapCount()); + + VmaTotalStatistics stats; + allocator->CalculateStatistics(&stats); + + VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb); + json.BeginObject(); + { + json.WriteString("General"); + json.BeginObject(); + { + const VkPhysicalDeviceProperties& deviceProperties = allocator->m_PhysicalDeviceProperties; + const VkPhysicalDeviceMemoryProperties& memoryProperties = allocator->m_MemProps; + + json.WriteString("API"); + json.WriteString("Vulkan"); + + json.WriteString("apiVersion"); + json.BeginString(); + json.ContinueString(VK_VERSION_MAJOR(deviceProperties.apiVersion)); + json.ContinueString("."); + json.ContinueString(VK_VERSION_MINOR(deviceProperties.apiVersion)); + json.ContinueString("."); + json.ContinueString(VK_VERSION_PATCH(deviceProperties.apiVersion)); + json.EndString(); + + json.WriteString("GPU"); + json.WriteString(deviceProperties.deviceName); + json.WriteString("deviceType"); + json.WriteNumber(static_cast<uint32_t>(deviceProperties.deviceType)); + + json.WriteString("maxMemoryAllocationCount"); + json.WriteNumber(deviceProperties.limits.maxMemoryAllocationCount); + json.WriteString("bufferImageGranularity"); + json.WriteNumber(deviceProperties.limits.bufferImageGranularity); + json.WriteString("nonCoherentAtomSize"); + json.WriteNumber(deviceProperties.limits.nonCoherentAtomSize); + + json.WriteString("memoryHeapCount"); + json.WriteNumber(memoryProperties.memoryHeapCount); + json.WriteString("memoryTypeCount"); + json.WriteNumber(memoryProperties.memoryTypeCount); + } + json.EndObject(); + } + { + json.WriteString("Total"); + VmaPrintDetailedStatistics(json, stats.total); + } + { + json.WriteString("MemoryInfo"); + json.BeginObject(); + { + for (uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex) + { + json.BeginString("Heap "); + json.ContinueString(heapIndex); + json.EndString(); + json.BeginObject(); + { + const VkMemoryHeap& heapInfo = allocator->m_MemProps.memoryHeaps[heapIndex]; + json.WriteString("Flags"); + json.BeginArray(true); + { + if (heapInfo.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) + json.WriteString("DEVICE_LOCAL"); + #if VMA_VULKAN_VERSION >= 1001000 + if (heapInfo.flags & VK_MEMORY_HEAP_MULTI_INSTANCE_BIT) + json.WriteString("MULTI_INSTANCE"); + #endif + + VkMemoryHeapFlags flags = heapInfo.flags & + ~(VK_MEMORY_HEAP_DEVICE_LOCAL_BIT + #if VMA_VULKAN_VERSION >= 1001000 + | VK_MEMORY_HEAP_MULTI_INSTANCE_BIT + #endif + ); + if (flags != 0) + json.WriteNumber(flags); + } + json.EndArray(); + + json.WriteString("Size"); + json.WriteNumber(heapInfo.size); + + json.WriteString("Budget"); + json.BeginObject(); + { + json.WriteString("BudgetBytes"); + json.WriteNumber(budgets[heapIndex].budget); + json.WriteString("UsageBytes"); + json.WriteNumber(budgets[heapIndex].usage); + } + json.EndObject(); + + json.WriteString("Stats"); + VmaPrintDetailedStatistics(json, stats.memoryHeap[heapIndex]); + + json.WriteString("MemoryPools"); + json.BeginObject(); + { + for (uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex) + { + if (allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex) + { + json.BeginString("Type "); + json.ContinueString(typeIndex); + json.EndString(); + json.BeginObject(); + { + json.WriteString("Flags"); + json.BeginArray(true); + { + VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags; + if (flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) + json.WriteString("DEVICE_LOCAL"); + if (flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) + json.WriteString("HOST_VISIBLE"); + if (flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) + json.WriteString("HOST_COHERENT"); + if (flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) + json.WriteString("HOST_CACHED"); + if (flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) + json.WriteString("LAZILY_ALLOCATED"); + #if VMA_VULKAN_VERSION >= 1001000 + if (flags & VK_MEMORY_PROPERTY_PROTECTED_BIT) + json.WriteString("PROTECTED"); + #endif + #if VK_AMD_device_coherent_memory + if (flags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) + json.WriteString("DEVICE_COHERENT_AMD"); + if (flags & VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY) + json.WriteString("DEVICE_UNCACHED_AMD"); + #endif + + flags &= ~(VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT + #if VMA_VULKAN_VERSION >= 1001000 + | VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT + #endif + #if VK_AMD_device_coherent_memory + | VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY + | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY + #endif + | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT + | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT + | VK_MEMORY_PROPERTY_HOST_CACHED_BIT); + if (flags != 0) + json.WriteNumber(flags); + } + json.EndArray(); + + json.WriteString("Stats"); + VmaPrintDetailedStatistics(json, stats.memoryType[typeIndex]); + } + json.EndObject(); + } + } + + } + json.EndObject(); + } + json.EndObject(); + } + } + json.EndObject(); + } + + if (detailedMap == VK_TRUE) + allocator->PrintDetailedMap(json); + + json.EndObject(); + } + + *ppStatsString = VmaCreateStringCopy(allocator->GetAllocationCallbacks(), sb.GetData(), sb.GetLength()); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString( + VmaAllocator allocator, + char* pStatsString) +{ + if(pStatsString != VMA_NULL) + { + VMA_ASSERT(allocator); + VmaFreeString(allocator->GetAllocationCallbacks(), pStatsString); + } +} + +#endif // VMA_STATS_STRING_ENABLED + +/* +This function is not protected by any mutex because it just reads immutable data. +*/ +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex( + VmaAllocator allocator, + uint32_t memoryTypeBits, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + uint32_t* pMemoryTypeIndex) +{ + VMA_ASSERT(allocator != VK_NULL_HANDLE); + VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); + VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); + + return allocator->FindMemoryTypeIndex(memoryTypeBits, pAllocationCreateInfo, VmaBufferImageUsage::UNKNOWN, pMemoryTypeIndex); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo( + VmaAllocator allocator, + const VkBufferCreateInfo* pBufferCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + uint32_t* pMemoryTypeIndex) +{ + VMA_ASSERT(allocator != VK_NULL_HANDLE); + VMA_ASSERT(pBufferCreateInfo != VMA_NULL); + VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); + VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); + + const VkDevice hDev = allocator->m_hDevice; + const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions(); + VkResult res; + +#if VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000 + if(funcs->vkGetDeviceBufferMemoryRequirements) + { + // Can query straight from VkBufferCreateInfo :) + VkDeviceBufferMemoryRequirementsKHR devBufMemReq = {VK_STRUCTURE_TYPE_DEVICE_BUFFER_MEMORY_REQUIREMENTS_KHR}; + devBufMemReq.pCreateInfo = pBufferCreateInfo; + + VkMemoryRequirements2 memReq = {VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2}; + (*funcs->vkGetDeviceBufferMemoryRequirements)(hDev, &devBufMemReq, &memReq); + + res = allocator->FindMemoryTypeIndex( + memReq.memoryRequirements.memoryTypeBits, pAllocationCreateInfo, + VmaBufferImageUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5), pMemoryTypeIndex); + } + else +#endif // VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000 + { + // Must create a dummy buffer to query :( + VkBuffer hBuffer = VK_NULL_HANDLE; + res = funcs->vkCreateBuffer( + hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer); + if(res == VK_SUCCESS) + { + VkMemoryRequirements memReq = {}; + funcs->vkGetBufferMemoryRequirements(hDev, hBuffer, &memReq); + + res = allocator->FindMemoryTypeIndex( + memReq.memoryTypeBits, pAllocationCreateInfo, + VmaBufferImageUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5), pMemoryTypeIndex); + + funcs->vkDestroyBuffer( + hDev, hBuffer, allocator->GetAllocationCallbacks()); + } + } + return res; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo( + VmaAllocator allocator, + const VkImageCreateInfo* pImageCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + uint32_t* pMemoryTypeIndex) +{ + VMA_ASSERT(allocator != VK_NULL_HANDLE); + VMA_ASSERT(pImageCreateInfo != VMA_NULL); + VMA_ASSERT(pAllocationCreateInfo != VMA_NULL); + VMA_ASSERT(pMemoryTypeIndex != VMA_NULL); + + const VkDevice hDev = allocator->m_hDevice; + const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions(); + VkResult res; + +#if VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000 + if(funcs->vkGetDeviceImageMemoryRequirements) + { + // Can query straight from VkImageCreateInfo :) + VkDeviceImageMemoryRequirementsKHR devImgMemReq = {VK_STRUCTURE_TYPE_DEVICE_IMAGE_MEMORY_REQUIREMENTS_KHR}; + devImgMemReq.pCreateInfo = pImageCreateInfo; + VMA_ASSERT(pImageCreateInfo->tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT_COPY && (pImageCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT_COPY) == 0 && + "Cannot use this VkImageCreateInfo with vmaFindMemoryTypeIndexForImageInfo as I don't know what to pass as VkDeviceImageMemoryRequirements::planeAspect."); + + VkMemoryRequirements2 memReq = {VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2}; + (*funcs->vkGetDeviceImageMemoryRequirements)(hDev, &devImgMemReq, &memReq); + + res = allocator->FindMemoryTypeIndex( + memReq.memoryRequirements.memoryTypeBits, pAllocationCreateInfo, + VmaBufferImageUsage(*pImageCreateInfo), pMemoryTypeIndex); + } + else +#endif // VMA_KHR_MAINTENANCE4 || VMA_VULKAN_VERSION >= 1003000 + { + // Must create a dummy image to query :( + VkImage hImage = VK_NULL_HANDLE; + res = funcs->vkCreateImage( + hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage); + if(res == VK_SUCCESS) + { + VkMemoryRequirements memReq = {}; + funcs->vkGetImageMemoryRequirements(hDev, hImage, &memReq); + + res = allocator->FindMemoryTypeIndex( + memReq.memoryTypeBits, pAllocationCreateInfo, + VmaBufferImageUsage(*pImageCreateInfo), pMemoryTypeIndex); + + funcs->vkDestroyImage( + hDev, hImage, allocator->GetAllocationCallbacks()); + } + } + return res; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool( + VmaAllocator allocator, + const VmaPoolCreateInfo* pCreateInfo, + VmaPool* pPool) +{ + VMA_ASSERT(allocator && pCreateInfo && pPool); + + VMA_DEBUG_LOG("vmaCreatePool"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->CreatePool(pCreateInfo, pPool); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool( + VmaAllocator allocator, + VmaPool pool) +{ + VMA_ASSERT(allocator); + + if(pool == VK_NULL_HANDLE) + { + return; + } + + VMA_DEBUG_LOG("vmaDestroyPool"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->DestroyPool(pool); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStatistics( + VmaAllocator allocator, + VmaPool pool, + VmaStatistics* pPoolStats) +{ + VMA_ASSERT(allocator && pool && pPoolStats); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->GetPoolStatistics(pool, pPoolStats); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaCalculatePoolStatistics( + VmaAllocator allocator, + VmaPool pool, + VmaDetailedStatistics* pPoolStats) +{ + VMA_ASSERT(allocator && pool && pPoolStats); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->CalculatePoolStatistics(pool, pPoolStats); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool) +{ + VMA_ASSERT(allocator && pool); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VMA_DEBUG_LOG("vmaCheckPoolCorruption"); + + return allocator->CheckPoolCorruption(pool); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName( + VmaAllocator allocator, + VmaPool pool, + const char** ppName) +{ + VMA_ASSERT(allocator && pool && ppName); + + VMA_DEBUG_LOG("vmaGetPoolName"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + *ppName = pool->GetName(); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName( + VmaAllocator allocator, + VmaPool pool, + const char* pName) +{ + VMA_ASSERT(allocator && pool); + + VMA_DEBUG_LOG("vmaSetPoolName"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + pool->SetName(pName); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory( + VmaAllocator allocator, + const VkMemoryRequirements* pVkMemoryRequirements, + const VmaAllocationCreateInfo* pCreateInfo, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation); + + VMA_DEBUG_LOG("vmaAllocateMemory"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkResult result = allocator->AllocateMemory( + *pVkMemoryRequirements, + false, // requiresDedicatedAllocation + false, // prefersDedicatedAllocation + VK_NULL_HANDLE, // dedicatedBuffer + VK_NULL_HANDLE, // dedicatedImage + VmaBufferImageUsage::UNKNOWN, // dedicatedBufferImageUsage + *pCreateInfo, + VMA_SUBALLOCATION_TYPE_UNKNOWN, + 1, // allocationCount + pAllocation); + + if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return result; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages( + VmaAllocator allocator, + const VkMemoryRequirements* pVkMemoryRequirements, + const VmaAllocationCreateInfo* pCreateInfo, + size_t allocationCount, + VmaAllocation* pAllocations, + VmaAllocationInfo* pAllocationInfo) +{ + if(allocationCount == 0) + { + return VK_SUCCESS; + } + + VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations); + + VMA_DEBUG_LOG("vmaAllocateMemoryPages"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkResult result = allocator->AllocateMemory( + *pVkMemoryRequirements, + false, // requiresDedicatedAllocation + false, // prefersDedicatedAllocation + VK_NULL_HANDLE, // dedicatedBuffer + VK_NULL_HANDLE, // dedicatedImage + VmaBufferImageUsage::UNKNOWN, // dedicatedBufferImageUsage + *pCreateInfo, + VMA_SUBALLOCATION_TYPE_UNKNOWN, + allocationCount, + pAllocations); + + if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS) + { + for(size_t i = 0; i < allocationCount; ++i) + { + allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i); + } + } + + return result; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer( + VmaAllocator allocator, + VkBuffer buffer, + const VmaAllocationCreateInfo* pCreateInfo, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation); + + VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetBufferMemoryRequirements(buffer, vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation); + + VkResult result = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + buffer, // dedicatedBuffer + VK_NULL_HANDLE, // dedicatedImage + VmaBufferImageUsage::UNKNOWN, // dedicatedBufferImageUsage + *pCreateInfo, + VMA_SUBALLOCATION_TYPE_BUFFER, + 1, // allocationCount + pAllocation); + + if(pAllocationInfo && result == VK_SUCCESS) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return result; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage( + VmaAllocator allocator, + VkImage image, + const VmaAllocationCreateInfo* pCreateInfo, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation); + + VMA_DEBUG_LOG("vmaAllocateMemoryForImage"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetImageMemoryRequirements(image, vkMemReq, + requiresDedicatedAllocation, prefersDedicatedAllocation); + + VkResult result = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + VK_NULL_HANDLE, // dedicatedBuffer + image, // dedicatedImage + VmaBufferImageUsage::UNKNOWN, // dedicatedBufferImageUsage + *pCreateInfo, + VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN, + 1, // allocationCount + pAllocation); + + if(pAllocationInfo && result == VK_SUCCESS) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return result; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory( + VmaAllocator allocator, + VmaAllocation allocation) +{ + VMA_ASSERT(allocator); + + if(allocation == VK_NULL_HANDLE) + { + return; + } + + VMA_DEBUG_LOG("vmaFreeMemory"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->FreeMemory( + 1, // allocationCount + &allocation); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages( + VmaAllocator allocator, + size_t allocationCount, + const VmaAllocation* pAllocations) +{ + if(allocationCount == 0) + { + return; + } + + VMA_ASSERT(allocator); + + VMA_DEBUG_LOG("vmaFreeMemoryPages"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->FreeMemory(allocationCount, pAllocations); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo( + VmaAllocator allocator, + VmaAllocation allocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && allocation && pAllocationInfo); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->GetAllocationInfo(allocation, pAllocationInfo); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo2( + VmaAllocator allocator, + VmaAllocation allocation, + VmaAllocationInfo2* pAllocationInfo) +{ + VMA_ASSERT(allocator && allocation && pAllocationInfo); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->GetAllocationInfo2(allocation, pAllocationInfo); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData( + VmaAllocator allocator, + VmaAllocation allocation, + void* pUserData) +{ + VMA_ASSERT(allocator && allocation); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocation->SetUserData(allocator, pUserData); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationName( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + const char* VMA_NULLABLE pName) +{ + allocation->SetName(allocator, pName); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkMemoryPropertyFlags* VMA_NOT_NULL pFlags) +{ + VMA_ASSERT(allocator && allocation && pFlags); + const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex(); + *pFlags = allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory( + VmaAllocator allocator, + VmaAllocation allocation, + void** ppData) +{ + VMA_ASSERT(allocator && allocation && ppData); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->Map(allocation, ppData); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory( + VmaAllocator allocator, + VmaAllocation allocation) +{ + VMA_ASSERT(allocator && allocation); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + allocator->Unmap(allocation); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation( + VmaAllocator allocator, + VmaAllocation allocation, + VkDeviceSize offset, + VkDeviceSize size) +{ + VMA_ASSERT(allocator && allocation); + + VMA_DEBUG_LOG("vmaFlushAllocation"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation( + VmaAllocator allocator, + VmaAllocation allocation, + VkDeviceSize offset, + VkDeviceSize size) +{ + VMA_ASSERT(allocator && allocation); + + VMA_DEBUG_LOG("vmaInvalidateAllocation"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations( + VmaAllocator allocator, + uint32_t allocationCount, + const VmaAllocation* allocations, + const VkDeviceSize* offsets, + const VkDeviceSize* sizes) +{ + VMA_ASSERT(allocator); + + if(allocationCount == 0) + { + return VK_SUCCESS; + } + + VMA_ASSERT(allocations); + + VMA_DEBUG_LOG("vmaFlushAllocations"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_FLUSH); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations( + VmaAllocator allocator, + uint32_t allocationCount, + const VmaAllocation* allocations, + const VkDeviceSize* offsets, + const VkDeviceSize* sizes) +{ + VMA_ASSERT(allocator); + + if(allocationCount == 0) + { + return VK_SUCCESS; + } + + VMA_ASSERT(allocations); + + VMA_DEBUG_LOG("vmaInvalidateAllocations"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_INVALIDATE); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCopyMemoryToAllocation( + VmaAllocator allocator, + const void* pSrcHostPointer, + VmaAllocation dstAllocation, + VkDeviceSize dstAllocationLocalOffset, + VkDeviceSize size) +{ + VMA_ASSERT(allocator && pSrcHostPointer && dstAllocation); + + if(size == 0) + { + return VK_SUCCESS; + } + + VMA_DEBUG_LOG("vmaCopyMemoryToAllocation"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->CopyMemoryToAllocation(pSrcHostPointer, dstAllocation, dstAllocationLocalOffset, size); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCopyAllocationToMemory( + VmaAllocator allocator, + VmaAllocation srcAllocation, + VkDeviceSize srcAllocationLocalOffset, + void* pDstHostPointer, + VkDeviceSize size) +{ + VMA_ASSERT(allocator && srcAllocation && pDstHostPointer); + + if(size == 0) + { + return VK_SUCCESS; + } + + VMA_DEBUG_LOG("vmaCopyAllocationToMemory"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->CopyAllocationToMemory(srcAllocation, srcAllocationLocalOffset, pDstHostPointer, size); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption( + VmaAllocator allocator, + uint32_t memoryTypeBits) +{ + VMA_ASSERT(allocator); + + VMA_DEBUG_LOG("vmaCheckCorruption"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->CheckCorruption(memoryTypeBits); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentation( + VmaAllocator allocator, + const VmaDefragmentationInfo* pInfo, + VmaDefragmentationContext* pContext) +{ + VMA_ASSERT(allocator && pInfo && pContext); + + VMA_DEBUG_LOG("vmaBeginDefragmentation"); + + if (pInfo->pool != VMA_NULL) + { + // Check if run on supported algorithms + if (pInfo->pool->m_BlockVector.GetAlgorithm() & VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) + return VK_ERROR_FEATURE_NOT_PRESENT; + } + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + *pContext = vma_new(allocator, VmaDefragmentationContext_T)(allocator, *pInfo); + return VK_SUCCESS; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaEndDefragmentation( + VmaAllocator allocator, + VmaDefragmentationContext context, + VmaDefragmentationStats* pStats) +{ + VMA_ASSERT(allocator && context); + + VMA_DEBUG_LOG("vmaEndDefragmentation"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + if (pStats) + context->GetStats(*pStats); + vma_delete(allocator, context); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass( + VmaAllocator VMA_NOT_NULL allocator, + VmaDefragmentationContext VMA_NOT_NULL context, + VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo) +{ + VMA_ASSERT(context && pPassInfo); + + VMA_DEBUG_LOG("vmaBeginDefragmentationPass"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return context->DefragmentPassBegin(*pPassInfo); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass( + VmaAllocator VMA_NOT_NULL allocator, + VmaDefragmentationContext VMA_NOT_NULL context, + VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo) +{ + VMA_ASSERT(context && pPassInfo); + + VMA_DEBUG_LOG("vmaEndDefragmentationPass"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return context->DefragmentPassEnd(*pPassInfo); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory( + VmaAllocator allocator, + VmaAllocation allocation, + VkBuffer buffer) +{ + VMA_ASSERT(allocator && allocation && buffer); + + VMA_DEBUG_LOG("vmaBindBufferMemory"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->BindBufferMemory(allocation, 0, buffer, VMA_NULL); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2( + VmaAllocator allocator, + VmaAllocation allocation, + VkDeviceSize allocationLocalOffset, + VkBuffer buffer, + const void* pNext) +{ + VMA_ASSERT(allocator && allocation && buffer); + + VMA_DEBUG_LOG("vmaBindBufferMemory2"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->BindBufferMemory(allocation, allocationLocalOffset, buffer, pNext); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory( + VmaAllocator allocator, + VmaAllocation allocation, + VkImage image) +{ + VMA_ASSERT(allocator && allocation && image); + + VMA_DEBUG_LOG("vmaBindImageMemory"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->BindImageMemory(allocation, 0, image, VMA_NULL); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2( + VmaAllocator allocator, + VmaAllocation allocation, + VkDeviceSize allocationLocalOffset, + VkImage image, + const void* pNext) +{ + VMA_ASSERT(allocator && allocation && image); + + VMA_DEBUG_LOG("vmaBindImageMemory2"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + return allocator->BindImageMemory(allocation, allocationLocalOffset, image, pNext); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer( + VmaAllocator allocator, + const VkBufferCreateInfo* pBufferCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + VkBuffer* pBuffer, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation); + + if(pBufferCreateInfo->size == 0) + { + return VK_ERROR_INITIALIZATION_FAILED; + } + if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 && + !allocator->m_UseKhrBufferDeviceAddress) + { + VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used."); + return VK_ERROR_INITIALIZATION_FAILED; + } + + VMA_DEBUG_LOG("vmaCreateBuffer"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + *pBuffer = VK_NULL_HANDLE; + *pAllocation = VK_NULL_HANDLE; + + // 1. Create VkBuffer. + VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)( + allocator->m_hDevice, + pBufferCreateInfo, + allocator->GetAllocationCallbacks(), + pBuffer); + if(res >= 0) + { + // 2. vkGetBufferMemoryRequirements. + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq, + requiresDedicatedAllocation, prefersDedicatedAllocation); + + // 3. Allocate memory using allocator. + res = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + *pBuffer, // dedicatedBuffer + VK_NULL_HANDLE, // dedicatedImage + VmaBufferImageUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5), // dedicatedBufferImageUsage + *pAllocationCreateInfo, + VMA_SUBALLOCATION_TYPE_BUFFER, + 1, // allocationCount + pAllocation); + + if(res >= 0) + { + // 3. Bind buffer with memory. + if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) + { + res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL); + } + if(res >= 0) + { + // All steps succeeded. + #if VMA_STATS_STRING_ENABLED + (*pAllocation)->InitBufferUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5); + #endif + if(pAllocationInfo != VMA_NULL) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return VK_SUCCESS; + } + allocator->FreeMemory( + 1, // allocationCount + pAllocation); + *pAllocation = VK_NULL_HANDLE; + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); + *pBuffer = VK_NULL_HANDLE; + return res; + } + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); + *pBuffer = VK_NULL_HANDLE; + return res; + } + return res; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment( + VmaAllocator allocator, + const VkBufferCreateInfo* pBufferCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + VkDeviceSize minAlignment, + VkBuffer* pBuffer, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && VmaIsPow2(minAlignment) && pBuffer && pAllocation); + + if(pBufferCreateInfo->size == 0) + { + return VK_ERROR_INITIALIZATION_FAILED; + } + if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 && + !allocator->m_UseKhrBufferDeviceAddress) + { + VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used."); + return VK_ERROR_INITIALIZATION_FAILED; + } + + VMA_DEBUG_LOG("vmaCreateBufferWithAlignment"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + *pBuffer = VK_NULL_HANDLE; + *pAllocation = VK_NULL_HANDLE; + + // 1. Create VkBuffer. + VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)( + allocator->m_hDevice, + pBufferCreateInfo, + allocator->GetAllocationCallbacks(), + pBuffer); + if(res >= 0) + { + // 2. vkGetBufferMemoryRequirements. + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq, + requiresDedicatedAllocation, prefersDedicatedAllocation); + + // 2a. Include minAlignment + vkMemReq.alignment = VMA_MAX(vkMemReq.alignment, minAlignment); + + // 3. Allocate memory using allocator. + res = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + *pBuffer, // dedicatedBuffer + VK_NULL_HANDLE, // dedicatedImage + VmaBufferImageUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5), // dedicatedBufferImageUsage + *pAllocationCreateInfo, + VMA_SUBALLOCATION_TYPE_BUFFER, + 1, // allocationCount + pAllocation); + + if(res >= 0) + { + // 3. Bind buffer with memory. + if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) + { + res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL); + } + if(res >= 0) + { + // All steps succeeded. + #if VMA_STATS_STRING_ENABLED + (*pAllocation)->InitBufferUsage(*pBufferCreateInfo, allocator->m_UseKhrMaintenance5); + #endif + if(pAllocationInfo != VMA_NULL) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return VK_SUCCESS; + } + allocator->FreeMemory( + 1, // allocationCount + pAllocation); + *pAllocation = VK_NULL_HANDLE; + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); + *pBuffer = VK_NULL_HANDLE; + return res; + } + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); + *pBuffer = VK_NULL_HANDLE; + return res; + } + return res; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, + VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer) +{ + return vmaCreateAliasingBuffer2(allocator, allocation, 0, pBufferCreateInfo, pBuffer); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer2( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkDeviceSize allocationLocalOffset, + const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo, + VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer) +{ + VMA_ASSERT(allocator && pBufferCreateInfo && pBuffer && allocation); + VMA_ASSERT(allocationLocalOffset + pBufferCreateInfo->size <= allocation->GetSize()); + + VMA_DEBUG_LOG("vmaCreateAliasingBuffer2"); + + *pBuffer = VK_NULL_HANDLE; + + if (pBufferCreateInfo->size == 0) + { + return VK_ERROR_INITIALIZATION_FAILED; + } + if ((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 && + !allocator->m_UseKhrBufferDeviceAddress) + { + VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used."); + return VK_ERROR_INITIALIZATION_FAILED; + } + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + // 1. Create VkBuffer. + VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)( + allocator->m_hDevice, + pBufferCreateInfo, + allocator->GetAllocationCallbacks(), + pBuffer); + if (res >= 0) + { + // 2. Bind buffer with memory. + res = allocator->BindBufferMemory(allocation, allocationLocalOffset, *pBuffer, VMA_NULL); + if (res >= 0) + { + return VK_SUCCESS; + } + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks()); + } + return res; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer( + VmaAllocator allocator, + VkBuffer buffer, + VmaAllocation allocation) +{ + VMA_ASSERT(allocator); + + if(buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) + { + return; + } + + VMA_DEBUG_LOG("vmaDestroyBuffer"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + if(buffer != VK_NULL_HANDLE) + { + (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks()); + } + + if(allocation != VK_NULL_HANDLE) + { + allocator->FreeMemory( + 1, // allocationCount + &allocation); + } +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage( + VmaAllocator allocator, + const VkImageCreateInfo* pImageCreateInfo, + const VmaAllocationCreateInfo* pAllocationCreateInfo, + VkImage* pImage, + VmaAllocation* pAllocation, + VmaAllocationInfo* pAllocationInfo) +{ + VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation); + + if(pImageCreateInfo->extent.width == 0 || + pImageCreateInfo->extent.height == 0 || + pImageCreateInfo->extent.depth == 0 || + pImageCreateInfo->mipLevels == 0 || + pImageCreateInfo->arrayLayers == 0) + { + return VK_ERROR_INITIALIZATION_FAILED; + } + + VMA_DEBUG_LOG("vmaCreateImage"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + *pImage = VK_NULL_HANDLE; + *pAllocation = VK_NULL_HANDLE; + + // 1. Create VkImage. + VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)( + allocator->m_hDevice, + pImageCreateInfo, + allocator->GetAllocationCallbacks(), + pImage); + if(res >= 0) + { + VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ? + VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL : + VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR; + + // 2. Allocate memory using allocator. + VkMemoryRequirements vkMemReq = {}; + bool requiresDedicatedAllocation = false; + bool prefersDedicatedAllocation = false; + allocator->GetImageMemoryRequirements(*pImage, vkMemReq, + requiresDedicatedAllocation, prefersDedicatedAllocation); + + res = allocator->AllocateMemory( + vkMemReq, + requiresDedicatedAllocation, + prefersDedicatedAllocation, + VK_NULL_HANDLE, // dedicatedBuffer + *pImage, // dedicatedImage + VmaBufferImageUsage(*pImageCreateInfo), // dedicatedBufferImageUsage + *pAllocationCreateInfo, + suballocType, + 1, // allocationCount + pAllocation); + + if(res >= 0) + { + // 3. Bind image with memory. + if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0) + { + res = allocator->BindImageMemory(*pAllocation, 0, *pImage, VMA_NULL); + } + if(res >= 0) + { + // All steps succeeded. + #if VMA_STATS_STRING_ENABLED + (*pAllocation)->InitImageUsage(*pImageCreateInfo); + #endif + if(pAllocationInfo != VMA_NULL) + { + allocator->GetAllocationInfo(*pAllocation, pAllocationInfo); + } + + return VK_SUCCESS; + } + allocator->FreeMemory( + 1, // allocationCount + pAllocation); + *pAllocation = VK_NULL_HANDLE; + (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); + *pImage = VK_NULL_HANDLE; + return res; + } + (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); + *pImage = VK_NULL_HANDLE; + return res; + } + return res; +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, + VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage) +{ + return vmaCreateAliasingImage2(allocator, allocation, 0, pImageCreateInfo, pImage); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage2( + VmaAllocator VMA_NOT_NULL allocator, + VmaAllocation VMA_NOT_NULL allocation, + VkDeviceSize allocationLocalOffset, + const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo, + VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage) +{ + VMA_ASSERT(allocator && pImageCreateInfo && pImage && allocation); + + *pImage = VK_NULL_HANDLE; + + VMA_DEBUG_LOG("vmaCreateImage2"); + + if (pImageCreateInfo->extent.width == 0 || + pImageCreateInfo->extent.height == 0 || + pImageCreateInfo->extent.depth == 0 || + pImageCreateInfo->mipLevels == 0 || + pImageCreateInfo->arrayLayers == 0) + { + return VK_ERROR_INITIALIZATION_FAILED; + } + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + // 1. Create VkImage. + VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)( + allocator->m_hDevice, + pImageCreateInfo, + allocator->GetAllocationCallbacks(), + pImage); + if (res >= 0) + { + // 2. Bind image with memory. + res = allocator->BindImageMemory(allocation, allocationLocalOffset, *pImage, VMA_NULL); + if (res >= 0) + { + return VK_SUCCESS; + } + (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks()); + } + return res; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage( + VmaAllocator VMA_NOT_NULL allocator, + VkImage VMA_NULLABLE_NON_DISPATCHABLE image, + VmaAllocation VMA_NULLABLE allocation) +{ + VMA_ASSERT(allocator); + + if(image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE) + { + return; + } + + VMA_DEBUG_LOG("vmaDestroyImage"); + + VMA_DEBUG_GLOBAL_MUTEX_LOCK + + if(image != VK_NULL_HANDLE) + { + (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks()); + } + if(allocation != VK_NULL_HANDLE) + { + allocator->FreeMemory( + 1, // allocationCount + &allocation); + } +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock( + const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo, + VmaVirtualBlock VMA_NULLABLE * VMA_NOT_NULL pVirtualBlock) +{ + VMA_ASSERT(pCreateInfo && pVirtualBlock); + VMA_ASSERT(pCreateInfo->size > 0); + VMA_DEBUG_LOG("vmaCreateVirtualBlock"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + *pVirtualBlock = vma_new(pCreateInfo->pAllocationCallbacks, VmaVirtualBlock_T)(*pCreateInfo); + VkResult res = (*pVirtualBlock)->Init(); + if(res < 0) + { + vma_delete(pCreateInfo->pAllocationCallbacks, *pVirtualBlock); + *pVirtualBlock = VK_NULL_HANDLE; + } + return res; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock(VmaVirtualBlock VMA_NULLABLE virtualBlock) +{ + if(virtualBlock != VK_NULL_HANDLE) + { + VMA_DEBUG_LOG("vmaDestroyVirtualBlock"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + VkAllocationCallbacks allocationCallbacks = virtualBlock->m_AllocationCallbacks; // Have to copy the callbacks when destroying. + vma_delete(&allocationCallbacks, virtualBlock); + } +} + +VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty(VmaVirtualBlock VMA_NOT_NULL virtualBlock) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); + VMA_DEBUG_LOG("vmaIsVirtualBlockEmpty"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + return virtualBlock->IsEmpty() ? VK_TRUE : VK_FALSE; +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo(VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pVirtualAllocInfo != VMA_NULL); + VMA_DEBUG_LOG("vmaGetVirtualAllocationInfo"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + virtualBlock->GetAllocationInfo(allocation, *pVirtualAllocInfo); +} + +VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate(VmaVirtualBlock VMA_NOT_NULL virtualBlock, + const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation, + VkDeviceSize* VMA_NULLABLE pOffset) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pCreateInfo != VMA_NULL && pAllocation != VMA_NULL); + VMA_DEBUG_LOG("vmaVirtualAllocate"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + return virtualBlock->Allocate(*pCreateInfo, *pAllocation, pOffset); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree(VmaVirtualBlock VMA_NOT_NULL virtualBlock, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation) +{ + if(allocation != VK_NULL_HANDLE) + { + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); + VMA_DEBUG_LOG("vmaVirtualFree"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + virtualBlock->Free(allocation); + } +} + +VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock(VmaVirtualBlock VMA_NOT_NULL virtualBlock) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); + VMA_DEBUG_LOG("vmaClearVirtualBlock"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + virtualBlock->Clear(); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData(VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, void* VMA_NULLABLE pUserData) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); + VMA_DEBUG_LOG("vmaSetVirtualAllocationUserData"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + virtualBlock->SetAllocationUserData(allocation, pUserData); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualBlockStatistics(VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaStatistics* VMA_NOT_NULL pStats) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pStats != VMA_NULL); + VMA_DEBUG_LOG("vmaGetVirtualBlockStatistics"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + virtualBlock->GetStatistics(*pStats); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStatistics(VmaVirtualBlock VMA_NOT_NULL virtualBlock, + VmaDetailedStatistics* VMA_NOT_NULL pStats) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pStats != VMA_NULL); + VMA_DEBUG_LOG("vmaCalculateVirtualBlockStatistics"); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + virtualBlock->CalculateDetailedStatistics(*pStats); +} + +#if VMA_STATS_STRING_ENABLED + +VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock, + char* VMA_NULLABLE * VMA_NOT_NULL ppStatsString, VkBool32 detailedMap) +{ + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && ppStatsString != VMA_NULL); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + const VkAllocationCallbacks* allocationCallbacks = virtualBlock->GetAllocationCallbacks(); + VmaStringBuilder sb(allocationCallbacks); + virtualBlock->BuildStatsString(detailedMap != VK_FALSE, sb); + *ppStatsString = VmaCreateStringCopy(allocationCallbacks, sb.GetData(), sb.GetLength()); +} + +VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock, + char* VMA_NULLABLE pStatsString) +{ + if(pStatsString != VMA_NULL) + { + VMA_ASSERT(virtualBlock != VK_NULL_HANDLE); + VMA_DEBUG_GLOBAL_MUTEX_LOCK; + VmaFreeString(virtualBlock->GetAllocationCallbacks(), pStatsString); + } +} +#endif // VMA_STATS_STRING_ENABLED +#endif // _VMA_PUBLIC_INTERFACE +#endif // VMA_IMPLEMENTATION + +/** +\page quick_start Quick start + +\section quick_start_project_setup Project setup + +Vulkan Memory Allocator comes in form of a "stb-style" single header file. +While you can pull the entire repository e.g. as Git module, there is also Cmake script provided, +you don't need to build it as a separate library project. +You can add file "vk_mem_alloc.h" directly to your project and submit it to code repository next to your other source files. + +"Single header" doesn't mean that everything is contained in C/C++ declarations, +like it tends to be in case of inline functions or C++ templates. +It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro. +If you don't do it properly, it will result in linker errors. + +To do it properly: + +-# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library. + This includes declarations of all members of the library. +-# In exactly one CPP file define following macro before this include. + It enables also internal definitions. + +\code +#define VMA_IMPLEMENTATION +#include "vk_mem_alloc.h" +\endcode + +It may be a good idea to create dedicated CPP file just for this purpose, e.g. "VmaUsage.cpp". + +This library includes header `<vulkan/vulkan.h>`, which in turn +includes `<windows.h>` on Windows. If you need some specific macros defined +before including these headers (like `WIN32_LEAN_AND_MEAN` or +`WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define +them before every `#include` of this library. +It may be a good idea to create a dedicate header file for this purpose, e.g. "VmaUsage.h", +that will be included in other source files instead of VMA header directly. + +This library is written in C++, but has C-compatible interface. +Thus, you can include and use "vk_mem_alloc.h" in C or C++ code, but full +implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C. +Some features of C++14 are used and required. Features of C++20 are used optionally when available. +Some headers of standard C and C++ library are used, but STL containers, RTTI, or C++ exceptions are not used. + + +\section quick_start_initialization Initialization + +VMA offers library interface in a style similar to Vulkan, with object handles like #VmaAllocation, +structures describing parameters of objects to be created like #VmaAllocationCreateInfo, +and errors codes returned from functions using `VkResult` type. + +The first and the main object that needs to be created is #VmaAllocator. +It represents the initialization of the entire library. +Only one such object should be created per `VkDevice`. +You should create it at program startup, after `VkDevice` was created, and before any device memory allocator needs to be made. +It must be destroyed before `VkDevice` is destroyed. + +At program startup: + +-# Initialize Vulkan to have `VkInstance`, `VkPhysicalDevice`, `VkDevice` object. +-# Fill VmaAllocatorCreateInfo structure and call vmaCreateAllocator() to create #VmaAllocator object. + +Only members `physicalDevice`, `device`, `instance` are required. +However, you should inform the library which Vulkan version do you use by setting +VmaAllocatorCreateInfo::vulkanApiVersion and which extensions did you enable +by setting VmaAllocatorCreateInfo::flags. +Otherwise, VMA would use only features of Vulkan 1.0 core with no extensions. +See below for details. + +\subsection quick_start_initialization_selecting_vulkan_version Selecting Vulkan version + +VMA supports Vulkan version down to 1.0, for backward compatibility. +If you want to use higher version, you need to inform the library about it. +This is a two-step process. + +<b>Step 1: Compile time.</b> By default, VMA compiles with code supporting the highest +Vulkan version found in the included `<vulkan/vulkan.h>` that is also supported by the library. +If this is OK, you don't need to do anything. +However, if you want to compile VMA as if only some lower Vulkan version was available, +define macro `VMA_VULKAN_VERSION` before every `#include "vk_mem_alloc.h"`. +It should have decimal numeric value in form of ABBBCCC, where A = major, BBB = minor, CCC = patch Vulkan version. +For example, to compile against Vulkan 1.2: + +\code +#define VMA_VULKAN_VERSION 1002000 // Vulkan 1.2 +#include "vk_mem_alloc.h" +\endcode + +<b>Step 2: Runtime.</b> Even when compiled with higher Vulkan version available, +VMA can use only features of a lower version, which is configurable during creation of the #VmaAllocator object. +By default, only Vulkan 1.0 is used. +To initialize the allocator with support for higher Vulkan version, you need to set member +VmaAllocatorCreateInfo::vulkanApiVersion to an appropriate value, e.g. using constants like `VK_API_VERSION_1_2`. +See code sample below. + +\subsection quick_start_initialization_importing_vulkan_functions Importing Vulkan functions + +You may need to configure importing Vulkan functions. There are 3 ways to do this: + +-# **If you link with Vulkan static library** (e.g. "vulkan-1.lib" on Windows): + - You don't need to do anything. + - VMA will use these, as macro `VMA_STATIC_VULKAN_FUNCTIONS` is defined to 1 by default. +-# **If you want VMA to fetch pointers to Vulkan functions dynamically** using `vkGetInstanceProcAddr`, + `vkGetDeviceProcAddr` (this is the option presented in the example below): + - Define `VMA_STATIC_VULKAN_FUNCTIONS` to 0, `VMA_DYNAMIC_VULKAN_FUNCTIONS` to 1. + - Provide pointers to these two functions via VmaVulkanFunctions::vkGetInstanceProcAddr, + VmaVulkanFunctions::vkGetDeviceProcAddr. + - The library will fetch pointers to all other functions it needs internally. +-# **If you fetch pointers to all Vulkan functions in a custom way**, e.g. using some loader like + [Volk](https://github.com/zeux/volk): + - Define `VMA_STATIC_VULKAN_FUNCTIONS` and `VMA_DYNAMIC_VULKAN_FUNCTIONS` to 0. + - Pass these pointers via structure #VmaVulkanFunctions. + +\subsection quick_start_initialization_enabling_extensions Enabling extensions + +VMA can automatically use following Vulkan extensions. +If you found them available on the selected physical device and you enabled them +while creating `VkInstance` / `VkDevice` object, inform VMA about their availability +by setting appropriate flags in VmaAllocatorCreateInfo::flags. + +Vulkan extension | VMA flag +------------------------------|----------------------------------------------------- +VK_KHR_dedicated_allocation | #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT +VK_KHR_bind_memory2 | #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT +VK_KHR_maintenance4 | #VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE4_BIT +VK_KHR_maintenance5 | #VMA_ALLOCATOR_CREATE_KHR_MAINTENANCE5_BIT +VK_EXT_memory_budget | #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT +VK_KHR_buffer_device_address | #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT +VK_EXT_memory_priority | #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT +VK_AMD_device_coherent_memory | #VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT + +Example with fetching pointers to Vulkan functions dynamically: + +\code +#define VMA_STATIC_VULKAN_FUNCTIONS 0 +#define VMA_DYNAMIC_VULKAN_FUNCTIONS 1 +#include "vk_mem_alloc.h" + +... + +VmaVulkanFunctions vulkanFunctions = {}; +vulkanFunctions.vkGetInstanceProcAddr = &vkGetInstanceProcAddr; +vulkanFunctions.vkGetDeviceProcAddr = &vkGetDeviceProcAddr; + +VmaAllocatorCreateInfo allocatorCreateInfo = {}; +allocatorCreateInfo.flags = VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT; +allocatorCreateInfo.vulkanApiVersion = VK_API_VERSION_1_2; +allocatorCreateInfo.physicalDevice = physicalDevice; +allocatorCreateInfo.device = device; +allocatorCreateInfo.instance = instance; +allocatorCreateInfo.pVulkanFunctions = &vulkanFunctions; + +VmaAllocator allocator; +vmaCreateAllocator(&allocatorCreateInfo, &allocator); + +// Entire program... + +// At the end, don't forget to: +vmaDestroyAllocator(allocator); +\endcode + + +\subsection quick_start_initialization_other_config Other configuration options + +There are additional configuration options available through preprocessor macros that you can define +before including VMA header and through parameters passed in #VmaAllocatorCreateInfo. +They include a possibility to use your own callbacks for host memory allocations (`VkAllocationCallbacks`), +callbacks for device memory allocations (instead of `vkAllocateMemory`, `vkFreeMemory`), +or your custom `VMA_ASSERT` macro, among others. +For more information, see: @ref configuration. + + +\section quick_start_resource_allocation Resource allocation + +When you want to create a buffer or image: + +-# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure. +-# Fill VmaAllocationCreateInfo structure. +-# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory + already allocated and bound to it, plus #VmaAllocation objects that represents its underlying memory. + +\code +VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufferInfo.size = 65536; +bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.usage = VMA_MEMORY_USAGE_AUTO; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +\endcode + +Don't forget to destroy your buffer and allocation objects when no longer needed: + +\code +vmaDestroyBuffer(allocator, buffer, allocation); +\endcode + +If you need to map the buffer, you must set flag +#VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT +in VmaAllocationCreateInfo::flags. +There are many additional parameters that can control the choice of memory type to be used for the allocation +and other features. +For more information, see documentation chapters: @ref choosing_memory_type, @ref memory_mapping. + + +\page choosing_memory_type Choosing memory type + +Physical devices in Vulkan support various combinations of memory heaps and +types. Help with choosing correct and optimal memory type for your specific +resource is one of the key features of this library. You can use it by filling +appropriate members of VmaAllocationCreateInfo structure, as described below. +You can also combine multiple methods. + +-# If you just want to find memory type index that meets your requirements, you + can use function: vmaFindMemoryTypeIndexForBufferInfo(), + vmaFindMemoryTypeIndexForImageInfo(), vmaFindMemoryTypeIndex(). +-# If you want to allocate a region of device memory without association with any + specific image or buffer, you can use function vmaAllocateMemory(). Usage of + this function is not recommended and usually not needed. + vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once, + which may be useful for sparse binding. +-# If you already have a buffer or an image created, you want to allocate memory + for it and then you will bind it yourself, you can use function + vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(). + For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory() + or their extended versions: vmaBindBufferMemory2(), vmaBindImageMemory2(). +-# If you want to create a buffer or an image, allocate memory for it, and bind + them together, all in one call, you can use function vmaCreateBuffer(), + vmaCreateImage(). + <b>This is the easiest and recommended way to use this library!</b> + +When using 3. or 4., the library internally queries Vulkan for memory types +supported for that buffer or image (function `vkGetBufferMemoryRequirements()`) +and uses only one of these types. + +If no memory type can be found that meets all the requirements, these functions +return `VK_ERROR_FEATURE_NOT_PRESENT`. + +You can leave VmaAllocationCreateInfo structure completely filled with zeros. +It means no requirements are specified for memory type. +It is valid, although not very useful. + +\section choosing_memory_type_usage Usage + +The easiest way to specify memory requirements is to fill member +VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage. +It defines high level, common usage types. +Since version 3 of the library, it is recommended to use #VMA_MEMORY_USAGE_AUTO to let it select best memory type for your resource automatically. + +For example, if you want to create a uniform buffer that will be filled using +transfer only once or infrequently and then used for rendering every frame as a uniform buffer, you can +do it using following code. The buffer will most likely end up in a memory type with +`VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT` to be fast to access by the GPU device. + +\code +VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufferInfo.size = 65536; +bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.usage = VMA_MEMORY_USAGE_AUTO; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +\endcode + +If you have a preference for putting the resource in GPU (device) memory or CPU (host) memory +on systems with discrete graphics card that have the memories separate, you can use +#VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE or #VMA_MEMORY_USAGE_AUTO_PREFER_HOST. + +When using `VMA_MEMORY_USAGE_AUTO*` while you want to map the allocated memory, +you also need to specify one of the host access flags: +#VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT. +This will help the library decide about preferred memory type to ensure it has `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` +so you can map it. + +For example, a staging buffer that will be filled via mapped pointer and then +used as a source of transfer to the buffer described previously can be created like this. +It will likely end up in a memory type that is `HOST_VISIBLE` and `HOST_COHERENT` +but not `HOST_CACHED` (meaning uncached, write-combined) and not `DEVICE_LOCAL` (meaning system RAM). + +\code +VkBufferCreateInfo stagingBufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +stagingBufferInfo.size = 65536; +stagingBufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; + +VmaAllocationCreateInfo stagingAllocInfo = {}; +stagingAllocInfo.usage = VMA_MEMORY_USAGE_AUTO; +stagingAllocInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT; + +VkBuffer stagingBuffer; +VmaAllocation stagingAllocation; +vmaCreateBuffer(allocator, &stagingBufferInfo, &stagingAllocInfo, &stagingBuffer, &stagingAllocation, nullptr); +\endcode + +For more examples of creating different kinds of resources, see chapter \ref usage_patterns. +See also: @ref memory_mapping. + +Usage values `VMA_MEMORY_USAGE_AUTO*` are legal to use only when the library knows +about the resource being created by having `VkBufferCreateInfo` / `VkImageCreateInfo` passed, +so they work with functions like: vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo() etc. +If you allocate raw memory using function vmaAllocateMemory(), you have to use other means of selecting +memory type, as described below. + +\note +Old usage values (`VMA_MEMORY_USAGE_GPU_ONLY`, `VMA_MEMORY_USAGE_CPU_ONLY`, +`VMA_MEMORY_USAGE_CPU_TO_GPU`, `VMA_MEMORY_USAGE_GPU_TO_CPU`, `VMA_MEMORY_USAGE_CPU_COPY`) +are still available and work same way as in previous versions of the library +for backward compatibility, but they are deprecated. + +\section choosing_memory_type_required_preferred_flags Required and preferred flags + +You can specify more detailed requirements by filling members +VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags +with a combination of bits from enum `VkMemoryPropertyFlags`. For example, +if you want to create a buffer that will be persistently mapped on host (so it +must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`, +use following code: + +\code +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; +allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT; +allocInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +\endcode + +A memory type is chosen that has all the required flags and as many preferred +flags set as possible. + +Value passed in VmaAllocationCreateInfo::usage is internally converted to a set of required and preferred flags, +plus some extra "magic" (heuristics). + +\section choosing_memory_type_explicit_memory_types Explicit memory types + +If you inspected memory types available on the physical device and <b>you have +a preference for memory types that you want to use</b>, you can fill member +VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set +means that a memory type with that index is allowed to be used for the +allocation. Special value 0, just like `UINT32_MAX`, means there are no +restrictions to memory type index. + +Please note that this member is NOT just a memory type index. +Still you can use it to choose just one, specific memory type. +For example, if you already determined that your buffer should be created in +memory type 2, use following code: + +\code +uint32_t memoryTypeIndex = 2; + +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.memoryTypeBits = 1u << memoryTypeIndex; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr); +\endcode + +You can also use this parameter to <b>exclude some memory types</b>. +If you inspect memory heaps and types available on the current physical device and +you determine that for some reason you don't want to use a specific memory type for the allocation, +you can enable automatic memory type selection but exclude certain memory type or types +by setting all bits of `memoryTypeBits` to 1 except the ones you choose. + +\code +// ... +uint32_t excludedMemoryTypeIndex = 2; +VmaAllocationCreateInfo allocInfo = {}; +allocInfo.usage = VMA_MEMORY_USAGE_AUTO; +allocInfo.memoryTypeBits = ~(1u << excludedMemoryTypeIndex); +// ... +\endcode + + +\section choosing_memory_type_custom_memory_pools Custom memory pools + +If you allocate from custom memory pool, all the ways of specifying memory +requirements described above are not applicable and the aforementioned members +of VmaAllocationCreateInfo structure are ignored. Memory type is selected +explicitly when creating the pool and then used to make all the allocations from +that pool. For further details, see \ref custom_memory_pools. + +\section choosing_memory_type_dedicated_allocations Dedicated allocations + +Memory for allocations is reserved out of larger block of `VkDeviceMemory` +allocated from Vulkan internally. That is the main feature of this whole library. +You can still request a separate memory block to be created for an allocation, +just like you would do in a trivial solution without using any allocator. +In that case, a buffer or image is always bound to that memory at offset 0. +This is called a "dedicated allocation". +You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. +The library can also internally decide to use dedicated allocation in some cases, e.g.: + +- When the size of the allocation is large. +- When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled + and it reports that dedicated allocation is required or recommended for the resource. +- When allocation of next big memory block fails due to not enough device memory, + but allocation with the exact requested size succeeds. + + +\page memory_mapping Memory mapping + +To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`, +to be able to read from it or write to it in CPU code. +Mapping is possible only of memory allocated from a memory type that has +`VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag. +Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose. +You can use them directly with memory allocated by this library, +but it is not recommended because of following issue: +Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed. +This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan. +It is also not thread-safe. +Because of this, Vulkan Memory Allocator provides following facilities: + +\note If you want to be able to map an allocation, you need to specify one of the flags +#VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT +in VmaAllocationCreateInfo::flags. These flags are required for an allocation to be mappable +when using #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` enum values. +For other usage values they are ignored and every such allocation made in `HOST_VISIBLE` memory type is mappable, +but these flags can still be used for consistency. + +\section memory_mapping_copy_functions Copy functions + +The easiest way to copy data from a host pointer to an allocation is to use convenience function vmaCopyMemoryToAllocation(). +It automatically maps the Vulkan memory temporarily (if not already mapped), performs `memcpy`, +and calls `vkFlushMappedMemoryRanges` (if required - if memory type is not `HOST_COHERENT`). + +It is also the safest one, because using `memcpy` avoids a risk of accidentally introducing memory reads +(e.g. by doing `pMappedVectors[i] += v`), which may be very slow on memory types that are not `HOST_CACHED`. + +\code +struct ConstantBuffer +{ + ... +}; +ConstantBuffer constantBufferData = ... + +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = sizeof(ConstantBuffer); +bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT; + +VkBuffer buf; +VmaAllocation alloc; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, nullptr); + +vmaCopyMemoryToAllocation(allocator, &constantBufferData, alloc, 0, sizeof(ConstantBuffer)); +\endcode + +Copy in the other direction - from an allocation to a host pointer can be performed the same way using function vmaCopyAllocationToMemory(). + +\section memory_mapping_mapping_functions Mapping functions + +The library provides following functions for mapping of a specific allocation: vmaMapMemory(), vmaUnmapMemory(). +They are safer and more convenient to use than standard Vulkan functions. +You can map an allocation multiple times simultaneously - mapping is reference-counted internally. +You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block. +The way it is implemented is that the library always maps entire memory block, not just region of the allocation. +For further details, see description of vmaMapMemory() function. +Example: + +\code +// Having these objects initialized: +struct ConstantBuffer +{ + ... +}; +ConstantBuffer constantBufferData = ... + +VmaAllocator allocator = ... +VkBuffer constantBuffer = ... +VmaAllocation constantBufferAllocation = ... + +// You can map and fill your buffer using following code: + +void* mappedData; +vmaMapMemory(allocator, constantBufferAllocation, &mappedData); +memcpy(mappedData, &constantBufferData, sizeof(constantBufferData)); +vmaUnmapMemory(allocator, constantBufferAllocation); +\endcode + +When mapping, you may see a warning from Vulkan validation layer similar to this one: + +<i>Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.</i> + +It happens because the library maps entire `VkDeviceMemory` block, where different +types of images and buffers may end up together, especially on GPUs with unified memory like Intel. +You can safely ignore it if you are sure you access only memory of the intended +object that you wanted to map. + + +\section memory_mapping_persistently_mapped_memory Persistently mapped memory + +Keeping your memory persistently mapped is generally OK in Vulkan. +You don't need to unmap it before using its data on the GPU. +The library provides a special feature designed for that: +Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in +VmaAllocationCreateInfo::flags stay mapped all the time, +so you can just access CPU pointer to it any time +without a need to call any "map" or "unmap" function. +Example: + +\code +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = sizeof(ConstantBuffer); +bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | + VMA_ALLOCATION_CREATE_MAPPED_BIT; + +VkBuffer buf; +VmaAllocation alloc; +VmaAllocationInfo allocInfo; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); + +// Buffer is already mapped. You can access its memory. +memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData)); +\endcode + +\note #VMA_ALLOCATION_CREATE_MAPPED_BIT by itself doesn't guarantee that the allocation will end up +in a mappable memory type. +For this, you need to also specify #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or +#VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT. +#VMA_ALLOCATION_CREATE_MAPPED_BIT only guarantees that if the memory is `HOST_VISIBLE`, the allocation will be mapped on creation. +For an example of how to make use of this fact, see section \ref usage_patterns_advanced_data_uploading. + +\section memory_mapping_cache_control Cache flush and invalidate + +Memory in Vulkan doesn't need to be unmapped before using it on GPU, +but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set, +you need to manually **invalidate** cache before reading of mapped pointer +and **flush** cache after writing to mapped pointer. +Map/unmap operations don't do that automatically. +Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`, +`vkInvalidateMappedMemoryRanges()`, but this library provides more convenient +functions that refer to given allocation object: vmaFlushAllocation(), +vmaInvalidateAllocation(), +or multiple objects at once: vmaFlushAllocations(), vmaInvalidateAllocations(). + +Regions of memory specified for flush/invalidate must be aligned to +`VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library. +In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations +within blocks are aligned to this value, so their offsets are always multiply of +`nonCoherentAtomSize` and two different allocations never share same "line" of this size. + +Also, Windows drivers from all 3 PC GPU vendors (AMD, Intel, NVIDIA) +currently provide `HOST_COHERENT` flag on all memory types that are +`HOST_VISIBLE`, so on PC you may not need to bother. + + +\page staying_within_budget Staying within budget + +When developing a graphics-intensive game or program, it is important to avoid allocating +more GPU memory than it is physically available. When the memory is over-committed, +various bad things can happen, depending on the specific GPU, graphics driver, and +operating system: + +- It may just work without any problems. +- The application may slow down because some memory blocks are moved to system RAM + and the GPU has to access them through PCI Express bus. +- A new allocation may take very long time to complete, even few seconds, and possibly + freeze entire system. +- The new allocation may fail with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. +- It may even result in GPU crash (TDR), observed as `VK_ERROR_DEVICE_LOST` + returned somewhere later. + +\section staying_within_budget_querying_for_budget Querying for budget + +To query for current memory usage and available budget, use function vmaGetHeapBudgets(). +Returned structure #VmaBudget contains quantities expressed in bytes, per Vulkan memory heap. + +Please note that this function returns different information and works faster than +vmaCalculateStatistics(). vmaGetHeapBudgets() can be called every frame or even before every +allocation, while vmaCalculateStatistics() is intended to be used rarely, +only to obtain statistical information, e.g. for debugging purposes. + +It is recommended to use <b>VK_EXT_memory_budget</b> device extension to obtain information +about the budget from Vulkan device. VMA is able to use this extension automatically. +When not enabled, the allocator behaves same way, but then it estimates current usage +and available budget based on its internal information and Vulkan memory heap sizes, +which may be less precise. In order to use this extension: + +1. Make sure extensions VK_EXT_memory_budget and VK_KHR_get_physical_device_properties2 + required by it are available and enable them. Please note that the first is a device + extension and the second is instance extension! +2. Use flag #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT when creating #VmaAllocator object. +3. Make sure to call vmaSetCurrentFrameIndex() every frame. Budget is queried from + Vulkan inside of it to avoid overhead of querying it with every allocation. + +\section staying_within_budget_controlling_memory_usage Controlling memory usage + +There are many ways in which you can try to stay within the budget. + +First, when making new allocation requires allocating a new memory block, the library +tries not to exceed the budget automatically. If a block with default recommended size +(e.g. 256 MB) would go over budget, a smaller block is allocated, possibly even +dedicated memory for just this resource. + +If the size of the requested resource plus current memory usage is more than the +budget, by default the library still tries to create it, leaving it to the Vulkan +implementation whether the allocation succeeds or fails. You can change this behavior +by using #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag. With it, the allocation is +not made if it would exceed the budget or if the budget is already exceeded. +VMA then tries to make the allocation from the next eligible Vulkan memory type. +The all of them fail, the call then fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. +Example usage pattern may be to pass the #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag +when creating resources that are not essential for the application (e.g. the texture +of a specific object) and not to pass it when creating critically important resources +(e.g. render targets). + +On AMD graphics cards there is a custom vendor extension available: <b>VK_AMD_memory_overallocation_behavior</b> +that allows to control the behavior of the Vulkan implementation in out-of-memory cases - +whether it should fail with an error code or still allow the allocation. +Usage of this extension involves only passing extra structure on Vulkan device creation, +so it is out of scope of this library. + +Finally, you can also use #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT flag to make sure +a new allocation is created only when it fits inside one of the existing memory blocks. +If it would require to allocate a new block, if fails instead with `VK_ERROR_OUT_OF_DEVICE_MEMORY`. +This also ensures that the function call is very fast because it never goes to Vulkan +to obtain a new block. + +\note Creating \ref custom_memory_pools with VmaPoolCreateInfo::minBlockCount +set to more than 0 will currently try to allocate memory blocks without checking whether they +fit within budget. + + +\page resource_aliasing Resource aliasing (overlap) + +New explicit graphics APIs (Vulkan and Direct3D 12), thanks to manual memory +management, give an opportunity to alias (overlap) multiple resources in the +same region of memory - a feature not available in the old APIs (Direct3D 11, OpenGL). +It can be useful to save video memory, but it must be used with caution. + +For example, if you know the flow of your whole render frame in advance, you +are going to use some intermediate textures or buffers only during a small range of render passes, +and you know these ranges don't overlap in time, you can bind these resources to +the same place in memory, even if they have completely different parameters (width, height, format etc.). + +![Resource aliasing (overlap)](../gfx/Aliasing.png) + +Such scenario is possible using VMA, but you need to create your images manually. +Then you need to calculate parameters of an allocation to be made using formula: + +- allocation size = max(size of each image) +- allocation alignment = max(alignment of each image) +- allocation memoryTypeBits = bitwise AND(memoryTypeBits of each image) + +Following example shows two different images bound to the same place in memory, +allocated to fit largest of them. + +\code +// A 512x512 texture to be sampled. +VkImageCreateInfo img1CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; +img1CreateInfo.imageType = VK_IMAGE_TYPE_2D; +img1CreateInfo.extent.width = 512; +img1CreateInfo.extent.height = 512; +img1CreateInfo.extent.depth = 1; +img1CreateInfo.mipLevels = 10; +img1CreateInfo.arrayLayers = 1; +img1CreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB; +img1CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; +img1CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; +img1CreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; +img1CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; + +// A full screen texture to be used as color attachment. +VkImageCreateInfo img2CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; +img2CreateInfo.imageType = VK_IMAGE_TYPE_2D; +img2CreateInfo.extent.width = 1920; +img2CreateInfo.extent.height = 1080; +img2CreateInfo.extent.depth = 1; +img2CreateInfo.mipLevels = 1; +img2CreateInfo.arrayLayers = 1; +img2CreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM; +img2CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; +img2CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; +img2CreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; +img2CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; + +VkImage img1; +res = vkCreateImage(device, &img1CreateInfo, nullptr, &img1); +VkImage img2; +res = vkCreateImage(device, &img2CreateInfo, nullptr, &img2); + +VkMemoryRequirements img1MemReq; +vkGetImageMemoryRequirements(device, img1, &img1MemReq); +VkMemoryRequirements img2MemReq; +vkGetImageMemoryRequirements(device, img2, &img2MemReq); + +VkMemoryRequirements finalMemReq = {}; +finalMemReq.size = std::max(img1MemReq.size, img2MemReq.size); +finalMemReq.alignment = std::max(img1MemReq.alignment, img2MemReq.alignment); +finalMemReq.memoryTypeBits = img1MemReq.memoryTypeBits & img2MemReq.memoryTypeBits; +// Validate if(finalMemReq.memoryTypeBits != 0) + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT; + +VmaAllocation alloc; +res = vmaAllocateMemory(allocator, &finalMemReq, &allocCreateInfo, &alloc, nullptr); + +res = vmaBindImageMemory(allocator, alloc, img1); +res = vmaBindImageMemory(allocator, alloc, img2); + +// You can use img1, img2 here, but not at the same time! + +vmaFreeMemory(allocator, alloc); +vkDestroyImage(allocator, img2, nullptr); +vkDestroyImage(allocator, img1, nullptr); +\endcode + +VMA also provides convenience functions that create a buffer or image and bind it to memory +represented by an existing #VmaAllocation: +vmaCreateAliasingBuffer(), vmaCreateAliasingBuffer2(), +vmaCreateAliasingImage(), vmaCreateAliasingImage2(). +Versions with "2" offer additional parameter `allocationLocalOffset`. + +Remember that using resources that alias in memory requires proper synchronization. +You need to issue a memory barrier to make sure commands that use `img1` and `img2` +don't overlap on GPU timeline. +You also need to treat a resource after aliasing as uninitialized - containing garbage data. +For example, if you use `img1` and then want to use `img2`, you need to issue +an image memory barrier for `img2` with `oldLayout` = `VK_IMAGE_LAYOUT_UNDEFINED`. + +Additional considerations: + +- Vulkan also allows to interpret contents of memory between aliasing resources consistently in some cases. +See chapter 11.8. "Memory Aliasing" of Vulkan specification or `VK_IMAGE_CREATE_ALIAS_BIT` flag. +- You can create more complex layout where different images and buffers are bound +at different offsets inside one large allocation. For example, one can imagine +a big texture used in some render passes, aliasing with a set of many small buffers +used between in some further passes. To bind a resource at non-zero offset in an allocation, +use vmaBindBufferMemory2() / vmaBindImageMemory2(). +- Before allocating memory for the resources you want to alias, check `memoryTypeBits` +returned in memory requirements of each resource to make sure the bits overlap. +Some GPUs may expose multiple memory types suitable e.g. only for buffers or +images with `COLOR_ATTACHMENT` usage, so the sets of memory types supported by your +resources may be disjoint. Aliasing them is not possible in that case. + + +\page custom_memory_pools Custom memory pools + +A memory pool contains a number of `VkDeviceMemory` blocks. +The library automatically creates and manages default pool for each memory type available on the device. +Default memory pool automatically grows in size. +Size of allocated blocks is also variable and managed automatically. +You are using default pools whenever you leave VmaAllocationCreateInfo::pool = null. + +You can create custom pool and allocate memory out of it. +It can be useful if you want to: + +- Keep certain kind of allocations separate from others. +- Enforce particular, fixed size of Vulkan memory blocks. +- Limit maximum amount of Vulkan memory allocated for that pool. +- Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool. +- Use extra parameters for a set of your allocations that are available in #VmaPoolCreateInfo but not in + #VmaAllocationCreateInfo - e.g., custom minimum alignment, custom `pNext` chain. +- Perform defragmentation on a specific subset of your allocations. + +To use custom memory pools: + +-# Fill VmaPoolCreateInfo structure. +-# Call vmaCreatePool() to obtain #VmaPool handle. +-# When making an allocation, set VmaAllocationCreateInfo::pool to this handle. + You don't need to specify any other parameters of this structure, like `usage`. + +Example: + +\code +// Find memoryTypeIndex for the pool. +VkBufferCreateInfo sampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +sampleBufCreateInfo.size = 0x10000; // Doesn't matter. +sampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo sampleAllocCreateInfo = {}; +sampleAllocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; + +uint32_t memTypeIndex; +VkResult res = vmaFindMemoryTypeIndexForBufferInfo(allocator, + &sampleBufCreateInfo, &sampleAllocCreateInfo, &memTypeIndex); +// Check res... + +// Create a pool that can have at most 2 blocks, 128 MiB each. +VmaPoolCreateInfo poolCreateInfo = {}; +poolCreateInfo.memoryTypeIndex = memTypeIndex; +poolCreateInfo.blockSize = 128ull * 1024 * 1024; +poolCreateInfo.maxBlockCount = 2; + +VmaPool pool; +res = vmaCreatePool(allocator, &poolCreateInfo, &pool); +// Check res... + +// Allocate a buffer out of it. +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = 1024; +bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.pool = pool; + +VkBuffer buf; +VmaAllocation alloc; +res = vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, nullptr); +// Check res... +\endcode + +You have to free all allocations made from this pool before destroying it. + +\code +vmaDestroyBuffer(allocator, buf, alloc); +vmaDestroyPool(allocator, pool); +\endcode + +New versions of this library support creating dedicated allocations in custom pools. +It is supported only when VmaPoolCreateInfo::blockSize = 0. +To use this feature, set VmaAllocationCreateInfo::pool to the pointer to your custom pool and +VmaAllocationCreateInfo::flags to #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. + + +\section custom_memory_pools_MemTypeIndex Choosing memory type index + +When creating a pool, you must explicitly specify memory type index. +To find the one suitable for your buffers or images, you can use helper functions +vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo(). +You need to provide structures with example parameters of buffers or images +that you are going to create in that pool. + +\code +VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +exampleBufCreateInfo.size = 1024; // Doesn't matter +exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; + +uint32_t memTypeIndex; +vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex); + +VmaPoolCreateInfo poolCreateInfo = {}; +poolCreateInfo.memoryTypeIndex = memTypeIndex; +// ... +\endcode + +When creating buffers/images allocated in that pool, provide following parameters: + +- `VkBufferCreateInfo`: Prefer to pass same parameters as above. + Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior. + Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers + or the other way around. +- VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member. + Other members are ignored anyway. + + +\section custom_memory_pools_when_not_use When not to use custom pools + +Custom pools are commonly overused by VMA users. +While it may feel natural to keep some logical groups of resources separate in memory, +in most cases it does more harm than good. +Using custom pool shouldn't be your first choice. +Instead, please make all allocations from default pools first and only use custom pools +if you can prove and measure that it is beneficial in some way, +e.g. it results in lower memory usage, better performance, etc. + +Using custom pools has disadvantages: + +- Each pool has its own collection of `VkDeviceMemory` blocks. + Some of them may be partially or even completely empty. + Spreading allocations across multiple pools increases the amount of wasted (allocated but unbound) memory. +- You must manually choose specific memory type to be used by a custom pool (set as VmaPoolCreateInfo::memoryTypeIndex). + When using default pools, best memory type for each of your allocations can be selected automatically + using a carefully design algorithm that works across all kinds of GPUs. +- If an allocation from a custom pool at specific memory type fails, entire allocation operation returns failure. + When using default pools, VMA tries another compatible memory type. +- If you set VmaPoolCreateInfo::blockSize != 0, each memory block has the same size, + while default pools start from small blocks and only allocate next blocks larger and larger + up to the preferred block size. + +Many of the common concerns can be addressed in a different way than using custom pools: + +- If you want to keep your allocations of certain size (small versus large) or certain lifetime (transient versus long lived) + separate, you likely don't need to. + VMA uses a high quality allocation algorithm that manages memory well in various cases. + Please measure and check if using custom pools provides a benefit. +- If you want to keep your images and buffers separate, you don't need to. + VMA respects `bufferImageGranularity` limit automatically. +- If you want to keep your mapped and not mapped allocations separate, you don't need to. + VMA respects `nonCoherentAtomSize` limit automatically. + It also maps only those `VkDeviceMemory` blocks that need to map any allocation. + It even tries to keep mappable and non-mappable allocations in separate blocks to minimize the amount of mapped memory. +- If you want to choose a custom size for the default memory block, you can set it globally instead + using VmaAllocatorCreateInfo::preferredLargeHeapBlockSize. +- If you want to select specific memory type for your allocation, + you can set VmaAllocationCreateInfo::memoryTypeBits to `(1u << myMemoryTypeIndex)` instead. +- If you need to create a buffer with certain minimum alignment, you can still do it + using default pools with dedicated function vmaCreateBufferWithAlignment(). + + +\section linear_algorithm Linear allocation algorithm + +Each Vulkan memory block managed by this library has accompanying metadata that +keeps track of used and unused regions. By default, the metadata structure and +algorithm tries to find best place for new allocations among free regions to +optimize memory usage. This way you can allocate and free objects in any order. + +![Default allocation algorithm](../gfx/Linear_allocator_1_algo_default.png) + +Sometimes there is a need to use simpler, linear allocation algorithm. You can +create custom pool that uses such algorithm by adding flag +#VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating +#VmaPool object. Then an alternative metadata management is used. It always +creates new allocations after last one and doesn't reuse free regions after +allocations freed in the middle. It results in better allocation performance and +less memory consumed by metadata. + +![Linear allocation algorithm](../gfx/Linear_allocator_2_algo_linear.png) + +With this one flag, you can create a custom pool that can be used in many ways: +free-at-once, stack, double stack, and ring buffer. See below for details. +You don't need to specify explicitly which of these options you are going to use - it is detected automatically. + +\subsection linear_algorithm_free_at_once Free-at-once + +In a pool that uses linear algorithm, you still need to free all the allocations +individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free +them in any order. New allocations are always made after last one - free space +in the middle is not reused. However, when you release all the allocation and +the pool becomes empty, allocation starts from the beginning again. This way you +can use linear algorithm to speed up creation of allocations that you are going +to release all at once. + +![Free-at-once](../gfx/Linear_allocator_3_free_at_once.png) + +This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount +value that allows multiple memory blocks. + +\subsection linear_algorithm_stack Stack + +When you free an allocation that was created last, its space can be reused. +Thanks to this, if you always release allocations in the order opposite to their +creation (LIFO - Last In First Out), you can achieve behavior of a stack. + +![Stack](../gfx/Linear_allocator_4_stack.png) + +This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount +value that allows multiple memory blocks. + +\subsection linear_algorithm_double_stack Double stack + +The space reserved by a custom pool with linear algorithm may be used by two +stacks: + +- First, default one, growing up from offset 0. +- Second, "upper" one, growing down from the end towards lower offsets. + +To make allocation from the upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT +to VmaAllocationCreateInfo::flags. + +![Double stack](../gfx/Linear_allocator_7_double_stack.png) + +Double stack is available only in pools with one memory block - +VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. + +When the two stacks' ends meet so there is not enough space between them for a +new allocation, such allocation fails with usual +`VK_ERROR_OUT_OF_DEVICE_MEMORY` error. + +\subsection linear_algorithm_ring_buffer Ring buffer + +When you free some allocations from the beginning and there is not enough free space +for a new one at the end of a pool, allocator's "cursor" wraps around to the +beginning and starts allocation there. Thanks to this, if you always release +allocations in the same order as you created them (FIFO - First In First Out), +you can achieve behavior of a ring buffer / queue. + +![Ring buffer](../gfx/Linear_allocator_5_ring_buffer.png) + +Ring buffer is available only in pools with one memory block - +VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined. + +\note \ref defragmentation is not supported in custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT. + + +\page defragmentation Defragmentation + +Interleaved allocations and deallocations of many objects of varying size can +cause fragmentation over time, which can lead to a situation where the library is unable +to find a continuous range of free memory for a new allocation despite there is +enough free space, just scattered across many small free ranges between existing +allocations. + +To mitigate this problem, you can use defragmentation feature. +It doesn't happen automatically though and needs your cooperation, +because VMA is a low level library that only allocates memory. +It cannot recreate buffers and images in a new place as it doesn't remember the contents of `VkBufferCreateInfo` / `VkImageCreateInfo` structures. +It cannot copy their contents as it doesn't record any commands to a command buffer. + +Example: + +\code +VmaDefragmentationInfo defragInfo = {}; +defragInfo.pool = myPool; +defragInfo.flags = VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT; + +VmaDefragmentationContext defragCtx; +VkResult res = vmaBeginDefragmentation(allocator, &defragInfo, &defragCtx); +// Check res... + +for(;;) +{ + VmaDefragmentationPassMoveInfo pass; + res = vmaBeginDefragmentationPass(allocator, defragCtx, &pass); + if(res == VK_SUCCESS) + break; + else if(res != VK_INCOMPLETE) + // Handle error... + + for(uint32_t i = 0; i < pass.moveCount; ++i) + { + // Inspect pass.pMoves[i].srcAllocation, identify what buffer/image it represents. + VmaAllocationInfo allocInfo; + vmaGetAllocationInfo(allocator, pass.pMoves[i].srcAllocation, &allocInfo); + MyEngineResourceData* resData = (MyEngineResourceData*)allocInfo.pUserData; + + // Recreate and bind this buffer/image at: pass.pMoves[i].dstMemory, pass.pMoves[i].dstOffset. + VkImageCreateInfo imgCreateInfo = ... + VkImage newImg; + res = vkCreateImage(device, &imgCreateInfo, nullptr, &newImg); + // Check res... + res = vmaBindImageMemory(allocator, pass.pMoves[i].dstTmpAllocation, newImg); + // Check res... + + // Issue a vkCmdCopyBuffer/vkCmdCopyImage to copy its content to the new place. + vkCmdCopyImage(cmdBuf, resData->img, ..., newImg, ...); + } + + // Make sure the copy commands finished executing. + vkWaitForFences(...); + + // Destroy old buffers/images bound with pass.pMoves[i].srcAllocation. + for(uint32_t i = 0; i < pass.moveCount; ++i) + { + // ... + vkDestroyImage(device, resData->img, nullptr); + } + + // Update appropriate descriptors to point to the new places... + + res = vmaEndDefragmentationPass(allocator, defragCtx, &pass); + if(res == VK_SUCCESS) + break; + else if(res != VK_INCOMPLETE) + // Handle error... +} + +vmaEndDefragmentation(allocator, defragCtx, nullptr); +\endcode + +Although functions like vmaCreateBuffer(), vmaCreateImage(), vmaDestroyBuffer(), vmaDestroyImage() +create/destroy an allocation and a buffer/image at once, these are just a shortcut for +creating the resource, allocating memory, and binding them together. +Defragmentation works on memory allocations only. You must handle the rest manually. +Defragmentation is an iterative process that should repreat "passes" as long as related functions +return `VK_INCOMPLETE` not `VK_SUCCESS`. +In each pass: + +1. vmaBeginDefragmentationPass() function call: + - Calculates and returns the list of allocations to be moved in this pass. + Note this can be a time-consuming process. + - Reserves destination memory for them by creating temporary destination allocations + that you can query for their `VkDeviceMemory` + offset using vmaGetAllocationInfo(). +2. Inside the pass, **you should**: + - Inspect the returned list of allocations to be moved. + - Create new buffers/images and bind them at the returned destination temporary allocations. + - Copy data from source to destination resources if necessary. + - Destroy the source buffers/images, but NOT their allocations. +3. vmaEndDefragmentationPass() function call: + - Frees the source memory reserved for the allocations that are moved. + - Modifies source #VmaAllocation objects that are moved to point to the destination reserved memory. + - Frees `VkDeviceMemory` blocks that became empty. + +Unlike in previous iterations of the defragmentation API, there is no list of "movable" allocations passed as a parameter. +Defragmentation algorithm tries to move all suitable allocations. +You can, however, refuse to move some of them inside a defragmentation pass, by setting +`pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE. +This is not recommended and may result in suboptimal packing of the allocations after defragmentation. +If you cannot ensure any allocation can be moved, it is better to keep movable allocations separate in a custom pool. + +Inside a pass, for each allocation that should be moved: + +- You should copy its data from the source to the destination place by calling e.g. `vkCmdCopyBuffer()`, `vkCmdCopyImage()`. + - You need to make sure these commands finished executing before destroying the source buffers/images and before calling vmaEndDefragmentationPass(). +- If a resource doesn't contain any meaningful data, e.g. it is a transient color attachment image to be cleared, + filled, and used temporarily in each rendering frame, you can just recreate this image + without copying its data. +- If the resource is in `HOST_VISIBLE` and `HOST_CACHED` memory, you can copy its data on the CPU + using `memcpy()`. +- If you cannot move the allocation, you can set `pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE. + This will cancel the move. + - vmaEndDefragmentationPass() will then free the destination memory + not the source memory of the allocation, leaving it unchanged. +- If you decide the allocation is unimportant and can be destroyed instead of moved (e.g. it wasn't used for long time), + you can set `pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY. + - vmaEndDefragmentationPass() will then free both source and destination memory, and will destroy the source #VmaAllocation object. + +You can defragment a specific custom pool by setting VmaDefragmentationInfo::pool +(like in the example above) or all the default pools by setting this member to null. + +Defragmentation is always performed in each pool separately. +Allocations are never moved between different Vulkan memory types. +The size of the destination memory reserved for a moved allocation is the same as the original one. +Alignment of an allocation as it was determined using `vkGetBufferMemoryRequirements()` etc. is also respected after defragmentation. +Buffers/images should be recreated with the same `VkBufferCreateInfo` / `VkImageCreateInfo` parameters as the original ones. + +You can perform the defragmentation incrementally to limit the number of allocations and bytes to be moved +in each pass, e.g. to call it in sync with render frames and not to experience too big hitches. +See members: VmaDefragmentationInfo::maxBytesPerPass, VmaDefragmentationInfo::maxAllocationsPerPass. + +It is also safe to perform the defragmentation asynchronously to render frames and other Vulkan and VMA +usage, possibly from multiple threads, with the exception that allocations +returned in VmaDefragmentationPassMoveInfo::pMoves shouldn't be destroyed until the defragmentation pass is ended. + +<b>Mapping</b> is preserved on allocations that are moved during defragmentation. +Whether through #VMA_ALLOCATION_CREATE_MAPPED_BIT or vmaMapMemory(), the allocations +are mapped at their new place. Of course, pointer to the mapped data changes, so it needs to be queried +using VmaAllocationInfo::pMappedData. + +\note Defragmentation is not supported in custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT. + + +\page statistics Statistics + +This library contains several functions that return information about its internal state, +especially the amount of memory allocated from Vulkan. + +\section statistics_numeric_statistics Numeric statistics + +If you need to obtain basic statistics about memory usage per heap, together with current budget, +you can call function vmaGetHeapBudgets() and inspect structure #VmaBudget. +This is useful to keep track of memory usage and stay within budget +(see also \ref staying_within_budget). +Example: + +\code +uint32_t heapIndex = ... + +VmaBudget budgets[VK_MAX_MEMORY_HEAPS]; +vmaGetHeapBudgets(allocator, budgets); + +printf("My heap currently has %u allocations taking %llu B,\n", + budgets[heapIndex].statistics.allocationCount, + budgets[heapIndex].statistics.allocationBytes); +printf("allocated out of %u Vulkan device memory blocks taking %llu B,\n", + budgets[heapIndex].statistics.blockCount, + budgets[heapIndex].statistics.blockBytes); +printf("Vulkan reports total usage %llu B with budget %llu B.\n", + budgets[heapIndex].usage, + budgets[heapIndex].budget); +\endcode + +You can query for more detailed statistics per memory heap, type, and totals, +including minimum and maximum allocation size and unused range size, +by calling function vmaCalculateStatistics() and inspecting structure #VmaTotalStatistics. +This function is slower though, as it has to traverse all the internal data structures, +so it should be used only for debugging purposes. + +You can query for statistics of a custom pool using function vmaGetPoolStatistics() +or vmaCalculatePoolStatistics(). + +You can query for information about a specific allocation using function vmaGetAllocationInfo(). +It fill structure #VmaAllocationInfo. + +\section statistics_json_dump JSON dump + +You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString(). +The result is guaranteed to be correct JSON. +It uses ANSI encoding. +Any strings provided by user (see [Allocation names](@ref allocation_names)) +are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding, +this JSON string can be treated as using this encoding. +It must be freed using function vmaFreeStatsString(). + +The format of this JSON string is not part of official documentation of the library, +but it will not change in backward-incompatible way without increasing library major version number +and appropriate mention in changelog. + +The JSON string contains all the data that can be obtained using vmaCalculateStatistics(). +It can also contain detailed map of allocated memory blocks and their regions - +free and occupied by allocations. +This allows e.g. to visualize the memory or assess fragmentation. + + +\page allocation_annotation Allocation names and user data + +\section allocation_user_data Allocation user data + +You can annotate allocations with your own information, e.g. for debugging purposes. +To do that, fill VmaAllocationCreateInfo::pUserData field when creating +an allocation. It is an opaque `void*` pointer. You can use it e.g. as a pointer, +some handle, index, key, ordinal number or any other value that would associate +the allocation with your custom metadata. +It is useful to identify appropriate data structures in your engine given #VmaAllocation, +e.g. when doing \ref defragmentation. + +\code +VkBufferCreateInfo bufCreateInfo = ... + +MyBufferMetadata* pMetadata = CreateBufferMetadata(); + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; +allocCreateInfo.pUserData = pMetadata; + +VkBuffer buffer; +VmaAllocation allocation; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buffer, &allocation, nullptr); +\endcode + +The pointer may be later retrieved as VmaAllocationInfo::pUserData: + +\code +VmaAllocationInfo allocInfo; +vmaGetAllocationInfo(allocator, allocation, &allocInfo); +MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData; +\endcode + +It can also be changed using function vmaSetAllocationUserData(). + +Values of (non-zero) allocations' `pUserData` are printed in JSON report created by +vmaBuildStatsString() in hexadecimal form. + +\section allocation_names Allocation names + +An allocation can also carry a null-terminated string, giving a name to the allocation. +To set it, call vmaSetAllocationName(). +The library creates internal copy of the string, so the pointer you pass doesn't need +to be valid for whole lifetime of the allocation. You can free it after the call. + +\code +std::string imageName = "Texture: "; +imageName += fileName; +vmaSetAllocationName(allocator, allocation, imageName.c_str()); +\endcode + +The string can be later retrieved by inspecting VmaAllocationInfo::pName. +It is also printed in JSON report created by vmaBuildStatsString(). + +\note Setting string name to VMA allocation doesn't automatically set it to the Vulkan buffer or image created with it. +You must do it manually using an extension like VK_EXT_debug_utils, which is independent of this library. + + +\page virtual_allocator Virtual allocator + +As an extra feature, the core allocation algorithm of the library is exposed through a simple and convenient API of "virtual allocator". +It doesn't allocate any real GPU memory. It just keeps track of used and free regions of a "virtual block". +You can use it to allocate your own memory or other objects, even completely unrelated to Vulkan. +A common use case is sub-allocation of pieces of one large GPU buffer. + +\section virtual_allocator_creating_virtual_block Creating virtual block + +To use this functionality, there is no main "allocator" object. +You don't need to have #VmaAllocator object created. +All you need to do is to create a separate #VmaVirtualBlock object for each block of memory you want to be managed by the allocator: + +-# Fill in #VmaVirtualBlockCreateInfo structure. +-# Call vmaCreateVirtualBlock(). Get new #VmaVirtualBlock object. + +Example: + +\code +VmaVirtualBlockCreateInfo blockCreateInfo = {}; +blockCreateInfo.size = 1048576; // 1 MB + +VmaVirtualBlock block; +VkResult res = vmaCreateVirtualBlock(&blockCreateInfo, &block); +\endcode + +\section virtual_allocator_making_virtual_allocations Making virtual allocations + +#VmaVirtualBlock object contains internal data structure that keeps track of free and occupied regions +using the same code as the main Vulkan memory allocator. +Similarly to #VmaAllocation for standard GPU allocations, there is #VmaVirtualAllocation type +that represents an opaque handle to an allocation within the virtual block. + +In order to make such allocation: + +-# Fill in #VmaVirtualAllocationCreateInfo structure. +-# Call vmaVirtualAllocate(). Get new #VmaVirtualAllocation object that represents the allocation. + You can also receive `VkDeviceSize offset` that was assigned to the allocation. + +Example: + +\code +VmaVirtualAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.size = 4096; // 4 KB + +VmaVirtualAllocation alloc; +VkDeviceSize offset; +res = vmaVirtualAllocate(block, &allocCreateInfo, &alloc, &offset); +if(res == VK_SUCCESS) +{ + // Use the 4 KB of your memory starting at offset. +} +else +{ + // Allocation failed - no space for it could be found. Handle this error! +} +\endcode + +\section virtual_allocator_deallocation Deallocation + +When no longer needed, an allocation can be freed by calling vmaVirtualFree(). +You can only pass to this function an allocation that was previously returned by vmaVirtualAllocate() +called for the same #VmaVirtualBlock. + +When whole block is no longer needed, the block object can be released by calling vmaDestroyVirtualBlock(). +All allocations must be freed before the block is destroyed, which is checked internally by an assert. +However, if you don't want to call vmaVirtualFree() for each allocation, you can use vmaClearVirtualBlock() to free them all at once - +a feature not available in normal Vulkan memory allocator. Example: + +\code +vmaVirtualFree(block, alloc); +vmaDestroyVirtualBlock(block); +\endcode + +\section virtual_allocator_allocation_parameters Allocation parameters + +You can attach a custom pointer to each allocation by using vmaSetVirtualAllocationUserData(). +Its default value is null. +It can be used to store any data that needs to be associated with that allocation - e.g. an index, a handle, or a pointer to some +larger data structure containing more information. Example: + +\code +struct CustomAllocData +{ + std::string m_AllocName; +}; +CustomAllocData* allocData = new CustomAllocData(); +allocData->m_AllocName = "My allocation 1"; +vmaSetVirtualAllocationUserData(block, alloc, allocData); +\endcode + +The pointer can later be fetched, along with allocation offset and size, by passing the allocation handle to function +vmaGetVirtualAllocationInfo() and inspecting returned structure #VmaVirtualAllocationInfo. +If you allocated a new object to be used as the custom pointer, don't forget to delete that object before freeing the allocation! +Example: + +\code +VmaVirtualAllocationInfo allocInfo; +vmaGetVirtualAllocationInfo(block, alloc, &allocInfo); +delete (CustomAllocData*)allocInfo.pUserData; + +vmaVirtualFree(block, alloc); +\endcode + +\section virtual_allocator_alignment_and_units Alignment and units + +It feels natural to express sizes and offsets in bytes. +If an offset of an allocation needs to be aligned to a multiply of some number (e.g. 4 bytes), you can fill optional member +VmaVirtualAllocationCreateInfo::alignment to request it. Example: + +\code +VmaVirtualAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.size = 4096; // 4 KB +allocCreateInfo.alignment = 4; // Returned offset must be a multiply of 4 B + +VmaVirtualAllocation alloc; +res = vmaVirtualAllocate(block, &allocCreateInfo, &alloc, nullptr); +\endcode + +Alignments of different allocations made from one block may vary. +However, if all alignments and sizes are always multiply of some size e.g. 4 B or `sizeof(MyDataStruct)`, +you can express all sizes, alignments, and offsets in multiples of that size instead of individual bytes. +It might be more convenient, but you need to make sure to use this new unit consistently in all the places: + +- VmaVirtualBlockCreateInfo::size +- VmaVirtualAllocationCreateInfo::size and VmaVirtualAllocationCreateInfo::alignment +- Using offset returned by vmaVirtualAllocate() or in VmaVirtualAllocationInfo::offset + +\section virtual_allocator_statistics Statistics + +You can obtain statistics of a virtual block using vmaGetVirtualBlockStatistics() +(to get brief statistics that are fast to calculate) +or vmaCalculateVirtualBlockStatistics() (to get more detailed statistics, slower to calculate). +The functions fill structures #VmaStatistics, #VmaDetailedStatistics respectively - same as used by the normal Vulkan memory allocator. +Example: + +\code +VmaStatistics stats; +vmaGetVirtualBlockStatistics(block, &stats); +printf("My virtual block has %llu bytes used by %u virtual allocations\n", + stats.allocationBytes, stats.allocationCount); +\endcode + +You can also request a full list of allocations and free regions as a string in JSON format by calling +vmaBuildVirtualBlockStatsString(). +Returned string must be later freed using vmaFreeVirtualBlockStatsString(). +The format of this string differs from the one returned by the main Vulkan allocator, but it is similar. + +\section virtual_allocator_additional_considerations Additional considerations + +The "virtual allocator" functionality is implemented on a level of individual memory blocks. +Keeping track of a whole collection of blocks, allocating new ones when out of free space, +deleting empty ones, and deciding which one to try first for a new allocation must be implemented by the user. + +Alternative allocation algorithms are supported, just like in custom pools of the real GPU memory. +See enum #VmaVirtualBlockCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT). +You can find their description in chapter \ref custom_memory_pools. +Allocation strategies are also supported. +See enum #VmaVirtualAllocationCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT). + +Following features are supported only by the allocator of the real GPU memory and not by virtual allocations: +buffer-image granularity, `VMA_DEBUG_MARGIN`, `VMA_MIN_ALIGNMENT`. + + +\page debugging_memory_usage Debugging incorrect memory usage + +If you suspect a bug with memory usage, like usage of uninitialized memory or +memory being overwritten out of bounds of an allocation, +you can use debug features of this library to verify this. + +\section debugging_memory_usage_initialization Memory initialization + +If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used, +you can enable automatic memory initialization to verify this. +To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1. + +\code +#define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1 +#include "vk_mem_alloc.h" +\endcode + +It makes memory of new allocations initialized to bit pattern `0xDCDCDCDC`. +Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`. +Memory is automatically mapped and unmapped if necessary. + +If you find these values while debugging your program, good chances are that you incorrectly +read Vulkan memory that is allocated but not initialized, or already freed, respectively. + +Memory initialization works only with memory types that are `HOST_VISIBLE` and with allocations that can be mapped. +It works also with dedicated allocations. + +\section debugging_memory_usage_margins Margins + +By default, allocations are laid out in memory blocks next to each other if possible +(considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`). + +![Allocations without margin](../gfx/Margins_1.png) + +Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified +number of bytes as a margin after every allocation. + +\code +#define VMA_DEBUG_MARGIN 16 +#include "vk_mem_alloc.h" +\endcode + +![Allocations with margin](../gfx/Margins_2.png) + +If your bug goes away after enabling margins, it means it may be caused by memory +being overwritten outside of allocation boundaries. It is not 100% certain though. +Change in application behavior may also be caused by different order and distribution +of allocations across memory blocks after margins are applied. + +Margins work with all types of memory. + +Margin is applied only to allocations made out of memory blocks and not to dedicated +allocations, which have their own memory block of specific size. +It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag +or those automatically decided to put into dedicated allocations, e.g. due to its +large size or recommended by VK_KHR_dedicated_allocation extension. + +Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space. + +Note that enabling margins increases memory usage and fragmentation. + +Margins do not apply to \ref virtual_allocator. + +\section debugging_memory_usage_corruption_detection Corruption detection + +You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation +of contents of the margins. + +\code +#define VMA_DEBUG_MARGIN 16 +#define VMA_DEBUG_DETECT_CORRUPTION 1 +#include "vk_mem_alloc.h" +\endcode + +When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN` +(it must be multiply of 4) after every allocation is filled with a magic number. +This idea is also know as "canary". +Memory is automatically mapped and unmapped if necessary. + +This number is validated automatically when the allocation is destroyed. +If it is not equal to the expected value, `VMA_ASSERT()` is executed. +It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation, +which indicates a serious bug. + +You can also explicitly request checking margins of all allocations in all memory blocks +that belong to specified memory types by using function vmaCheckCorruption(), +or in memory blocks that belong to specified custom pool, by using function +vmaCheckPoolCorruption(). + +Margin validation (corruption detection) works only for memory types that are +`HOST_VISIBLE` and `HOST_COHERENT`. + + +\section debugging_memory_usage_leak_detection Leak detection features + +At allocation and allocator destruction time VMA checks for unfreed and unmapped blocks using +`VMA_ASSERT_LEAK()`. This macro defaults to an assertion, triggering a typically fatal error in Debug +builds, and doing nothing in Release builds. You can provide your own definition of `VMA_ASSERT_LEAK()` +to change this behavior. + +At memory block destruction time VMA lists out all unfreed allocations using the `VMA_LEAK_LOG_FORMAT()` +macro, which defaults to `VMA_DEBUG_LOG_FORMAT`, which in turn defaults to a no-op. +If you're having trouble with leaks - for example, the aforementioned assertion triggers, but you don't +quite know \em why -, overriding this macro to print out the the leaking blocks, combined with assigning +individual names to allocations using vmaSetAllocationName(), can greatly aid in fixing them. + +\page other_api_interop Interop with other graphics APIs + +VMA provides some features that help with interoperability with other graphics APIs, e.g. OpenGL. + +\section opengl_interop_exporting_memory Exporting memory + +If you want to attach `VkExportMemoryAllocateInfoKHR` or other structure to `pNext` chain of memory allocations made by the library: + +You can create \ref custom_memory_pools for such allocations. +Define and fill in your `VkExportMemoryAllocateInfoKHR` structure and attach it to VmaPoolCreateInfo::pMemoryAllocateNext +while creating the custom pool. +Please note that the structure must remain alive and unchanged for the whole lifetime of the #VmaPool, +not only while creating it, as no copy of the structure is made, +but its original pointer is used for each allocation instead. + +If you want to export all memory allocated by VMA from certain memory types, +also dedicated allocations or other allocations made from default pools, +an alternative solution is to fill in VmaAllocatorCreateInfo::pTypeExternalMemoryHandleTypes. +It should point to an array with `VkExternalMemoryHandleTypeFlagsKHR` to be automatically passed by the library +through `VkExportMemoryAllocateInfoKHR` on each allocation made from a specific memory type. +Please note that new versions of the library also support dedicated allocations created in custom pools. + +You should not mix these two methods in a way that allows to apply both to the same memory type. +Otherwise, `VkExportMemoryAllocateInfoKHR` structure would be attached twice to the `pNext` chain of `VkMemoryAllocateInfo`. + + +\section opengl_interop_custom_alignment Custom alignment + +Buffers or images exported to a different API like OpenGL may require a different alignment, +higher than the one used by the library automatically, queried from functions like `vkGetBufferMemoryRequirements`. +To impose such alignment: + +You can create \ref custom_memory_pools for such allocations. +Set VmaPoolCreateInfo::minAllocationAlignment member to the minimum alignment required for each allocation +to be made out of this pool. +The alignment actually used will be the maximum of this member and the alignment returned for the specific buffer or image +from a function like `vkGetBufferMemoryRequirements`, which is called by VMA automatically. + +If you want to create a buffer with a specific minimum alignment out of default pools, +use special function vmaCreateBufferWithAlignment(), which takes additional parameter `minAlignment`. + +Note the problem of alignment affects only resources placed inside bigger `VkDeviceMemory` blocks and not dedicated +allocations, as these, by definition, always have alignment = 0 because the resource is bound to the beginning of its dedicated block. +You can ensure that an allocation is created as dedicated by using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. +Contrary to Direct3D 12, Vulkan doesn't have a concept of alignment of the entire memory block passed on its allocation. + +\section opengl_interop_extended_allocation_information Extended allocation information + +If you want to rely on VMA to allocate your buffers and images inside larger memory blocks, +but you need to know the size of the entire block and whether the allocation was made +with its own dedicated memory, use function vmaGetAllocationInfo2() to retrieve +extended allocation information in structure #VmaAllocationInfo2. + + + +\page usage_patterns Recommended usage patterns + +Vulkan gives great flexibility in memory allocation. +This chapter shows the most common patterns. + +See also slides from talk: +[Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New) + + +\section usage_patterns_gpu_only GPU-only resource + +<b>When:</b> +Any resources that you frequently write and read on GPU, +e.g. images used as color attachments (aka "render targets"), depth-stencil attachments, +images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)"). + +<b>What to do:</b> +Let the library select the optimal memory type, which will likely have `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`. + +\code +VkImageCreateInfo imgCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; +imgCreateInfo.imageType = VK_IMAGE_TYPE_2D; +imgCreateInfo.extent.width = 3840; +imgCreateInfo.extent.height = 2160; +imgCreateInfo.extent.depth = 1; +imgCreateInfo.mipLevels = 1; +imgCreateInfo.arrayLayers = 1; +imgCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM; +imgCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; +imgCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; +imgCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; +imgCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; +allocCreateInfo.priority = 1.0f; + +VkImage img; +VmaAllocation alloc; +vmaCreateImage(allocator, &imgCreateInfo, &allocCreateInfo, &img, &alloc, nullptr); +\endcode + +<b>Also consider:</b> +Consider creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT, +especially if they are large or if you plan to destroy and recreate them with different sizes +e.g. when display resolution changes. +Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later. +When VK_EXT_memory_priority extension is enabled, it is also worth setting high priority to such allocation +to decrease chances to be evicted to system memory by the operating system. + +\section usage_patterns_staging_copy_upload Staging copy for upload + +<b>When:</b> +A "staging" buffer than you want to map and fill from CPU code, then use as a source of transfer +to some GPU resource. + +<b>What to do:</b> +Use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT. +Let the library select the optimal memory type, which will always have `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`. + +\code +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = 65536; +bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | + VMA_ALLOCATION_CREATE_MAPPED_BIT; + +VkBuffer buf; +VmaAllocation alloc; +VmaAllocationInfo allocInfo; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); + +... + +memcpy(allocInfo.pMappedData, myData, myDataSize); +\endcode + +<b>Also consider:</b> +You can map the allocation using vmaMapMemory() or you can create it as persistenly mapped +using #VMA_ALLOCATION_CREATE_MAPPED_BIT, as in the example above. + + +\section usage_patterns_readback Readback + +<b>When:</b> +Buffers for data written by or transferred from the GPU that you want to read back on the CPU, +e.g. results of some computations. + +<b>What to do:</b> +Use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT. +Let the library select the optimal memory type, which will always have `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` +and `VK_MEMORY_PROPERTY_HOST_CACHED_BIT`. + +\code +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = 65536; +bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT | + VMA_ALLOCATION_CREATE_MAPPED_BIT; + +VkBuffer buf; +VmaAllocation alloc; +VmaAllocationInfo allocInfo; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); + +... + +const float* downloadedData = (const float*)allocInfo.pMappedData; +\endcode + + +\section usage_patterns_advanced_data_uploading Advanced data uploading + +For resources that you frequently write on CPU via mapped pointer and +frequently read on GPU e.g. as a uniform buffer (also called "dynamic"), multiple options are possible: + +-# Easiest solution is to have one copy of the resource in `HOST_VISIBLE` memory, + even if it means system RAM (not `DEVICE_LOCAL`) on systems with a discrete graphics card, + and make the device reach out to that resource directly. + - Reads performed by the device will then go through PCI Express bus. + The performance of this access may be limited, but it may be fine depending on the size + of this resource (whether it is small enough to quickly end up in GPU cache) and the sparsity + of access. +-# On systems with unified memory (e.g. AMD APU or Intel integrated graphics, mobile chips), + a memory type may be available that is both `HOST_VISIBLE` (available for mapping) and `DEVICE_LOCAL` + (fast to access from the GPU). Then, it is likely the best choice for such type of resource. +-# Systems with a discrete graphics card and separate video memory may or may not expose + a memory type that is both `HOST_VISIBLE` and `DEVICE_LOCAL`, also known as Base Address Register (BAR). + If they do, it represents a piece of VRAM (or entire VRAM, if ReBAR is enabled in the motherboard BIOS) + that is available to CPU for mapping. + - Writes performed by the host to that memory go through PCI Express bus. + The performance of these writes may be limited, but it may be fine, especially on PCIe 4.0, + as long as rules of using uncached and write-combined memory are followed - only sequential writes and no reads. +-# Finally, you may need or prefer to create a separate copy of the resource in `DEVICE_LOCAL` memory, + a separate "staging" copy in `HOST_VISIBLE` memory and perform an explicit transfer command between them. + +Thankfully, VMA offers an aid to create and use such resources in the the way optimal +for the current Vulkan device. To help the library make the best choice, +use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT together with +#VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT. +It will then prefer a memory type that is both `DEVICE_LOCAL` and `HOST_VISIBLE` (integrated memory or BAR), +but if no such memory type is available or allocation from it fails +(PC graphics cards have only 256 MB of BAR by default, unless ReBAR is supported and enabled in BIOS), +it will fall back to `DEVICE_LOCAL` memory for fast GPU access. +It is then up to you to detect that the allocation ended up in a memory type that is not `HOST_VISIBLE`, +so you need to create another "staging" allocation and perform explicit transfers. + +\code +VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; +bufCreateInfo.size = 65536; +bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | + VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT | + VMA_ALLOCATION_CREATE_MAPPED_BIT; + +VkBuffer buf; +VmaAllocation alloc; +VmaAllocationInfo allocInfo; +vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo); + +VkMemoryPropertyFlags memPropFlags; +vmaGetAllocationMemoryProperties(allocator, alloc, &memPropFlags); + +if(memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) +{ + // Allocation ended up in a mappable memory and is already mapped - write to it directly. + + // [Executed in runtime]: + memcpy(allocInfo.pMappedData, myData, myDataSize); +} +else +{ + // Allocation ended up in a non-mappable memory - need to transfer. + VkBufferCreateInfo stagingBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; + stagingBufCreateInfo.size = 65536; + stagingBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; + + VmaAllocationCreateInfo stagingAllocCreateInfo = {}; + stagingAllocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; + stagingAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | + VMA_ALLOCATION_CREATE_MAPPED_BIT; + + VkBuffer stagingBuf; + VmaAllocation stagingAlloc; + VmaAllocationInfo stagingAllocInfo; + vmaCreateBuffer(allocator, &stagingBufCreateInfo, &stagingAllocCreateInfo, + &stagingBuf, &stagingAlloc, stagingAllocInfo); + + // [Executed in runtime]: + memcpy(stagingAllocInfo.pMappedData, myData, myDataSize); + vmaFlushAllocation(allocator, stagingAlloc, 0, VK_WHOLE_SIZE); + //vkCmdPipelineBarrier: VK_ACCESS_HOST_WRITE_BIT --> VK_ACCESS_TRANSFER_READ_BIT + VkBufferCopy bufCopy = { + 0, // srcOffset + 0, // dstOffset, + myDataSize); // size + vkCmdCopyBuffer(cmdBuf, stagingBuf, buf, 1, &bufCopy); +} +\endcode + +\section usage_patterns_other_use_cases Other use cases + +Here are some other, less obvious use cases and their recommended settings: + +- An image that is used only as transfer source and destination, but it should stay on the device, + as it is used to temporarily store a copy of some texture, e.g. from the current to the next frame, + for temporal antialiasing or other temporal effects. + - Use `VkImageCreateInfo::usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT` + - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO +- An image that is used only as transfer source and destination, but it should be placed + in the system RAM despite it doesn't need to be mapped, because it serves as a "swap" copy to evict + least recently used textures from VRAM. + - Use `VkImageCreateInfo::usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT` + - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO_PREFER_HOST, + as VMA needs a hint here to differentiate from the previous case. +- A buffer that you want to map and write from the CPU, directly read from the GPU + (e.g. as a uniform or vertex buffer), but you have a clear preference to place it in device or + host memory due to its large size. + - Use `VkBufferCreateInfo::usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT` + - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE or #VMA_MEMORY_USAGE_AUTO_PREFER_HOST + - Use VmaAllocationCreateInfo::flags = #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT + + +\page configuration Configuration + +Please check "CONFIGURATION SECTION" in the code to find macros that you can define +before each include of this file or change directly in this file to provide +your own implementation of basic facilities like assert, `min()` and `max()` functions, +mutex, atomic etc. +The library uses its own implementation of containers by default, but you can switch to using +STL containers instead. + +For example, define `VMA_ASSERT(expr)` before including the library to provide +custom implementation of the assertion, compatible with your project. +By default it is defined to standard C `assert(expr)` in `_DEBUG` configuration +and empty otherwise. + +\section config_Vulkan_functions Pointers to Vulkan functions + +There are multiple ways to import pointers to Vulkan functions in the library. +In the simplest case you don't need to do anything. +If the compilation or linking of your program or the initialization of the #VmaAllocator +doesn't work for you, you can try to reconfigure it. + +First, the allocator tries to fetch pointers to Vulkan functions linked statically, +like this: + +\code +m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory; +\endcode + +If you want to disable this feature, set configuration macro: `#define VMA_STATIC_VULKAN_FUNCTIONS 0`. + +Second, you can provide the pointers yourself by setting member VmaAllocatorCreateInfo::pVulkanFunctions. +You can fetch them e.g. using functions `vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` or +by using a helper library like [volk](https://github.com/zeux/volk). + +Third, VMA tries to fetch remaining pointers that are still null by calling +`vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` on its own. +You need to only fill in VmaVulkanFunctions::vkGetInstanceProcAddr and VmaVulkanFunctions::vkGetDeviceProcAddr. +Other pointers will be fetched automatically. +If you want to disable this feature, set configuration macro: `#define VMA_DYNAMIC_VULKAN_FUNCTIONS 0`. + +Finally, all the function pointers required by the library (considering selected +Vulkan version and enabled extensions) are checked with `VMA_ASSERT` if they are not null. + + +\section custom_memory_allocator Custom host memory allocator + +If you use custom allocator for CPU memory rather than default operator `new` +and `delete` from C++, you can make this library using your allocator as well +by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These +functions will be passed to Vulkan, as well as used by the library itself to +make any CPU-side allocations. + +\section allocation_callbacks Device memory allocation callbacks + +The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally. +You can setup callbacks to be informed about these calls, e.g. for the purpose +of gathering some statistics. To do it, fill optional member +VmaAllocatorCreateInfo::pDeviceMemoryCallbacks. + +\section heap_memory_limit Device heap memory limit + +When device memory of certain heap runs out of free space, new allocations may +fail (returning error code) or they may succeed, silently pushing some existing_ +memory blocks from GPU VRAM to system RAM (which degrades performance). This +behavior is implementation-dependent - it depends on GPU vendor and graphics +driver. + +On AMD cards it can be controlled while creating Vulkan device object by using +VK_AMD_memory_overallocation_behavior extension, if available. + +Alternatively, if you want to test how your program behaves with limited amount of Vulkan device +memory available without switching your graphics card to one that really has +smaller VRAM, you can use a feature of this library intended for this purpose. +To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit. + + + +\page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation + +VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve +performance on some GPUs. It augments Vulkan API with possibility to query +driver whether it prefers particular buffer or image to have its own, dedicated +allocation (separate `VkDeviceMemory` block) for better efficiency - to be able +to do some internal optimizations. The extension is supported by this library. +It will be used automatically when enabled. + +It has been promoted to core Vulkan 1.1, so if you use eligible Vulkan version +and inform VMA about it by setting VmaAllocatorCreateInfo::vulkanApiVersion, +you are all set. + +Otherwise, if you want to use it as an extension: + +1 . When creating Vulkan device, check if following 2 device extensions are +supported (call `vkEnumerateDeviceExtensionProperties()`). +If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`). + +- VK_KHR_get_memory_requirements2 +- VK_KHR_dedicated_allocation + +If you enabled these extensions: + +2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating +your #VmaAllocator to inform the library that you enabled required extensions +and you want the library to use them. + +\code +allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT; + +vmaCreateAllocator(&allocatorInfo, &allocator); +\endcode + +That is all. The extension will be automatically used whenever you create a +buffer using vmaCreateBuffer() or image using vmaCreateImage(). + +When using the extension together with Vulkan Validation Layer, you will receive +warnings like this: + +_vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer._ + +It is OK, you should just ignore it. It happens because you use function +`vkGetBufferMemoryRequirements2KHR()` instead of standard +`vkGetBufferMemoryRequirements()`, while the validation layer seems to be +unaware of it. + +To learn more about this extension, see: + +- [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap50.html#VK_KHR_dedicated_allocation) +- [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5) + + + +\page vk_ext_memory_priority VK_EXT_memory_priority + +VK_EXT_memory_priority is a device extension that allows to pass additional "priority" +value to Vulkan memory allocations that the implementation may use prefer certain +buffers and images that are critical for performance to stay in device-local memory +in cases when the memory is over-subscribed, while some others may be moved to the system memory. + +VMA offers convenient usage of this extension. +If you enable it, you can pass "priority" parameter when creating allocations or custom pools +and the library automatically passes the value to Vulkan using this extension. + +If you want to use this extension in connection with VMA, follow these steps: + +\section vk_ext_memory_priority_initialization Initialization + +1) Call `vkEnumerateDeviceExtensionProperties` for the physical device. +Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_EXT_memory_priority". + +2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`. +Attach additional structure `VkPhysicalDeviceMemoryPriorityFeaturesEXT` to `VkPhysicalDeviceFeatures2::pNext` to be returned. +Check if the device feature is really supported - check if `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority` is true. + +3) While creating device with `vkCreateDevice`, enable this extension - add "VK_EXT_memory_priority" +to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`. + +4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`. +Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`. +Enable this device feature - attach additional structure `VkPhysicalDeviceMemoryPriorityFeaturesEXT` to +`VkPhysicalDeviceFeatures2::pNext` chain and set its member `memoryPriority` to `VK_TRUE`. + +5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you +have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT +to VmaAllocatorCreateInfo::flags. + +\section vk_ext_memory_priority_usage Usage + +When using this extension, you should initialize following member: + +- VmaAllocationCreateInfo::priority when creating a dedicated allocation with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. +- VmaPoolCreateInfo::priority when creating a custom pool. + +It should be a floating-point value between `0.0f` and `1.0f`, where recommended default is `0.5f`. +Memory allocated with higher value can be treated by the Vulkan implementation as higher priority +and so it can have lower chances of being pushed out to system memory, experiencing degraded performance. + +It might be a good idea to create performance-critical resources like color-attachment or depth-stencil images +as dedicated and set high priority to them. For example: + +\code +VkImageCreateInfo imgCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO }; +imgCreateInfo.imageType = VK_IMAGE_TYPE_2D; +imgCreateInfo.extent.width = 3840; +imgCreateInfo.extent.height = 2160; +imgCreateInfo.extent.depth = 1; +imgCreateInfo.mipLevels = 1; +imgCreateInfo.arrayLayers = 1; +imgCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM; +imgCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; +imgCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; +imgCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; +imgCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; + +VmaAllocationCreateInfo allocCreateInfo = {}; +allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO; +allocCreateInfo.flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT; +allocCreateInfo.priority = 1.0f; + +VkImage img; +VmaAllocation alloc; +vmaCreateImage(allocator, &imgCreateInfo, &allocCreateInfo, &img, &alloc, nullptr); +\endcode + +`priority` member is ignored in the following situations: + +- Allocations created in custom pools: They inherit the priority, along with all other allocation parameters + from the parameters passed in #VmaPoolCreateInfo when the pool was created. +- Allocations created in default pools: They inherit the priority from the parameters + VMA used when creating default pools, which means `priority == 0.5f`. + + +\page vk_amd_device_coherent_memory VK_AMD_device_coherent_memory + +VK_AMD_device_coherent_memory is a device extension that enables access to +additional memory types with `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and +`VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flag. It is useful mostly for +allocation of buffers intended for writing "breadcrumb markers" in between passes +or draw calls, which in turn are useful for debugging GPU crash/hang/TDR cases. + +When the extension is available but has not been enabled, Vulkan physical device +still exposes those memory types, but their usage is forbidden. VMA automatically +takes care of that - it returns `VK_ERROR_FEATURE_NOT_PRESENT` when an attempt +to allocate memory of such type is made. + +If you want to use this extension in connection with VMA, follow these steps: + +\section vk_amd_device_coherent_memory_initialization Initialization + +1) Call `vkEnumerateDeviceExtensionProperties` for the physical device. +Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_AMD_device_coherent_memory". + +2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`. +Attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to `VkPhysicalDeviceFeatures2::pNext` to be returned. +Check if the device feature is really supported - check if `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true. + +3) While creating device with `vkCreateDevice`, enable this extension - add "VK_AMD_device_coherent_memory" +to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`. + +4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`. +Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`. +Enable this device feature - attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to +`VkPhysicalDeviceFeatures2::pNext` and set its member `deviceCoherentMemory` to `VK_TRUE`. + +5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you +have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT +to VmaAllocatorCreateInfo::flags. + +\section vk_amd_device_coherent_memory_usage Usage + +After following steps described above, you can create VMA allocations and custom pools +out of the special `DEVICE_COHERENT` and `DEVICE_UNCACHED` memory types on eligible +devices. There are multiple ways to do it, for example: + +- You can request or prefer to allocate out of such memory types by adding + `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` to VmaAllocationCreateInfo::requiredFlags + or VmaAllocationCreateInfo::preferredFlags. Those flags can be freely mixed with + other ways of \ref choosing_memory_type, like setting VmaAllocationCreateInfo::usage. +- If you manually found memory type index to use for this purpose, force allocation + from this specific index by setting VmaAllocationCreateInfo::memoryTypeBits `= 1u << index`. + +\section vk_amd_device_coherent_memory_more_information More information + +To learn more about this extension, see [VK_AMD_device_coherent_memory in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_AMD_device_coherent_memory.html) + +Example use of this extension can be found in the code of the sample and test suite +accompanying this library. + + +\page enabling_buffer_device_address Enabling buffer device address + +Device extension VK_KHR_buffer_device_address +allow to fetch raw GPU pointer to a buffer and pass it for usage in a shader code. +It has been promoted to core Vulkan 1.2. + +If you want to use this feature in connection with VMA, follow these steps: + +\section enabling_buffer_device_address_initialization Initialization + +1) (For Vulkan version < 1.2) Call `vkEnumerateDeviceExtensionProperties` for the physical device. +Check if the extension is supported - if returned array of `VkExtensionProperties` contains +"VK_KHR_buffer_device_address". + +2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`. +Attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to `VkPhysicalDeviceFeatures2::pNext` to be returned. +Check if the device feature is really supported - check if `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress` is true. + +3) (For Vulkan version < 1.2) While creating device with `vkCreateDevice`, enable this extension - add +"VK_KHR_buffer_device_address" to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`. + +4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`. +Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`. +Enable this device feature - attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to +`VkPhysicalDeviceFeatures2::pNext` and set its member `bufferDeviceAddress` to `VK_TRUE`. + +5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you +have enabled this feature - add #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT +to VmaAllocatorCreateInfo::flags. + +\section enabling_buffer_device_address_usage Usage + +After following steps described above, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*` using VMA. +The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT*` to +allocated memory blocks wherever it might be needed. + +Please note that the library supports only `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*`. +The second part of this functionality related to "capture and replay" is not supported, +as it is intended for usage in debugging tools like RenderDoc, not in everyday Vulkan usage. + +\section enabling_buffer_device_address_more_information More information + +To learn more about this extension, see [VK_KHR_buffer_device_address in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap46.html#VK_KHR_buffer_device_address) + +Example use of this extension can be found in the code of the sample and test suite +accompanying this library. + +\page general_considerations General considerations + +\section general_considerations_thread_safety Thread safety + +- The library has no global state, so separate #VmaAllocator objects can be used + independently. + There should be no need to create multiple such objects though - one per `VkDevice` is enough. +- By default, all calls to functions that take #VmaAllocator as first parameter + are safe to call from multiple threads simultaneously because they are + synchronized internally when needed. + This includes allocation and deallocation from default memory pool, as well as custom #VmaPool. +- When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT + flag, calls to functions that take such #VmaAllocator object must be + synchronized externally. +- Access to a #VmaAllocation object must be externally synchronized. For example, + you must not call vmaGetAllocationInfo() and vmaMapMemory() from different + threads at the same time if you pass the same #VmaAllocation object to these + functions. +- #VmaVirtualBlock is not safe to be used from multiple threads simultaneously. + +\section general_considerations_versioning_and_compatibility Versioning and compatibility + +The library uses [**Semantic Versioning**](https://semver.org/), +which means version numbers follow convention: Major.Minor.Patch (e.g. 2.3.0), where: + +- Incremented Patch version means a release is backward- and forward-compatible, + introducing only some internal improvements, bug fixes, optimizations etc. + or changes that are out of scope of the official API described in this documentation. +- Incremented Minor version means a release is backward-compatible, + so existing code that uses the library should continue to work, while some new + symbols could have been added: new structures, functions, new values in existing + enums and bit flags, new structure members, but not new function parameters. +- Incrementing Major version means a release could break some backward compatibility. + +All changes between official releases are documented in file "CHANGELOG.md". + +\warning Backward compatibility is considered on the level of C++ source code, not binary linkage. +Adding new members to existing structures is treated as backward compatible if initializing +the new members to binary zero results in the old behavior. +You should always fully initialize all library structures to zeros and not rely on their +exact binary size. + +\section general_considerations_validation_layer_warnings Validation layer warnings + +When using this library, you can meet following types of warnings issued by +Vulkan validation layer. They don't necessarily indicate a bug, so you may need +to just ignore them. + +- *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.* + - It happens when VK_KHR_dedicated_allocation extension is enabled. + `vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it. +- *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.* + - It happens when you map a buffer or image, because the library maps entire + `VkDeviceMemory` block, where different types of images and buffers may end + up together, especially on GPUs with unified memory like Intel. +- *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.* + - It may happen when you use [defragmentation](@ref defragmentation). + +\section general_considerations_allocation_algorithm Allocation algorithm + +The library uses following algorithm for allocation, in order: + +-# Try to find free range of memory in existing blocks. +-# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size. +-# If failed, try to create such block with size / 2, size / 4, size / 8. +-# If failed, try to allocate separate `VkDeviceMemory` for this allocation, + just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT. +-# If failed, choose other memory type that meets the requirements specified in + VmaAllocationCreateInfo and go to point 1. +-# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`. + +\section general_considerations_features_not_supported Features not supported + +Features deliberately excluded from the scope of this library: + +-# **Data transfer.** Uploading (streaming) and downloading data of buffers and images + between CPU and GPU memory and related synchronization is responsibility of the user. + Defining some "texture" object that would automatically stream its data from a + staging copy in CPU memory to GPU memory would rather be a feature of another, + higher-level library implemented on top of VMA. + VMA doesn't record any commands to a `VkCommandBuffer`. It just allocates memory. +-# **Recreation of buffers and images.** Although the library has functions for + buffer and image creation: vmaCreateBuffer(), vmaCreateImage(), you need to + recreate these objects yourself after defragmentation. That is because the big + structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in + #VmaAllocation object. +-# **Handling CPU memory allocation failures.** When dynamically creating small C++ + objects in CPU memory (not Vulkan memory), allocation failures are not checked + and handled gracefully, because that would complicate code significantly and + is usually not needed in desktop PC applications anyway. + Success of an allocation is just checked with an assert. +-# **Code free of any compiler warnings.** Maintaining the library to compile and + work correctly on so many different platforms is hard enough. Being free of + any warnings, on any version of any compiler, is simply not feasible. + There are many preprocessor macros that make some variables unused, function parameters unreferenced, + or conditional expressions constant in some configurations. + The code of this library should not be bigger or more complicated just to silence these warnings. + It is recommended to disable such warnings instead. +-# This is a C++ library with C interface. **Bindings or ports to any other programming languages** are welcome as external projects but + are not going to be included into this repository. +*/ diff --git a/src/vkutil.h b/src/vkutil.h new file mode 100644 index 0000000..7ab19a0 --- /dev/null +++ b/src/vkutil.h @@ -0,0 +1,58 @@ +#ifndef _VKUTIL_H +#define _VKUTIL_H + +/** + * vkutil.h -- helper functions and macros for working with vulkan in C + */ + +#include <stdio.h> +#include <stdarg.h> + +#include <vulkan/vulkan.h> +#include <vulkan/vk_enum_string_helper.h> // for string_VkResult + +#define VK_ARRAY_LEN(arr) sizeof((arr))/sizeof((arr)[0]) + +#define VK_CHECK(x) \ +do { \ + VkResult err = x; \ + if (err) { \ + fprintf(stderr, "%s:%d:0: vulkan error: %s \n", \ + __FILE__+3, __LINE__, string_VkResult(err)); \ + abort(); \ + } \ +} while (0) + +typedef enum { + VK_INFO = 0, + VK_WARN, + VK_ERROR, +} log_type; + +void +vk_log(log_type t, const char * f, ...) +{ +#ifdef VKDEBUG + va_list args; + va_start(args, f); + switch (t) { + case VK_INFO: + printf("INFO: "); + vprintf(f, args); + break; + case VK_WARN: + fprintf(stderr, "WARN: "); + vfprintf(stderr, f, args); + break; + case VK_ERROR: + fprintf(stderr, "ERROR: "); + vfprintf(stderr, f, args); + break; + } + va_end(args); +#else + return; +#endif +} + +#endif /* _VKUTIL_H */ |