#ifndef _VKSETUP_H
#define _VKSETUP_H
/* Start header file */
/**
vulkan setup and basic vector math
Single header file with included implementation in the spirit of
stb_* <https://github.com/nothings/stb>
ASSUMPTIONS:
~~~~~~~~~~~~
- Using SDL2 for the window
- Using cglm for maths
- Using shaderc for compiling glsl
- Using vulkan(!)
This is not meant to be a generic werapper around vulkan. It is actively
paired and chaned by the currently in development application, whatever that
might be. Think of it as the vulkan setup configuratior and helper.
USAGE:
~~~~~~
Do this:
#define VKSETUP_IMPLEMENTATION
before you include this file in *one* C or C++ file to create the implementation.
// i.e. it should look like this:
#include ...
#include ...
#include ...
#define VKSETUP_IMPLEMENTATION
#include "vksetup.h"
*/
#include <vulkan/vulkan_core.h>
#define SDL_MAIN_HANDLED
#define VK_USE_PLATFORM_XCB_KHR
#include <stdarg.h>
#include <SDL2/SDL.h>
#include <SDL2/SDL_vulkan.h>
#include <vulkan/vulkan.h>
#include <vulkan/vk_enum_string_helper.h> // for string_VkResult
#include <shaderc/shaderc.h>
#include "../lib/cglm/include/cglm/cglm.h"
#define VK_ARRAY_LEN(arr) sizeof((arr))/sizeof((arr)[0])
#ifdef __clang__
#define __FILENAME__ __FILE_NAME__
#else
#define __FILENAME__ __FILE__
#endif
#define VK_CHECK(x) \
do { \
VkResult err = x; \
if (err < 0) { \
fprintf(stderr, "src/%s:%d:0: vulkan error: %s \n", \
__FILENAME__, __LINE__, string_VkResult(err)); \
abort(); \
} \
} while (0)
typedef enum {
VK_INFO = 0,
VK_WARN,
VK_ERROR,
} log_type;
static inline void
_vk_log(log_type t, const char * f, ...)
{
#ifdef VKDEBUG
va_list args;
va_start(args, f);
switch (t) {
case VK_INFO:
printf("INFO: ");
vprintf(f, args);
break;
case VK_WARN:
fprintf(stderr, "WARN: ");
vfprintf(stderr, f, args);
break;
case VK_ERROR:
fprintf(stderr, "ERROR: ");
vfprintf(stderr, f, args);
break;
}
va_end(args);
#else
return;
#endif
}
#ifdef VKDEBUG
#define vk_log(t, ...) do { \
fprintf(t == VK_INFO ? stdout : stderr, "src/%s:%d:0: ", \
__FILENAME__, __LINE__); \
_vk_log(t, __VA_ARGS__); \
} while(0)
#else
#define vk_log(t, ...)
#endif
/**********/
/* config */
/**********/
const char *const validation_layers[] = {
"VK_LAYER_KHRONOS_validation"
};
const uint32_t validation_layer_count = VK_ARRAY_LEN(validation_layers);
const char *const device_extensions[] = {
VK_KHR_SWAPCHAIN_EXTENSION_NAME,
};
const uint32_t deviceExtensionCount = VK_ARRAY_LEN(device_extensions);
#ifdef VKDEBUG
const bool enable_validation_layers = true;
#else
const bool enable_validation_layers = false;
#endif
#ifdef __cplusplus
extern "C" {
#endif
#ifndef VKSDEF
#ifdef VKS_STATIC
#define VKSDEF static
#else
#define VKSDEF extern
#endif
#endif
typedef struct vks_swapchain {
VkSwapchainKHR handle;
VkFormat image_format;
VkExtent2D extent;
uint32_t image_count;
// todo: relace with vks_image although
// memory is managed by the swapchain
VkImage images[5];
VkImageView image_views[5]; // 5 for some reason
} vks_swapchain;
typedef struct vks_buffer {
VkBuffer handle;
VkDeviceMemory memory;
} vks_buffer;
typedef struct vks_image {
VkImage handle;
VkDeviceMemory memory;
VkImageView view;
} vks_image;
typedef struct vks_pipeline {
VkPipeline handle;
VkPipelineLayout layout;
} vks_pipeline;
typedef struct vks_context {
VkInstance instance;
VkPhysicalDevice physical_device;
VkDevice device;
SDL_Window *window;
VkSurfaceKHR surface;
vks_swapchain swapchain;
VkQueue graphics_and_compute_queue;
VkQueue present_queue;
VkQueue transfer_queue;
VkCommandPool command_pool;
vks_image color_image;
vks_image depth_image;
VkSampleCountFlagBits msaa_samples;
} vks_context;
typedef struct vks_frame_data {
VkCommandBuffer vk_command_buffer;
VkSemaphore image_available_semaphore;
VkSemaphore render_finished_semaphore;
VkFence in_flight_fence;
vks_buffer uniform_buffer;
void * uniform_buffer_mapped;
VkDescriptorSet vk_descriptor_set;
} vks_frame_data;
/* Info structs */
typedef struct vks_transition_image_layout_info
{
/* image */
VkImage image;
VkFormat format;
VkAccessFlags srcAccessMask;
VkAccessFlags dstAccessMask;
VkPipelineStageFlags srcStageMask;
VkPipelineStageFlags dstStageMask;
VkImageLayout oldLayout;
VkImageLayout newLayout;
uint32_t mipLevels;
} vks_transition_image_layout_info;
/* Exported API */
VKSDEF void vks_create_vulkan_context (vks_context *vk);
VKSDEF void vks_create_buffer (const vks_context vk, const VkDeviceSize size, const VkBufferUsageFlags usage, const VkMemoryPropertyFlags properties, vks_buffer *buffer);
VKSDEF void vks_create_image (const vks_context vk, const uint32_t width, const uint32_t height, const uint32_t mipLevels, const VkFormat format, const VkImageTiling tiling, const VkImageUsageFlags usage, const VkMemoryPropertyFlags properties, const VkSampleCountFlagBits numSamples, vks_image *image);
VKSDEF void vks_transition_image_layout (const vks_context vk, const vks_transition_image_layout_info *info);
VKSDEF void vks_copy_buffer (const vks_context vk, const VkBuffer src_buffer, VkBuffer dst_buffer, const VkDeviceSize size);
VKSDEF void vks_copy_buffer_to_image (const vks_context vk, const VkBuffer buffer, VkImage image, const uint32_t width, const uint32_t height);
VKSDEF void vks_generate_mipmaps (const vks_context vk, VkImage image, const VkFormat imageFormat, const int32_t texWidth, const int32_t texHeight, const uint32_t mipLevels);
VKSDEF VkImageView vks_create_image_view (const vks_context vk, VkImage image, VkFormat format, VkImageAspectFlags aspectFlags, uint32_t mipLevels);
VKSDEF VkFormat findDepthFormat(const vks_context vk);
/* VKSDEF void vulkan_create_descriptor_set_layout(); */
/* VKSDEF void vulkan_create_graphics_pipeline(); */
/* VKSDEF void vulkan_create_command_pool(); */
/* VKSDEF void vulkan_create_depth_resources(); */
/* VKSDEF void vulkan_create_texture_image(); */
/* VKSDEF void vulkan_create_texture_image_view(); */
/* VKSDEF void vulkan_create_texture_sampler(); */
/* VKSDEF void vulkan_create_vertex_buffer(); */
/* VKSDEF void vulkan_create_index_buffer(); */
/* VKSDEF void vulkan_create_uniform_buffers(); */
/* VKSDEF void vulkan_create_descriptor_pool(); */
/* VKSDEF void vulkan_create_descriptor_sets(); */
/* VKSDEF void vulkan_create_command_buffer(); */
/* VKSDEF void vulkan_create_sync_objects(); */
#ifdef __cplusplus
}
#endif
/* End header file */
#endif /* _VKSETUP_H */
#ifdef VKSETUP_IMPLEMENTATION
#include <stddef.h>
#include <stdlib.h>
#include <time.h>
/* Vks helpers */
static bool
_vks_check_validation_layer_support(const char* const validation_layers[],
uint32_t validation_layer_count)
{
uint32_t layerCount;
vkEnumerateInstanceLayerProperties(&layerCount, NULL);
VkLayerProperties availableLayers[layerCount];
vkEnumerateInstanceLayerProperties(&layerCount, availableLayers);
bool layerFound = false;
for (uint32_t i = 0; i < validation_layer_count; i++) {
for (uint32_t j = 0; j < layerCount; j++) {
if (strcmp(validation_layers[i], availableLayers[j].layerName) == 0) {
layerFound = true;
break;
}
}
}
return layerFound;
}
static uint32_t
_find_memory_type(const vks_context vk,
const uint32_t typeFilter,
const VkMemoryPropertyFlags properties)
{
VkPhysicalDeviceMemoryProperties mem_properties;
vkGetPhysicalDeviceMemoryProperties(vk.physical_device, &mem_properties);
for (uint32_t i = 0; i < mem_properties.memoryTypeCount; i++) {
if ((typeFilter & (1 << i)) &&
(mem_properties.memoryTypes[i].propertyFlags & properties) ==
properties) {
return i;
}
}
vk_log(VK_ERROR, "failed to find suitable memory type!\n");
return 9999;
}
VKSDEF VkCommandBuffer
_vks_begin_single_time_commands(const vks_context vk)
{
VkCommandBufferAllocateInfo allocInfo = {0};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandPool = vk.command_pool;
allocInfo.commandBufferCount = 1;
VkCommandBuffer commandBuffer;
VK_CHECK(vkAllocateCommandBuffers(vk.device, &allocInfo, &commandBuffer));
VkCommandBufferBeginInfo beginInfo = {0};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
VK_CHECK(vkBeginCommandBuffer(commandBuffer, &beginInfo));
return commandBuffer;
}
VKSDEF void
_vks_end_single_time_commands(const vks_context vk, VkCommandBuffer command_buffer)
{
VK_CHECK(vkEndCommandBuffer(command_buffer));
VkSubmitInfo submitInfo = {0};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &command_buffer;
VK_CHECK(vkQueueSubmit(vk.graphics_and_compute_queue, 1, &submitInfo, VK_NULL_HANDLE));
VK_CHECK(vkQueueWaitIdle(vk.graphics_and_compute_queue));
vkFreeCommandBuffers(vk.device, vk.command_pool, 1, &command_buffer);
}
static int
_has_stencil_component(VkFormat format)
{
return format == VK_FORMAT_D32_SFLOAT_S8_UINT ||
format == VK_FORMAT_D24_UNORM_S8_UINT;
}
static VkInstance
_vks_create_instance(bool validation_layers_toggle,
const char* const validation_layers[],
uint32_t validation_layer_count,
SDL_Window* window)
{
if (validation_layers_toggle &&
!_vks_check_validation_layer_support(validation_layers,
validation_layer_count)) {
vk_log(VK_ERROR, "validation layers requested, but not available!\n");
abort();
}
uint32_t instanceVersion;
VkResult result = vkEnumerateInstanceVersion(&instanceVersion);
if (result == VK_SUCCESS) {
if (instanceVersion < VK_MAKE_API_VERSION(0, 1, 3, 0)) {
vk_log(VK_ERROR, "Vulkan version 1.3 or greater required!\n");
exit(1);
}
vk_log(VK_INFO,
"Vulkan version found (%d) %d.%d.%d\n",
VK_API_VERSION_VARIANT(instanceVersion),
VK_API_VERSION_MAJOR(instanceVersion),
VK_API_VERSION_MINOR(instanceVersion),
VK_API_VERSION_PATCH(instanceVersion));
} else {
vk_log(VK_ERROR,
"Failed to retrieve vulkan version, is vulkan supported in this "
"system?\n");
exit(1);
}
// Load Vulkan and create instance
VkApplicationInfo appInfo = {
.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO,
.pApplicationName = "Vulkan Application",
.applicationVersion = VK_MAKE_API_VERSION(0, 1, 3, 0),
.pEngineName = NULL,
.engineVersion = VK_MAKE_API_VERSION(0, 1, 3, 0),
.apiVersion = VK_MAKE_API_VERSION(0, 1, 3, 0),
};
uint32_t sdlExtensionCount = 0;
if (SDL_Vulkan_GetInstanceExtensions(window, &sdlExtensionCount, NULL) ==
SDL_FALSE) {
vk_log(VK_ERROR,
"SDL_Vulkan_GetInstanceExtensions failed: %s\n",
SDL_GetError());
abort();
}
// make space for debug extenetion
if (validation_layers_toggle) {
sdlExtensionCount++;
}
const char* sdlExtensions[sdlExtensionCount];
if (SDL_Vulkan_GetInstanceExtensions(
window, &sdlExtensionCount, sdlExtensions) == SDL_FALSE) {
vk_log(VK_ERROR,
"SDL_Vulkan_GetInstanceExtensions failed: %s\n",
SDL_GetError());
abort();
}
// add debug extenetion
if (validation_layers_toggle) {
sdlExtensions[sdlExtensionCount] = VK_EXT_DEBUG_UTILS_EXTENSION_NAME;
}
vk_log(VK_INFO, "The sdl extensions:\n");
for (uint32_t i = 0; i < sdlExtensionCount; i++) {
vk_log(VK_INFO, "\t%s\n", sdlExtensions[i]);
}
VkInstanceCreateInfo createInfo = {
.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
.pApplicationInfo = &appInfo,
.enabledExtensionCount = sdlExtensionCount,
.ppEnabledExtensionNames = sdlExtensions,
.enabledLayerCount = 0,
};
if (validation_layers_toggle) {
createInfo.enabledLayerCount = validation_layer_count;
createInfo.ppEnabledLayerNames = validation_layers;
}
VkInstance instance;
if (vkCreateInstance(&createInfo, NULL, &instance) != VK_SUCCESS) {
vk_log(VK_ERROR, "Can't start vulkan instance\n");
}
vk_log(VK_INFO, "Vulkan instance created\n");
return instance;
}
static bool
_vulkan_check_device_extension_support(VkPhysicalDevice device)
{
uint32_t extensionCount;
vkEnumerateDeviceExtensionProperties(device, NULL, &extensionCount, NULL);
VkExtensionProperties availableExtensions[extensionCount];
vkEnumerateDeviceExtensionProperties(
device, NULL, &extensionCount, availableExtensions);
uint32_t flag = 0;
for (uint32_t i = 0; i < deviceExtensionCount; i++) {
for (uint32_t j = 0; j < extensionCount; j++) {
if (strcmp(device_extensions[i], availableExtensions[j].extensionName) ==
0) {
flag++;
break;
}
}
}
return flag == deviceExtensionCount;
}
typedef struct _QueueFamilyIndices
{
uint32_t graphicsAndComputeFamily;
bool graphicsFlag;
uint32_t presentFamily;
bool presentFlag;
} _QueueFamilyIndices;
static bool
_vulkan_queue_family_check_flags(_QueueFamilyIndices x)
{
return x.graphicsFlag && x.presentFlag;
}
static _QueueFamilyIndices
_vulkan_find_queue_families(vks_context* vk, VkPhysicalDevice device)
{
_QueueFamilyIndices indices;
indices.graphicsFlag = false;
indices.presentFlag = false;
uint32_t queueFamilyCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, NULL);
VkQueueFamilyProperties queueFamilies[queueFamilyCount];
vkGetPhysicalDeviceQueueFamilyProperties(
device, &queueFamilyCount, queueFamilies);
/* vk_log(VK_INFO, "Found %ld queues\n", queueFamilyCount); */
/* for (uint32_t i = 0; i < queueFamilyCount; i++) { */
/* if (queueFamilies[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) { */
/* vk_log(VK_INFO, " %d: VK_QUEUE_GRAPHICS_BIT\n", queueFamilies[i].queueFlags); */
/* } */
/* if (queueFamilies[i].queueFlags & VK_QUEUE_COMPUTE_BIT) { */
/* vk_log(VK_INFO, " %d: VK_QUEUE_COMPUTE_BIT\n", queueFamilies[i].queueFlags); */
/* } */
/* if (queueFamilies[i].queueFlags & VK_QUEUE_TRANSFER_BIT) { */
/* vk_log(VK_INFO, " %d: VK_QUEUE_TRANSFER_BIT\n", queueFamilies[i].queueFlags); */
/* } */
/* if (queueFamilies[i].queueFlags & VK_QUEUE_SPARSE_BINDING_BIT) { */
/* vk_log(VK_INFO, " %d: VK_QUEUE_SPARSE_BINDING_BIT\n", queueFamilies[i].queueFlags); */
/* } */
/* if (queueFamilies[i].queueFlags & VK_QUEUE_PROTECTED_BIT) { */
/* vk_log(VK_INFO, " %d: VK_QUEUE_PROTECTED_BIT\n", queueFamilies[i].queueFlags); */
/* } */
/* if (queueFamilies[i].queueFlags & VK_QUEUE_VIDEO_DECODE_BIT_KHR) { */
/* vk_log(VK_INFO, " %d: VK_QUEUE_VIDEO_DECODE_BIT\n", queueFamilies[i].queueFlags); */
/* } */
/* if (queueFamilies[i].queueFlags & VK_QUEUE_VIDEO_ENCODE_BIT_KHR) { */
/* vk_log(VK_INFO, " %d: VK_QUEUE_VIDEO_ENCODE_BIT\n", queueFamilies[i].queueFlags); */
/* } */
/* if (queueFamilies[i].queueFlags & VK_QUEUE_OPTICAL_FLOW_BIT_NV) { */
/* vk_log(VK_INFO, " %d: VK_QUEUE_OPTICAL_FLOW_BIT\n", queueFamilies[i].queueFlags); */
/* } */
/* } */
for (uint32_t i = 0; i < queueFamilyCount; i++) {
if ((queueFamilies[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) &&
(queueFamilies[i].queueFlags & VK_QUEUE_COMPUTE_BIT)) {
indices.graphicsAndComputeFamily = i;
indices.graphicsFlag = true;
}
VkBool32 presentSupport = false;
vkGetPhysicalDeviceSurfaceSupportKHR(
device, i, vk->surface, &presentSupport);
if (presentSupport) {
indices.presentFamily = i;
indices.presentFlag = true;
}
if (_vulkan_queue_family_check_flags(indices))
break;
}
return indices;
}
typedef struct _swap_chain_support_details
{
VkSurfaceCapabilitiesKHR capabilities;
VkSurfaceFormatKHR formats[100];
uint32_t formatCount;
VkPresentModeKHR presentModes[100];
uint32_t presentModeCount;
} _swap_chain_support_details;
static _swap_chain_support_details
_query_swap_chain_support(const vks_context* vk, VkPhysicalDevice device)
{
// TODO Make SwapChainSupportDetails malloc it;s arrays and free it after it
// is used.
_swap_chain_support_details details;
vkGetPhysicalDeviceSurfaceCapabilitiesKHR(
device, vk->surface, &details.capabilities);
vkGetPhysicalDeviceSurfaceFormatsKHR(
device, vk->surface, &details.formatCount, NULL);
if (details.formatCount != 0) {
// todo alloc format arrray
vkGetPhysicalDeviceSurfaceFormatsKHR(
device, vk->surface, &details.formatCount, details.formats);
}
vkGetPhysicalDeviceSurfacePresentModesKHR(
device, vk->surface, &details.presentModeCount, NULL);
if (details.presentModeCount != 0) {
// todo alloc presentModes array
vkGetPhysicalDeviceSurfacePresentModesKHR(
device, vk->surface, &details.presentModeCount, details.presentModes);
}
return details;
}
static bool
_vulkan_is_device_suitable(vks_context* vk, VkPhysicalDevice device)
{
_QueueFamilyIndices indices = _vulkan_find_queue_families(vk, device);
bool extensionsSupported = _vulkan_check_device_extension_support(device);
bool swapChainAdequate = false;
if (extensionsSupported) {
_swap_chain_support_details swapChainSupport =
_query_swap_chain_support(vk, device);
swapChainAdequate = !(swapChainSupport.formatCount == 0) &&
!(swapChainSupport.presentModeCount == 0);
}
VkPhysicalDeviceFeatures supportedFeatures;
vkGetPhysicalDeviceFeatures(device, &supportedFeatures);
return _vulkan_queue_family_check_flags(indices) && extensionsSupported &&
swapChainAdequate && supportedFeatures.samplerAnisotropy;
}
static VkSampleCountFlagBits
_get_max_usable_sample_count(vks_context* vk)
{
VkPhysicalDeviceProperties physicalDeviceProperties;
vkGetPhysicalDeviceProperties(vk->physical_device, &physicalDeviceProperties);
VkSampleCountFlags counts =
physicalDeviceProperties.limits.framebufferColorSampleCounts &
physicalDeviceProperties.limits.framebufferDepthSampleCounts;
if (counts & VK_SAMPLE_COUNT_64_BIT) {
return VK_SAMPLE_COUNT_64_BIT;
}
if (counts & VK_SAMPLE_COUNT_32_BIT) {
return VK_SAMPLE_COUNT_32_BIT;
}
if (counts & VK_SAMPLE_COUNT_16_BIT) {
return VK_SAMPLE_COUNT_16_BIT;
}
if (counts & VK_SAMPLE_COUNT_8_BIT) {
return VK_SAMPLE_COUNT_8_BIT;
}
if (counts & VK_SAMPLE_COUNT_4_BIT) {
return VK_SAMPLE_COUNT_4_BIT;
}
if (counts & VK_SAMPLE_COUNT_2_BIT) {
return VK_SAMPLE_COUNT_2_BIT;
}
return VK_SAMPLE_COUNT_1_BIT;
}
static void
_vulkan_pick_physical_device(vks_context* vk)
{
uint32_t deviceCount = 0;
vkEnumeratePhysicalDevices(vk->instance, &deviceCount, NULL);
if (deviceCount == 0) {
vk_log(VK_INFO, "failed to find GPUs with Vulkan support!\n");
}
VkPhysicalDevice devices[deviceCount];
vkEnumeratePhysicalDevices(vk->instance, &deviceCount, devices);
for (uint32_t i = 0; i < deviceCount; i++) {
if (_vulkan_is_device_suitable(vk, devices[i])) {
vk->physical_device = devices[i];
vk->msaa_samples = _get_max_usable_sample_count(vk);
break;
}
}
if (vk->physical_device == VK_NULL_HANDLE) {
vk_log(VK_ERROR, "failed to find a suitable GPU!\n");
}
VkPhysicalDeviceProperties deviceProperties;
vkGetPhysicalDeviceProperties(vk->physical_device, &deviceProperties);
vk_log(
VK_INFO, "Picked [%s] physical device.\n", deviceProperties.deviceName);
uint32_t extensionCount = 0;
vkEnumerateInstanceExtensionProperties(NULL, &extensionCount, NULL);
VkExtensionProperties extensions[extensionCount];
vkEnumerateInstanceExtensionProperties(NULL, &extensionCount, extensions);
vk_log(VK_INFO, "Vulkan enabled extensions:\n");
for (uint32_t i = 0; i < extensionCount; i++) {
vk_log(VK_INFO, "\t%s\n", extensions[i].extensionName);
}
}
static void
_vulkan_create_logical_device(vks_context* vk)
{
_QueueFamilyIndices indices =
_vulkan_find_queue_families(vk, vk->physical_device);
// TODO CREATE MULPILE QUEUES
// https://vulkan-tutorial.com/en/Drawing_a_triangle/Presentation/Window_surface#page_Creating-the-presentation-queue
VkDeviceQueueCreateInfo queueCreateInfo = {
.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
.queueFamilyIndex = indices.graphicsAndComputeFamily,
.queueCount = 1,
};
float queuePriority = 1.0f;
queueCreateInfo.pQueuePriorities = &queuePriority;
VkPhysicalDeviceFeatures deviceFeatures = { 0 };
vkGetPhysicalDeviceFeatures(vk->physical_device, &deviceFeatures);
deviceFeatures.samplerAnisotropy = VK_TRUE;
// deviceFeatures.sampleRateShading = VK_TRUE;
#ifndef VKDEBUG
/* Disable robust buffer access when building without debug */
deviceFeatures.robustBufferAccess = VK_FALSE;
#endif
VkPhysicalDeviceDynamicRenderingFeaturesKHR dynamic_rendering_feature = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES_KHR,
.dynamicRendering = VK_TRUE,
};
VkDeviceCreateInfo createInfo = {
.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
.pQueueCreateInfos = &queueCreateInfo,
.queueCreateInfoCount = 1,
.pNext = &dynamic_rendering_feature,
.pEnabledFeatures = &deviceFeatures,
.enabledExtensionCount = deviceExtensionCount,
.ppEnabledExtensionNames = device_extensions,
.enabledLayerCount = 0,
};
if (vkCreateDevice(vk->physical_device, &createInfo, NULL, &vk->device) !=
VK_SUCCESS) {
vk_log(VK_ERROR, "failed to create logical device!\n");
}
vk_log(VK_INFO, "Vulkan logical device created\n");
vkGetDeviceQueue(vk->device,
indices.graphicsAndComputeFamily,
0,
&vk->graphics_and_compute_queue);
vkGetDeviceQueue(vk->device, indices.presentFamily, 0, &vk->present_queue);
}
static VkSurfaceFormatKHR
_chooseSwapSurfaceFormat(const VkSurfaceFormatKHR* availableFormats,
uint32_t formatCount)
{
for (uint32_t i = 0; i < formatCount; i++) {
if (availableFormats[i].format == VK_FORMAT_B8G8R8A8_SRGB &&
availableFormats[i].colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
return availableFormats[i];
}
}
// if it fails pick the first one
return availableFormats[0];
}
static VkPresentModeKHR
_chooseSwapPresentMode(const VkPresentModeKHR* presentModes,
uint32_t presentModeCount)
{
for (uint32_t i = 0; i < presentModeCount; i++) {
if (presentModes[i] == VK_PRESENT_MODE_MAILBOX_KHR) {
return presentModes[i];
}
}
// if it fails pick the the FIFO one
return VK_PRESENT_MODE_FIFO_KHR;
}
static VkExtent2D
_chooseSwapExtent(const vks_context* vk,
const VkSurfaceCapabilitiesKHR* capabilities)
{
if (capabilities->currentExtent.width != UINT32_MAX) {
return capabilities->currentExtent;
} else {
int width, height;
SDL_GetWindowSize(vk->window, &width, &height);
VkExtent2D actualExtent;
actualExtent.width = (uint32_t)width;
actualExtent.height = (uint32_t)height;
// Manual implementation of std::clamp since it is not available in C
actualExtent.width =
(actualExtent.width < capabilities->minImageExtent.width)
? capabilities->minImageExtent.width
: (actualExtent.width > capabilities->maxImageExtent.width)
? capabilities->maxImageExtent.width
: actualExtent.width;
actualExtent.height =
(actualExtent.height < capabilities->minImageExtent.height)
? capabilities->minImageExtent.height
: (actualExtent.height > capabilities->maxImageExtent.height)
? capabilities->maxImageExtent.height
: actualExtent.height;
return actualExtent;
}
}
VKSDEF void
_vulkan_create_swap_chain(vks_context* vk)
{
_swap_chain_support_details swapChainSupport =
_query_swap_chain_support(vk, vk->physical_device);
VkSurfaceFormatKHR surfaceFormat = _chooseSwapSurfaceFormat(
swapChainSupport.formats, swapChainSupport.formatCount);
VkPresentModeKHR presentMode = _chooseSwapPresentMode(
swapChainSupport.presentModes, swapChainSupport.presentModeCount);
VkExtent2D extent = _chooseSwapExtent(vk, &swapChainSupport.capabilities);
uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1;
if (swapChainSupport.capabilities.maxImageCount > 0 &&
imageCount > swapChainSupport.capabilities.maxImageCount) {
imageCount = swapChainSupport.capabilities.maxImageCount;
}
VkSwapchainCreateInfoKHR createInfo = {
.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
.surface = vk->surface,
.minImageCount = imageCount,
.imageFormat = surfaceFormat.format,
.imageColorSpace = surfaceFormat.colorSpace,
.imageExtent = extent,
.imageArrayLayers = 1,
.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
};
_QueueFamilyIndices indices =
_vulkan_find_queue_families(vk, vk->physical_device);
uint32_t queueFamilyIndices[] = { indices.graphicsAndComputeFamily,
indices.presentFamily };
if (indices.graphicsAndComputeFamily != indices.presentFamily) {
createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
createInfo.queueFamilyIndexCount = 2;
createInfo.pQueueFamilyIndices = queueFamilyIndices;
} else {
createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
createInfo.queueFamilyIndexCount = 0; // Optional
createInfo.pQueueFamilyIndices = NULL; // Optional
}
createInfo.preTransform = swapChainSupport.capabilities.currentTransform;
createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
createInfo.presentMode = presentMode;
createInfo.clipped = VK_TRUE;
createInfo.oldSwapchain = VK_NULL_HANDLE;
VK_CHECK(
vkCreateSwapchainKHR(vk->device, &createInfo, NULL, &vk->swapchain.handle));
/* if (result != VK_SUCCESS) { */
/* vk_log(VK_ERROR, "ERROR: failed to create swap chain! %s\n",
* string_VkResult(result)); */
/* } */
VK_CHECK(vkGetSwapchainImagesKHR(
vk->device, vk->swapchain.handle, &vk->swapchain.image_count, NULL));
// vk_log(VK_INFO, "vk_swap_chain_images count: %d\n",
// vk->swapchain.image_count);
// todo alloc space for images
VK_CHECK(vkGetSwapchainImagesKHR(vk->device,
vk->swapchain.handle,
&vk->swapchain.image_count,
vk->swapchain.images));
vk->swapchain.image_format = surfaceFormat.format;
vk->swapchain.extent = extent;
vk_log(VK_INFO, "Vulkan swapchain created!\n");
for (size_t i = 0; i < vk->swapchain.image_count; i++) {
vk->swapchain.image_views[i] =
vks_create_image_view(*vk,
vk->swapchain.images[i],
vk->swapchain.image_format,
VK_IMAGE_ASPECT_COLOR_BIT,
1);
}
}
static void
_vulkan_create_command_pool(vks_context *vk)
{
_QueueFamilyIndices queueFamilyIndices = _vulkan_find_queue_families(vk, vk->physical_device);
VkCommandPoolCreateInfo poolInfo = {0};
poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
// AMD doesn't like this flag for some reason
poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsAndComputeFamily;
VK_CHECK(vkCreateCommandPool(vk->device, &poolInfo, NULL, &vk->command_pool));
}
VkFormat
_findSupportedFormat(const vks_context vk,
VkFormat* candidates,
size_t n,
VkImageTiling tiling,
VkFormatFeatureFlags features)
{
for (size_t i = 0; i < n; i++) {
VkFormat format = candidates[i];
VkFormatProperties props;
vkGetPhysicalDeviceFormatProperties(vk.physical_device, format, &props);
if (tiling == VK_IMAGE_TILING_LINEAR &&
(props.linearTilingFeatures & features) == features) {
return format;
} else if (tiling == VK_IMAGE_TILING_OPTIMAL &&
(props.optimalTilingFeatures & features) == features) {
return format;
}
}
vk_log(VK_ERROR, "failed to find supported format!\n");
abort();
}
VKSDEF VkFormat
findDepthFormat(const vks_context vk)
{
VkFormat formats[] = { VK_FORMAT_D32_SFLOAT,
VK_FORMAT_D32_SFLOAT_S8_UINT,
VK_FORMAT_D24_UNORM_S8_UINT };
return _findSupportedFormat(vk, formats,
VK_ARRAY_LEN(formats),
VK_IMAGE_TILING_OPTIMAL,
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT);
}
VKSDEF void
_vulkan_create_depth_resources(vks_context *vk)
{
VkFormat depth_format = findDepthFormat(*vk);
vks_create_image(*vk, vk->swapchain.extent.width, vk->swapchain.extent.height, 1,
depth_format, VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vk->msaa_samples,
&vk->depth_image);
vk->depth_image.view = vks_create_image_view(*vk, vk->depth_image.handle, depth_format,
VK_IMAGE_ASPECT_DEPTH_BIT, 1);
vks_transition_image_layout_info transition_info = { 0 };
transition_info.image = vk->depth_image.handle;
transition_info.format = depth_format;
transition_info.srcAccessMask = VK_ACCESS_NONE;
transition_info.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
transition_info.srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
transition_info.dstStageMask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT;
transition_info.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
transition_info.newLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
transition_info.mipLevels = 1;
//vks_transition_image_layout(*vk, &transition_info);
}
VKSDEF void
_vulkan_create_color_resources(vks_context *vk)
{
VkFormat colorFormat = vk->swapchain.image_format;
vks_create_image(*vk, vk->swapchain.extent.width, vk->swapchain.extent.height, 1,
colorFormat, VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT |
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vk->msaa_samples,
&vk->color_image);
vk->color_image.view = vks_create_image_view(*vk, vk->color_image.handle, colorFormat, VK_IMAGE_ASPECT_COLOR_BIT, 1);
}
/* Vks API implementation */
VKSDEF void
vks_cleanup_swapchain(const vks_context vk)
{
vkDestroyImageView(vk.device, vk.color_image.view, NULL);
vkDestroyImage(vk.device, vk.color_image.handle, NULL);
vkFreeMemory(vk.device, vk.color_image.memory, NULL);
vkDestroyImageView(vk.device, vk.depth_image.view, NULL);
vkDestroyImage(vk.device, vk.depth_image.handle, NULL);
vkFreeMemory(vk.device, vk.depth_image.memory, NULL);
for (uint32_t i = 0; i < vk.swapchain.image_count; i++) {
vkDestroyImageView(vk.device, vk.swapchain.image_views[i], NULL);
}
vkDestroySwapchainKHR(vk.device, vk.swapchain.handle, NULL);
}
VKSDEF void
vks_recreate_swapchain(vks_context* vk)
{
vkDeviceWaitIdle(vk->device);
vks_cleanup_swapchain(*vk);
_vulkan_create_swap_chain(vk);
_vulkan_create_color_resources(vk);
_vulkan_create_depth_resources(vk);
}
VKSDEF void
vks_create_vulkan_context(vks_context* vk)
{
/* Create vulkan instance */
vk->instance = _vks_create_instance(enable_validation_layers,
validation_layers,
validation_layer_count,
vk->window);
/* Create render surface */
if (SDL_Vulkan_CreateSurface(vk->window, vk->instance, &vk->surface) ==
SDL_FALSE) {
vk_log(VK_ERROR, "Failed to create surface\n");
} else {
vk_log(VK_INFO, "Vulkan surface created\n");
}
/* Pick physical device */
_vulkan_pick_physical_device(vk);
/* Create logical device and get queues */
/* TODO: Create vks_get_queue helpers?? */
_vulkan_create_logical_device(vk);
_vulkan_create_command_pool(vk);
/* Create swapchain */
/* TODO: Make swapchain api */
_vulkan_create_swap_chain(vk);
/* Create resources */
_vulkan_create_color_resources(vk);
_vulkan_create_depth_resources(vk);
}
VKSDEF VkImageView
vks_create_image_view(const vks_context vk,
VkImage image,
VkFormat format,
VkImageAspectFlags aspectFlags,
uint32_t mipLevels)
{
VkImageViewCreateInfo viewInfo = { 0 };
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.image = image;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = format;
viewInfo.subresourceRange.aspectMask = aspectFlags;
viewInfo.subresourceRange.baseMipLevel = 0;
viewInfo.subresourceRange.levelCount = mipLevels;
viewInfo.subresourceRange.baseArrayLayer = 0;
viewInfo.subresourceRange.layerCount = 1;
VkImageView imageView;
VK_CHECK(vkCreateImageView(vk.device, &viewInfo, NULL, &imageView));
return imageView;
}
VKSDEF void
vks_generate_mipmaps(const vks_context vk,
VkImage image,
const VkFormat imageFormat,
const int32_t texWidth,
const int32_t texHeight,
const uint32_t mipLevels)
{
VkCommandBuffer command_buffer = _vks_begin_single_time_commands(vk);
VkImageMemoryBarrier barrier = { 0 };
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.image = image;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
barrier.subresourceRange.baseArrayLayer = 0;
barrier.subresourceRange.layerCount = 1;
barrier.subresourceRange.levelCount = 1;
int32_t mipWidth = texWidth;
int32_t mipHeight = texHeight;
for (uint32_t i = 1; i < mipLevels; i++) {
barrier.subresourceRange.baseMipLevel = i - 1;
barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
vkCmdPipelineBarrier(command_buffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
0,
0,
NULL,
0,
NULL,
1,
&barrier);
VkImageBlit blit = { 0 };
blit.srcOffsets[0] = (VkOffset3D){ 0, 0, 0 };
blit.srcOffsets[1] = (VkOffset3D){ mipWidth, mipHeight, 1 };
blit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit.srcSubresource.mipLevel = i - 1;
blit.srcSubresource.baseArrayLayer = 0;
blit.srcSubresource.layerCount = 1;
blit.dstOffsets[0] = (VkOffset3D){ 0, 0, 0 };
blit.dstOffsets[1] = (VkOffset3D){ mipWidth > 1 ? mipWidth / 2 : 1,
mipHeight > 1 ? mipHeight / 2 : 1,
1 };
blit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit.dstSubresource.mipLevel = i;
blit.dstSubresource.baseArrayLayer = 0;
blit.dstSubresource.layerCount = 1;
vkCmdBlitImage(command_buffer,
image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&blit,
VK_FILTER_LINEAR);
barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
vkCmdPipelineBarrier(command_buffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
0,
0,
NULL,
0,
NULL,
1,
&barrier);
if (mipWidth > 1)
mipWidth /= 2;
if (mipHeight > 1)
mipHeight /= 2;
}
_vks_end_single_time_commands(vk, command_buffer);
}
VKSDEF void
vks_copy_buffer_to_image(const vks_context vk,
const VkBuffer buffer,
VkImage image,
const uint32_t width,
const uint32_t height)
{
VkCommandBuffer command_buffer = _vks_begin_single_time_commands(vk);
VkBufferImageCopy region = { 0 };
region.bufferOffset = 0;
region.bufferRowLength = 0;
region.bufferImageHeight = 0;
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.mipLevel = 0;
region.imageSubresource.baseArrayLayer = 0;
region.imageSubresource.layerCount = 1;
region.imageOffset = (VkOffset3D){ 0, 0, 0 };
region.imageExtent = (VkExtent3D){ width, height, 1 };
vkCmdCopyBufferToImage(command_buffer,
buffer,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
®ion);
_vks_end_single_time_commands(vk, command_buffer);
}
VKSDEF void
vks_copy_buffer(const vks_context vk,
const VkBuffer src_buffer,
VkBuffer dst_buffer,
const VkDeviceSize size)
{
VkCommandBuffer command_buffer = _vks_begin_single_time_commands(vk);
VkBufferCopy copy_region = { 0 };
copy_region.srcOffset = 0; // Optional
copy_region.dstOffset = 0; // Optional
copy_region.size = size;
vkCmdCopyBuffer(command_buffer, src_buffer, dst_buffer, 1, ©_region);
_vks_end_single_time_commands(vk, command_buffer);
}
VKSDEF void
vks_transition_image_layout(const vks_context vk, const vks_transition_image_layout_info* info)
{
VkCommandBuffer command_buffer = _vks_begin_single_time_commands(vk);
VkImageMemoryBarrier barrier = { 0 };
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.srcAccessMask = info->srcAccessMask;
barrier.dstAccessMask = info->dstAccessMask;
barrier.oldLayout = info->oldLayout;
barrier.newLayout = info->newLayout;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = info->image;
// barrier.subresourceRange.aspectMask =
if (info->newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
if (_has_stencil_component(info->format)) {
barrier.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
} else {
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
}
barrier.subresourceRange.baseMipLevel = 0;
barrier.subresourceRange.levelCount = info->mipLevels;
barrier.subresourceRange.baseArrayLayer = 0;
barrier.subresourceRange.layerCount = 1;
vkCmdPipelineBarrier(command_buffer,
info->srcStageMask,
info->dstStageMask,
0,
0,
NULL,
0,
NULL,
1,
&barrier);
_vks_end_single_time_commands(vk, command_buffer);
}
VKSDEF void
vks_create_image(const vks_context vk,
const uint32_t width,
const uint32_t height,
const uint32_t mipLevels,
const VkFormat format,
const VkImageTiling tiling,
const VkImageUsageFlags usage,
const VkMemoryPropertyFlags properties,
const VkSampleCountFlagBits numSamples,
vks_image* image)
{
VkImageCreateInfo imageInfo = { 0 };
imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageInfo.imageType = VK_IMAGE_TYPE_2D;
imageInfo.extent.width = width;
imageInfo.extent.height = height;
imageInfo.extent.depth = 1;
imageInfo.mipLevels = mipLevels;
imageInfo.arrayLayers = 1;
imageInfo.format = format;
imageInfo.tiling = tiling;
imageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageInfo.usage = usage;
imageInfo.samples = numSamples;
imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK(vkCreateImage(vk.device, &imageInfo, NULL, &image->handle));
VkMemoryRequirements memRequirements;
vkGetImageMemoryRequirements(vk.device, image->handle, &memRequirements);
VkMemoryAllocateInfo allocInfo = { 0 };
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.allocationSize = memRequirements.size;
allocInfo.memoryTypeIndex =
_find_memory_type(vk, memRequirements.memoryTypeBits, properties);
// TODO: group allocations etc... (allocations limited by hardware)
VK_CHECK(vkAllocateMemory(vk.device, &allocInfo, NULL, &image->memory));
vkBindImageMemory(vk.device, image->handle, image->memory, 0);
}
VKSDEF void
vks_create_buffer(const vks_context vk,
const VkDeviceSize size,
const VkBufferUsageFlags usage,
const VkMemoryPropertyFlags properties,
vks_buffer* buffer)
{
VkBufferCreateInfo bufferInfo = { 0 };
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = size;
bufferInfo.usage = usage;
bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK(vkCreateBuffer(vk.device, &bufferInfo, NULL, &buffer->handle));
VkMemoryRequirements mem_requirements;
vkGetBufferMemoryRequirements(vk.device, buffer->handle, &mem_requirements);
VkMemoryAllocateInfo allocInfo = { 0 };
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.allocationSize = mem_requirements.size;
allocInfo.memoryTypeIndex =
_find_memory_type(vk, mem_requirements.memoryTypeBits, properties);
// TODO: group allocations etc... (allocations limited by hardware)
VK_CHECK(vkAllocateMemory(vk.device, &allocInfo, NULL, &buffer->memory));
VK_CHECK(vkBindBufferMemory(vk.device, buffer->handle, buffer->memory, 0));
}
#endif /* VKSETUP_IMPLEMENTATION */